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Abstract

The concept of multifractality is currently used to describe self-similar and complex scaling properties observed in
numerous biological signals. Fractals are geometric objects or dynamic variations which exhibit some degree of similarity
(irregularity) to the original object in a wide range of scales. This approach determines irregularity of biologic signal as an
indicator of adaptability, the capability to respond to unpredictable stress, and health. In the present work, we propose the
application of multifractal analysis of wavelet-transformed proton nuclear magnetic resonance (1H NMR) spectra of plasma
to determine nutritional insufficiency. For validation of this method on 1H NMR signal of human plasma, standard deviation
from classical statistical approach and Hurst exponent (H), left slope and partition function from multifractal analysis were
extracted from 1H NMR spectra to test whether multifractal indices could discriminate healthy subjects from unhealthy,
intensive care unit patients. After validation, the multifractal approach was applied to spectra of plasma from a modified
crossover study of sulfur amino acid insufficiency and tested for associations with blood lipids. The results showed that
standard deviation and H, but not left slope, were significantly different for sulfur amino acid sufficiency and insufficiency.
Quadratic discriminant analysis of H, left slope and the partition function showed 78% overall classification accuracy
according to sulfur amino acid status. Triglycerides and apolipoprotein C3 were significantly correlated with a multifractal
model containing H, left slope, and standard deviation, and cholesterol and high-sensitivity C-reactive protein were
significantly correlated to H. In conclusion, multifractal analysis of 1H NMR spectra provides a new approach to characterize
nutritional status.
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Introduction

The concept of fractal dynamics as a means to measure

irregularity and unpredictability in biological systems was intro-

duced by Thurner et al. [1–3]. Such studies show that irregularity

and unpredictability are important features of health and that

decreased variability and adaptability are often associated with

diseases [4–7]. For instance, in the experiments of Ivanov et al. [8],

fractal analysis of the human heartbeat showed that a higher Hurst

Exponent (H), indicative of greater regularity, was associated with

disease, while normal heartbeat exhibited more chaotic behavior

and lower H value while cardiac dynamics in the mathematical

and fractal sense is still under investigation [8–10]. Based upon this

concept, increased regularity could indicate developing sickness,

and increased irregularity could indicate recovery. If such concepts

are applicable to nutritional insufficiencies, this could provide

means to detect nutritional insufficiencies and/or monitor efficacy

of nutritional interventions that complement traditional biological

and statistical methods. Importantly, such fractal approaches are

distinct and can potentially reveal aspects of health and disease

that the statistical analyses do not describe.

In a previous fractal analysis of diurnal metabolic variation

using wavelet transformed proton nuclear magnetic resonance (1H

NMR) spectra of human plasma, we found that the monofractal

parameter H was predictive of the plasma content of cysteine (Cys)

[11]. Cys and its dietary precursor methionine (Met), are common

sulfur amino acids (SAA) involved in many aspects of human

health and cellular function [12–15]. We recently used 1H NMR

spectroscopy of human plasma to study effects of dietary SAA

content on macronutrient metabolism [16]. Healthy participants

(18–36 y, 5 males and 3 females) were equilibrated for 3 d to

adequate SAA, fed chemically defined meals without SAA for 5 d

(depletion) and then fed isoenergetic, isonitrogenous meals

containing 56 mg?kg21?d21 SAA for 4.5 d (repletion) [17–19].

Results showed effects of SAA intake on lipids, some amino acids,

and lactate [18].

The purpose of present study was to use these 1H NMR spectra

to test whether fractal analysis can detect nutritional SAA

insufficiency. To do this, we used a multifractal approach to

improve description of metabolic regularity/irregularity. For

reference, the standard deviation (Std) of 1H NMR spectra

provides means to quantify average variation within spectra. The

multifractal analysis decomposes data into subsets characterized by
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multifractal spectra (MFS) and partition function T(q) (Figure 1)

with Holder exponent values that quantify local regularity

behaviors [20,21]. The maximum of Holder exponent values is

equivalent to the monofractal parameter [22], H, capturing

important information about MFS (Figure 1A) in a single quantity.

The higher value of H indicates greater regularity in the spectrum.

In contrast, a higher value of left slope (LS), another MFS

parameter, indicates the deviation from monofractality, which

suggests that the biologic system is more adaptive. The results

show that fractal parameters (H, LS) along with Std discriminate

samples according to SAA sufficiency and suggest that this

approach may be useful to detect nutritional insufficiencies and

monitor responses to nutritional intervention.

Materials and Methods

Human subjects
This study was performed by reanalysis of 1H NMR spectral

data from previously published studies [17,18] that were reviewed

and approved by the Emory University Investigational Review

Board. The blood samples were collected with EDTA, and

spectral data were generated for the different projects using

procedures and settings with the intent to allow spectral data from

different studies to be used for comparative analyses in a

cumulative spectral database. Repeat measurements of 1H NMR

spectra within 24 h showed coefficient of variation to be less than

5%. Spectral data for the primary comparison, SAA insufficiency

versus SAA sufficiency, were from a single study so that systematic

differences between studies do not affect these comparisons.

However, because the other analyses were done weeks apart, there

is no way to explicitly exclude unanticipated systematic variations

for comparison of the SAA study with the other studies.

Participant characteristics are summarized in Table 1. For the

primary comparison of effects of SAA intake, 8 participants in a

controlled cross-over study received an isoenergetic, isonitrogen-

ous diet sequentially without and with SAA [18]. Data for 12

critically ill ICU patients were from baseline samples collected

upon admission into a double-blind study of albumin treatment

[23]. Data for 10 healthy subjects were from a diurnal variation

study [24] in which spectra were selected to best match age, BMI

and time of day for collection for the ICU patients. In this

comparison, the percentage of females in the healthy group (50%)

was less than that in the ICU group (75%).

Figure 1. Geometric descriptors for multifractal analysis. (a) The geometric descriptors of the MFS include values of regularity, represented on
the horizontal axis and values proportional to the relative frequency of these regularity values, represented on the vertical axis. The maximal
regularity is represented by H and the overall uncertainty of regularity is provided by the left slope (LS). (b) interpretation of LS with partition function
T(q); LS is obtained by the two slopes (H and a1) of the two tangent lines; LS is adopted as a measure of deviation from the straight line passing
through the origin.
doi:10.1371/journal.pone.0069000.g001

Table 1. Individual characteristics.

Age Sex
Predisposing
Insult BMI

ICU 47 M Pneumonia 19.7

49 F Transfusion 25.5

54 F Pneumonia 26.7

70 F Sepsis 29.9

71 M Sepsis 27.3

82 F Sepsis 25.1

21 F Sepsis 21.5

53 F Pneumonia 36.0

64 F Pneumonia 35.0

67 F Sepsis 35.4

76 M Pneumonia 21.6

82 F Sepsis 24.7

Average of age 61.3±17.5 Average of BMI 27.4±5.6

Healthy 31 F 22.4

22 F 25.7

23 M 27.5

25 M 22.2

45 F 24.7

75 M 27.3

82 F 20.2

79 M 32.6

83 F 27.6

81 M 28.2

Average of age 54.6±8.7 Average of BMI 25.8±1.1

SAA Study 21 M 20.7

18 F 22.5

20 M 22.3

36 M 20.0

25 M 21.0

23 M 23.2

33 F 26.0

23 F 24.8

Average of age 24.9±6.4 Average of BMI 22.6±2.1

doi:10.1371/journal.pone.0069000.t001
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For study of SAA, 8 healthy volunteers without evidence of

acute or chronic illness, no current smoking history, and a body

mass index (BMI) within the range, 20 to 26, were given an

equilibration diet with the RDA for SAA for 3 days. Subjects then

received a chemically defined semisynthetic diet with 0 mg/kg

SAA per day for 5 days followed by 56 mg?kg21?d21 SAA for 4.5

days, with a distribution of Met:Cys of 2:1. Observations for the

8th subject, however, were not available for all 5 days because of

early termination. The protein equivalents were supplied in the

form of L-amino acid mixtures (Ajinomoto USA, Teaneck, NJ),

providing 1.0 g/kg per day [25,26]. To compensate for the

difference in Met + Cys between the equilibration, 0 and

56 mg?kg21?d21 SAA diets, the amount of all non-essential amino

acids were proportionally changed to maintain a constant dietary

nitrogen content while at the same time maintaining them as

isoenergetic [25,27]. Adequate hydration and vitamin, mineral

and electrolyte requirements were provided to all subjects to meet

or exceed recommended allowances [25], and body weights were

determined daily and vital signs were obtained every 8 h.

1H NMR Spectroscopy
Plasma samples (600 mL) were mixed with 66 mL of deuterium

oxide (D2O) containing DSS [3-(trimethylsilyl)-1-propanesulfonic

acid sodium salt (C6H15NaO3SSi, 1% w/w)], and 1H NMR

spectra were measured at 600 MHz on a Varian INOVA 600

spectrometer under conditions where stability and reproducibility

of the NMR analysis were previously established [16]. Prepro-

cessing of 1H NMR spectra containing 11,708 data points

included baseline correction with a polynomial regression (NUTS

program, Acorn NMR Inc., Livermore, CA), spectral alignment

using a beam search algorithm [28] to enhance the computational

efficiency of the genetic algorithm [29], elimination of uninfor-

mative spectral regions, and normalization relative to the internal

standard.

Wavelet-based Multifractal Analysis
Multifractal analysis assesses fractal dimensions of self-similar

structures with varying regularities [30] and produces intensity of

regularity comprising the MFS [22]. MFS f(a) represents a

distribution of Holder exponents, or regularity, a. The MFS

describes the richness of local regularity in spectra that are more

adaptable and complex than can be characterized by a single

scaling exponent as used in monofractal analysis. In the present

analysis, we used a normalized orthogonal wavelet basis in which

the coefficients of discrete wavelet transformation carry informa-

tion on the local difference near positions on a dyadic scale.

Because direct estimation is computationally difficult, we used a

partition function [8], T(q), which was estimated using ordinary

least squares (OLS) based on empirical qth moments of the wavelet

coefficients with an error term introduced by replacing true

moments with empirical ones. In this, T(q) represents the scaling

behavior at exponent q between log scales (j) of spectra and log-

average intensity, capturing high-order dependence in the spectra.

For given exponent q, the log scales of j = 3 and 8, corresponding

to 223 (1/ppm) and 228 (1/ppm) in terms of ppm frequency, were

chosen to compute the slope T(q) Monofractal spectra display a

Figure 2. An example of fractional Brownian motions with H = 0.33 and its scaling behavior. (a) Signal of fractional Brownian motions
with H = 0.33 of size 8192, (b) Scaling behavior of the empirical qth order log-average intensity on log-scale j, (c) theoretical (red solid line) and
empirical (blue dashed line) partition function T(q), (d) the theoretical (red solid line) and empirical (blue dashed line) multifractal spectra f(a) are
shown.
doi:10.1371/journal.pone.0069000.g002
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linear trend of T(q), proportional to qH with H, while T(q) is

nonlinear and skewed downward for multifractal spectra (see

Figure 1A). For example, a fractional Brownian motion signal Y(t)

with H yields the following partition function T(q) because the

moments of order q#21of a Gaussian are infinite [22,31]:

T(q)~
qH

{?

�
qw{1,

qƒ{1:

Figure 2A illustrates a signal of Y(t) with parameter H = 0.33 of size

8192. Figure 2B shows the scaling behavior at exponent q between

log scales (j) of the signal and the empirical qth order log-average

intensity. Figure 2C shows the theoretical (red solid line) and the

empirical (blue dashed line) partition functions for the fractional

Brownian motion signal: the empirical one is quite close to the

straight line.

Once T(q) is estimated, the multifractal formalism enables MFS

f(a) to be calculated by performing a Legendre transformation of

the partition function [8]. Monofractal spectra are theoretically

reduced to a single point and empirically exhibit narrow

parabolicity of f(a) around H, which means that a high

concentration of regularity occurs near H. Multifractal spectra,

f(a), with broad parabolic character, indicates high adaptability

and complexity [22,32]. The location and shape of MFS are

summarized without loss of the discriminant information [22] in

terms of H and left slope (LS) (Figure 1B). For the above fractional

Brownian motion example, Figure 2D shows the theoretical (red

solid line) and the empirical (blue dashed line) multifractal spectra,

of which the maximum is achieved at H = 0.33. Analyses generally

are limited to the left part of MFS, associated with T(q), q.0, as in

Figure 1B, because T(q) is unstable for negative exponents: that is

to say, under the Gaussian assumption, the moments of q less than

21 diverge in principle. If both parts of MFS is interested, one can

resort to wavelet-leader based multifractal spectra [33]. The

wavelet coefficients based method and the descriptors have been

successfully used in modeling and classification procedures [34–

38]. In this study, we focus on H, a commonly used regularity

measure determined as the apex of the MFS; LS, a measure of

deviation from monofractality (Figure 1B). The descriptors

naturally include the use of the width of multifractal spectra

because the approximate width 2H{2a1ð Þ is proportional to 1/

LS. Because H and LS values focus on the left parts of the MFS

and partition function T(q), we also use the position q = 4 in T(q),

i.e., T(4) as a graphical complement that practically passes the

mode.

Lipid analyses
Triglyceride (mg/dl), high-density lipoprotein (HDL) and low-

density lipoprotein (LDL), measured on a Beckman CX7

automatic chemistry analyzer, are from a previous report [39]

and expressed as mg/dl.

Statistics. The Daubechies 10-tap wavelet filter was used,

and all wavelet-related computations were carried out using

MATLAB with the Wavelab toolbox and the orthogonal

Daubechies filter of 10 vanishing moments [40]. Minitab software

(version 15; Minitab, Inc., State College PA) was used for the rest

of all statistical analyses. The protocol was designed so that each

individual was studied without SAA (depletion) and with

Figure 3. 1H NMR spectra of an ICU and a healthy individuals and their scaling behavior. 1H NMR spectra of an (a) ICU and a (b) healthy
individuals are shown. The scaling behaviors of the empirical qth order log-average intensity on log-scale j for the (c) ICU and (d) healthy individuals’
spectra show that the healthy one produced non-monotonic scaling behavior compared to the ICU one.
doi:10.1371/journal.pone.0069000.g003
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56 mg?kg21?d21 (repletion). Unpaired t test was used to compare

partition functions between the healthy and the ICU groups. The

significance of the t tests was considered at p#0.05/3 by

Bonferroni correction. A quadratic discriminant analysis was used

to separate the group of the SAA depletion and that of the SAA

repletion. Analysis of covariance (ANCOVA) of the general linear

model (GLM) was used to perform a regression analysis in which

continuous (quantitative) variables and categorical (qualitative)

variables are involved. Results were considered significant at

p#0.05.

Results

Comparison of 1H NMR spectra of unhealthy and healthy
individuals

As an initial test of the feasibility of application of fractal analysis

to 1H NMR spectra, we compared spectra from plasma of 12

individuals upon admission to an intensive care unit [23] with 10

healthy subjects participating in a diurnal variation study [16].

The ICU patients included 5 with pneumonia, 6 with sepsis and

one following transfusion (Table 1). The unhealthy and healthy

subjects had similar mean ages (ICU, 61618 y; healthy, 5569 y)

and body mass index, BMI (ICU, 27.465.6; healthy 25.861.1).

NMR spectra for a representative ICU patient (Figure 3A)

produced scaling behavior of log-average intensity on log scales

(Figure 3C), quite close to that of a fractional Brownian motion as

in Figure 2B. On the other hand, NMR spectra for a healthy

individual (Figure 3B) produced non-monotonic scaling behavior

(Figure 3D) as q increases near j = 4. The partition function T(q) for

the healthy individuals was skewed downward as the value of

exponent q increased (Figure 4A), further indicating that the 1H

NMR spectra of healthy individuals have characteristics of

multifractality. The MFS of the ICU patients (Figure 4B) were

steeper than those of the healthy individuals, showing that the

spectra of ICU patients were closer to monofractality. The two

groups were significantly different in T(4) (ICU, 1.7960.31;

healthy, 21.1560.07; p,0.001). Hurst exponent values (H) of the

healthy individuals were densely located (0.74760.004) as

compared to those of ICU (0.71860.016). The LS values of the

healthy individuals (0.37260.003) were significantly smaller

(p = 0.008) than those of ICU (0.9560.18). The Std values of the

healthy individuals (0.009260.0003) were significantly higher

(p,0.001) than those of ICU (0.004460.0004). The results show

that irregularity within 1H NMR spectra of plasma is associated

with health status, providing support for the hypothesis that

multifractal analysis of plasma 1H NMR spectra could be used to

assess nutritional insufficiency.

Multifractal analysis of SAA insufficiency
The SAA study was a modified, cross-over design in which

participants were given a chemically defined, semi-synthetic diet

that was identical except for the content of SAA. Compared to the

ICU study, the participants in this study were younger (2566 y)

and had lower BMI (22.662.1) [11], so these analyses were

Figure 4. The difference between MFS on ICU patients and healthy subjects. (a) MFSs For the healthy (red) and ICU (blue) individuals, and
(b) plots of partition function T(q) are shown. For the healthy individuals, the MFSs were broad and not steep, and the shapes of T(q) were skewed
downward heavily, which implies that 1H NMR spectra of the healthy group is multifractal. (c) classification with H, LS, and Std for healthy individuals
and ICU individuals. The discriminative characteristics of the healthy group are H values around 0.75, small LS values, and high Std values.
doi:10.1371/journal.pone.0069000.g004
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considered independent of the above analyses. A graph of H, LS,

and Std shows that multifractal descriptors separate spectra

according to dietary SAA content. Regression analysis showed

that H (27.771, p,0.001), Std (2216.82, p,0.001), and the

between-subject variation (p = 0.002) were significant in explaining

SAA insufficiency. The results show that regularity of plasma 1H

NMR spectra increases with SAA insufficiency in the participants,

suggesting that multifractal analysis of 1H NMR spectroscopy of

plasma could be used to evaluate aspects of nutritional insuffi-

ciency.

Multifractal spectra and partition function T(q) plots for

representative subjects showed the separation according to SAA

intake (Figure 5). The shape of MFS during SAA adequate period

was broad and the shape of partition function T(q) was skewed

downward as the exponent q increased. Since the downward trend

of T(q) is evidence of multifractality, the data show that the SAA

repletion for the group caused the 1H NMR spectra to shift toward

more multifractal behavior. Graphs of the multifractal descriptors

H, LS and Std (Figure 6) similarly show that SAA repletion and

depletion are highly separable, with better separation for within-

subject comparisons than for overall comparisons between all

subjects without and with SAA. Quadratic discriminant analyses

showed that the three descriptors discriminated SAA repletion and

depletion 77.5% collectively (Table 2). Individually, separations

according to SAA intake were more than 90% correct, and 4

subjects had 100% separation (Table 2).

Association between plasma lipid concentrations and
multifractal descriptors

Significant changes in plasma lipid parameters (cholesterol,

CHOL; triglycerides, TG; high-sensitivity C-reactive protein,

hsCRP; apolipoprotein C3, apoC3) occurred in association with

SAA intake [18], so we tested whether the multifractal descriptors

of the plasma 1H NMR spectra also associated with these clinical

measurements. Higher values of CHOL, TG, hsCRP, and apoC3

are indicators of increased cardiovascular disease risk including, so

we performed a regression analysis with a model of each of the

four measurements as response, H, LS, and Std as quantitative

variables and subject as a qualitative variable. The results are

tabulated in Table 3, in which coefficients are given with p-values

in parentheses and significant variables underlined. H values and

subjects were significant for all four models, and all four variables

were significant for models of hsCRP and apoC3. Positive signs for

the significant coefficients indicate that larger H (more regularity)

and larger LS (more monofractality), were associated with higher

plasma lipid parameters, consistent with the concept that high

lipid parameters and more regular 1H NMR spectra are associated

with poorer health status. For each of these models, the values of

the coefficient of determination R2, a goodness-of-fit measure of

the model, were fairly high (Table 3).

Discussion

The concept of fractals based on chaos theory initiated by

Mandelbrot [41,42] provides means to describe complex biolog-

Figure 5. MFS and Partition function on SAA deficiency. MFSs and partition function T(q) plots for subjects 2 and 5 are shown with d1 of the
SAA depletion in red and d10 of the SAA repletion are shown; the numbered markers represent the measurement hours. The effect of the SAA
repletion caused MFSs to be broad and partition function T(q) shapes to be skewed downward.
doi:10.1371/journal.pone.0069000.g005
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ical systems and disease, including the severity of Parkinson’s

disease [5,6], obstructive sleep apnea [43] and sudden cardiac

death [8,44,45], with simple numeric values. In this study, we

show that multifractal analysis is useful to gain information from
1H NMR spectra of human plasma. Consistent with previous

studies indicating that an unhealthy condition is associated with

more regular characteristics, multifractal analysis of 1H NMR

spectra of ICU patients showed greater regularity than that seen

for healthy individuals. In the study of healthy and ICU patients,

all of the multifractal indices measured, including H, LS, Std and

T(4), supported the usefulness of multifractal analysis of plasma 1H

NMR spectra to discriminate healthy from unhealthy individuals.

Based upon these observations, we explored the feasibility to use

multifractal analysis for nutritional assessment. 1H NMR spectra

from a previously published study evaluating the effect of

consumption of SAA-free food on the plasma metabolic spectra

were employed for this purpose [18]. The nutritional study was

performed in a clinical research unit with an established protocol

using semisynthetic, chemically defined food in which controlled

variation of SAA content was verified. The modified cross-over

design with repeat measures, and the consistency in sample

collection and analysis, minimized experimental and analytic

Figure 6. The classification of groups with SAA and without SAA. 3D plots of H, LS, and Std for (a) all 7 subjects, (b) subject 1, (c) subject 5,
and (d) subject 7 are shown. For all 7 subjects, the three descriptors separated the two groups with 77.5% of correct classification, while the three
descriptors produced high separation between SAA repletion and depletion for each individual.
doi:10.1371/journal.pone.0069000.g006

Table 2. The results of correct proportion from quadratic
discriminant analysis.

Target Correct Proportion Target Correct Proportion

All subjects 77.5% Subject 4 100%

Subject 1 100% Subject 5 100%

Subject 2 100% Subject 6 92.9%

Subject 3 91.7% Subject 7 92.3%

The descriptors precisely separate the SAA insufficiency from the SAA
sufficiency for subjects 1, 2, 4 and 5.
doi:10.1371/journal.pone.0069000.t002

Table 3. Association of multifractal descriptors with plasma
lipid parameters.

Response H LS Std Subject R2 (%)

CHOL 86.77 (0.011) 43.32 (0.175) 1736 (0.154) (0.000) 74.87

TG 212.8 (0.015) 445.5 (0.000) 14259 (0.000) (0.000) 52.59

hsCRP 2.482 (0.026) 0.430 (0.679) 53.89 (0.176) (0.000) 76.45

apoC3 10.05 (0.008) 7.925 (0.027) 392.3 (0.004) (0.000) 67.69

Coefficients of response for H, LS and Std with p-values in parentheses, for a
regression model of response in which H, LS, and Std are quantitative variables
and subject is a qualitative variable in SAA deletion-repletion study. The
underlined values represent the significance of the model at a 95% confidence
level. The last column represents the coefficient of determination R2 for the
model.
doi:10.1371/journal.pone.0069000.t003
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noise. Previous analyses showed that perturbations in lipid

metabolism occurred on the first day of SAA-free food while

effects on redox states of thiol-containing amino acids under

fasting conditions did not become significant until 4 days on the

diet [18]. Even after 4 days, however, one would not normally

characterize nutritional status as SAA deficient without further

health indications. Thus, the model can be described as having

imbalanced amino acid nutrition or SAA insufficiency, but not as

SAA deficiency. Because there was no dose-dependent aspect to

the study, the sensitivity to detect marginal insufficiency could not

be evaluated.

Despite these limitations, the results show that multifractal

descriptors separate groups according to SAA status (Table 2).

Response times varied for different individuals (data not shown),

with some individuals showing greater regularity immediately

upon consumption of the SAA-free food while others showed some

delay. More detailed studies will be needed to discriminate effects

of imbalanced dietary amino acid intake and the metabolic

consequences of amino acid insufficiency. Despite this limitation of

individual variation, the data showing that two multifractal

descriptors (H and LS) and Std can predict the levels of lipid-

related substances such as cholesterol, triglyceride, hsCRP, and

apoC3 (Table 3), suggest that application of multifractal analysis

could enhance assessment of diet and disease risk.

In summary, the results show that novel nutritional assessment

strategies may be possible using a relatively inexpensive and

noninvasive 1H NMR spectroscopy analysis of plasma coupled to

multifractal analysis. This would appear to be especially useful in

that automated 1H NMR spectroscopy procedures are capable of

analyzing up to 50,000 samples per year [46]. Furthermore, if the

methodology could be applied to magnetic resonance spectroscopy

of humans employing commonly used MRI instrumentation, then

nutritional assessment might be possible in conjunction with

diagnostic imaging. Long-term development of multifractal

analysis with associated databases of multifractal descriptors could

support population-based nutritional assessment and also provide

a basis to rapidly screen for personalized dietary imbalance,

nutritional insufficiency, and disease risk. As a future research

direction to enrich multifractal analysis, other multifractal

methods such as wavelet leader approaches and detrended

fluctuation approaches could be applied to find out other aspects

about nutritional assessment including the role of empirical

moments of negative orders.
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