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Abstract

The mechanisms by which microRNAs (miRNAs) affect cell fate decisions remain poorly understood. Herein, we
report that miR-200a can suppress the differentiation of mouse embryonic stem (ES) cells into endoderm and
mesoderm. Interestingly, miR-200a directly targets growth factor receptor-bound protein 2 (Grb2), which is a key
adaptor in the Erk signaling pathway. Furthermore, high levels of miR-200a dramatically decrease Grb2 levels and
suppress the appearance of mesoderm and endoderm lineages in embryoid body formation, as well as suppressing
the activation of Erk. Finally, Grb2 supplementation significantly rescues the miR-200a-induced layer-formation bias
and the Erk suppression. Collectively, our results demonstrate that miR-200a plays critical roles in ES cell lineage
commitment by directly regulating Grb2 expression and Erk signaling.
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Introduction

Embryonic stem (ES) cells are derived from the inner cell
mass (ICM) of blastocysts, one of the early stages of
embryonic development. These cells retain the features of
pluripotency and self-renewal while serving as the progenitors
of all cell types [1–3]. The regulatory mechanism for the
differentiation of ES cells into functional cells remains unclear.
Therefore, an in-depth understanding of the molecular
mechanisms of cell lineage differentiation will facilitate clinical
applications of stem cell therapy [4]. MicroRNAs (miRNAs),
which are 21-23 nucleotide non-coding RNAs [5,6], have been
identified as a class of gene regulators that act during the
individual development and differentiation of specific cell types
[7,8]. In the canonical pathway of miRNA biogenesis, the
primary miRNAs processed into Drosha-DiGeorge syndrome
critical region gene 8 (DGCR8) complexes to produce pre-
miRNAs [9–13]. The pre-miRNAs are then transported into the
cytoplasm by Exportin-5 [14–16] and are further processed into

mature miRNAs by Dicer [17–20]. miRNAs are incorporated
into the RNA-induced silencing complex (RISC), which then
localizes to the 3’ untranslated region (UTR) of the target
mRNA [21,22], leading to gene silencing [23–26] or
degradation [27] at a post transcriptional level. miRNAs are a
determinant of ES cell characteristics in early developmental
processes [28].

Previous studies show that miR-200 family members are
emerging as important regulators of cell proliferation,
differentiation and metastasis [29–31]. The miR-200 family
consists of five members (miR-200a, -200b, -200c, -141 and
-429) that are expressed as two separate polycistronic pri-
miRNA transcripts. The sequences encoding miR-200b/
200a/429 exist as a cluster on mouse chromosomes 4, and
those encoding miR-200c/141 exist as a cluster on
chromosome 6 [32]. In previous studies, miR-200 family
members were shown to promote the mesenchymal-epithelial
transition (MET) and to activate the differentiation of
pancreatic, colorectal and breast cancer cells into epithelial
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cells [33–35]. miR-200 family members directly target Zeb1/
Zeb2 and enhance E-cadherin expression, resulting in the
suppression of murine mammary tumor cell migration [33,36].
In contrast, Zeb1 suppresses the expression of miR-200 family
members, forming a regulatory feedback loop [37]. A recent
study demonstrated that miR-200a overexpression prevents
the transformation of normal mammary cells and decreases
cell migration by targeting the class III histone deacetylase
silent information regulator 1 (Sirt1) [38]. miR-200a also targets
p38alpha and regulates the oxidative stress response, affecting
tumorigenesis and chemosensitivity [39]. miR-200a
overexpression decreases Smad-3 activity and the matrix
protein, including Collagen I, Collagen IV and Fibronectin,
blocks the TGF-beta dependent epithelial-mesenchymal
transition (EMT) process, and rescues early and advanced
kidney disease in mouse models [40]. However, the function of
miR-200a in the initiation of vertebrate embryo development
has not been reported (A list of miR-200 family members
targets in stem cells and development is shown in Table 1).

Growth factor receptor-bound protein 2 (Grb2) is a key
adapter protein in intracellular signal transduction pathways, in
which it links activated cell surface receptors to downstream
targets by binding to specific phosphotyrosine-containing and
proline-rich sequence motifs [41,42]. Deletion of the Grb2 gene
leads to preimplantation embryonic lethality in vivo [43,44].
Signaling via Grb2 is essential to the segregation of epiblast
and primitive endoderm progenitors [43]. Those findings
suggest that Grb2 might support differentiation. However, the
roles of Grb2 and miRNA-induced intracellular signaling
cascades in lineage commitment are not well understood.

In this paper, we report that miR-200a was highly expressed
in ES cells and gradually decreased in expression during
embryoid body (EB) formation and that miR-200a suppressed
endoderm and mesoderm lineage commitment. We further
identified Grb2 as a direct regulatory target of miR-200a. In EB,
knockdown of Grb2 with a specific shRNA had an identical
effect to treatment with miR-200a. Finally, a rescue assay

Table 1. miR-200 family menbers in stem cells and
development.

Target Member Cell type References

Zeb1/
Zeb2

miR-200a,
miR-200b,
miR-200c,
miR-429,
miR-141

Induced pluripotent stem
cells, breast cancer stem
cells, neuroectodermal
precursors

Wang et al. 2013 [70],
Radisky 2011 [71], Du et
al. 2013 [72]

Bmi1 miR-200c embryonal carcinoma cells Shimono et al. 2009 [73]

Sox2
miR-200c,
miR-141

neural stem/progenitor
cells

Peng et al. 2012 [29]

E2F3
miR-200c,
miR-141

neural stem/progenitor
cells

Peng et al. 2012 [29]

Suz12 miR-200b Breast cancer stem cells Iliopoulos et al. 2010 [74]
Flk1 miR-200c embryonic stem cells Gill et al. 2012 [75]
Ets1 miR-200c embryonic stem cells Gill et al. 2012 [75]

Srf miR-200b
oligodendrocyte progenitor
cells

Buller et al. 2012 [76]

showed that exogenous Grb2 could reverse the miR-200a-
induced endoderm and mesoderm suppression. Similarly, the
extracellular signal-regulated kinase (Erk) signaling, when
activated with assistance from Grb2, also rescued miR-200a-
induced effects. Taken together, these results suggest that
miR-200a might control cell fate decisions affecting the early
endoderm and mesoderm layers in a manner that is partly
dependent on Erk signaling, by regulating Grb2 expression
levels.

Materials and Methods

Cell culture
The mouse ES cell line ES-E14TG2a, purchased from the

American Type Culture Collection (ATCC CRL-1821), was
maintained on gelatin-coated plates in high glucose-Dulbecco’s
Modified Eagle Medium (DMEM; Gibco) that was
supplemented with 15% (vol/vol) ES qualified-fetal bovine
serum (FBS; Gibco), 2 mM L-glutamine (Hyclone), 1x
nonessential amino acids (Hyclone), 50 mM beta-
mercaptoethanol (Gibco) and 500-1000 U/ml of leukocyte
inhibitory factor (LIF; generated in house). ES cells were
trypsinized and split every 2 days, and the culture medium was
changed daily. For the formation of EB, ES cells were plated in
3.5 cm dishes at a density of 5 × 104 cells in 2 ml medium
without LIF. HEK293T cells were cultured in DMEM (Gibco)
that was supplemented with 100 U/ml of penicillin/streptomycin
(Invitrogen) and 10% FBS (Gibco).

Transfection of miRNA mimics and inhibitors
miR-200a mimics and inhibitors (including the Negative

control) were purchased from Ribo. ES cells were seeded into
6-well plates at a density of 5 × 104 cells per well. For miRNA
overexpression or knockdown experiments, miRNA mimics or
inhibitors and the scrambled negative control were gently
mixed with Opti-MEM (Gibco) and X-tremeGENE 9
Transfection Reagents (Roche) according to the
manufacturer’s instructions. At 12-72 hours post-transfection,
the cells were harvested for Western blotting or quantitative
real-time PCR analysis.

Plasmids
The miR-200a sequence was obtained from the mirbase

website and cloned into the AgeI and EcoRI sites of the pLKO.
1 vector. To construct a miR-200a sponge vector, the following
oligoribonucleotides for the miR-200a sponge were designed
and synthesized: miR-200a sponges forward oligo,
CCGGTACATCGTTACTCTCAGTGTTACCGACATCGTTACT
CTCAGTGTTAGCGACATCGTTACTCTCAGTGTTAG; reverse
oligo,
AATTCTAACACTGAGAGTAACGATGTCGCTAACACTGAGA
GTAACGATGTCGGTAACACTGAGAGTAACGATGTA. After
an annealing step at 95 °C for 4 min, the sponge
oligoribonucleotides were inserted into the pFUW plasmid
between the BamHI and AgeI sites. For luciferase reporter
assays, a pGL3-Grb2-3’UTR-WT vector was constructed. A 3’
UTR segment of wild-type Grb2 mRNA, which contained the
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putative target sites of miR-200a, was amplified and cloned into
the SacI and XbaI sites downstream of the luciferase reporter
gene in pGL3. A pGL3-Grb2-3’UTR-Mutant vector, which
carried a mutation in the complementary site for the seed
region of miR-200a, was generated from the pGL3-
Grb2-3’UTR-WT vector by mutation PCR. The Grb2 expression
vector was created by cloning the Grb2 coding sequence into
the BamHI and AgeI sites of pFUW.

Protein analysis
Cells were lysed in RIPA buffer that contained a protease

inhibitor cocktail. Estimation of lysate protein concentrations
was performed with a BCA Protein Assay Kit (Pierce).
Approximately 100 µg of lysate was resolved on a 12% SDS/
PAGE gel and transferred to NC membranes (Bio-Rad). The
membranes were blocked with blocking solution (3% BSA in
TBST) and incubated with primary antibodies. The following
primary antibodies were used: mouse anti-Oct4 (1:1000; Santa
Cruz Biotechnology), rabbit anti-Sox2 (1:1000; Millipore), rabbit
anti-Nanog (1:1000; Abcam), rabbit anti-Grb2 (1:1000;
Bioworld), rabbit anti-Erk (1:1000; Bioworld), rabbit anti-p-Erk
(1:1000; Cell signaling) and rabbit anti-GAPDH (1:1000;
Miaotong). The blots were subsequently incubated with either
HRP-conjugated anti-rabbit IgG or HRP-conjugated anti-mouse
IgG (1:3000; Cell signaling). Labeled proteins were detected
with the eECL Western Blot Kit (Cwbio).

Quantitative real-time PCR
Total RNA was extracted from ES cells and EBs with TRIzol

reagent (Takara) according to the manufacturer’s instructions.
cDNA synthesis was performed from 250 ng of total RNA in a
single step (37 °C for 15 min) with the Takara reverse
transcription kit. Quantitative real-time PCR was performed
with iTaq reagent (Bio-Rad) and a STRATAGENE Mx3005p
Real-Time PCR Cycler. The following PCR cycle conditions
were used: initial denaturation for 30 sec at 95 °C, followed by
40 cycles of 5 sec at 95 °C and 30 sec at 60 °C. Mature miRNA
primers, including stem-loop RT and special miRNA primers,
were purchased from Ribo. Real-time PCR primers are shown
in Table S1.

Dual luciferase reporter assay
At 12 hours prior to the transfections, HEK293T cells were

plated at a density of 5 × 104 cells per well in 24-well plates.
Cells were transfected via Lipofectamine 2000 Transfection
Reagent (Invitrogen) and Opti-MEM (Gibco) with 50 nM miRNA
mimics, 400 ng of the luciferase vector (pGL3 constructs) and
20 ng of the Renilla vector. At 24 hours post-transfection, the
cells were harvested, and the luciferase activity was measured
with a dual-luciferase reporter assay (Promega) according to
the manufacturer’s instructions.

Alkaline phosphatase staining
ES cells were cultured at a clonal density (3000 cells/cm3).

Three days later, ES cells were fixed in 4% paraformaldehyde
for 3 min at room temperature and then rinsed in PBS solution
for 5 min. ES cells were stained with a staining solution of with

0.4% N,N-dimethylformamide (Sigma) and 0.06% Red Violet
LB salt (Sigma). The result was obtained after 30 min of
incubation at room temperature.

Immunofluorescence staining
Cells were fixed with 4% paraformaldehyde for 20 min,

washed three times with PBS, permeabilized with 0.1% Triton
X-100 (Amresco) for 8 min, and blocked by incubation with
10% FBS (Gibco) in PBS for one hour to prevent nonspecific
binding. The cells were incubated overnight at 4 °C with the
primary antibodies anti-alpha-fetoprotein (Afp; Sigma), anti-
alpha-smooth muscle actin (alpha-Sma; Sigma), anti-Nestin
(Millipore) and anti-Tuj1 (Millipore), which were diluted 1:1000
in PBS with 10% FBS (Gibco). Subsequently, cells were
incubated for one hour at room temperature with the secondary
Alexa Fluor 546-conjugated antibody (Invitrogen). The cells
were counterstained with Hoechst 33342 to visualize the cell
nuclei. Images were captured with a Nikon Eclipse Ti–S
fluorescence microscope.

Results

Overexpression of miR-200a in ES cells suppressed
differentiation into endoderm and mesoderm

To determine whether miR-200 family is responsive to ES
cell differentiation, we analyzed miR-200 mumbers (miR-200a,
miR-200b and miR-429) expression during ES cell
spontaneous differentiation by quantitative real-time PCR. We
found that miR-200a expression was markedly decreased
during EB formation (Figure 1A). To examine the role of
miR-200a in the early differentiation processes of ES cells, we
overexpressed miR-200a and performed differentiation
experiments by withdrawing LIF 3 days. We observed that
miR-200a promoted retention of the ES cell-like morphology
and had high alkaline phosphatase activity at the epiblast-like
stem cell stage. In contrast, control ES cell colonies tended to
become flat and alkaline phosphatase activity was lower
(Figure 1B). Additionally, we found that miR-200a increased
expression of the self-renewal-associated gene Oct4 and
maintained the expression of Nanog (Figure 1C). These results
were identical to those in previous studies [45]. Interestingly, it
has been reported that Oct4 expression is limited in the ICM
and is finally downregulated in the primitive endoderm [46]. We
supposed that miR-200a would be involved in the formation of
the endoderm and other layers. To study the effects of
miR-200a on spontaneous differentiation, we analyzed marker
genes for the three layers. We found that miR-200a
decelerated the process of ES cell differentiation, especially
into the endoderm and mesoderm layers, as determined by the
expression of marker genes. Immunostaining demonstrated
that miR-200a-ES cell differentiation expressed low levels of
alpha-Sma and Afp proteins (Figure 1D). In mRNA level,
miR-200a reduced the expression of Brachyury (T), alpha-
Sma, Snail, Afp, Gata4 and Apoa1. These ES cells failed to
become mesoderm and endoderm cell. In contrast, expression
levels of the ectodermal specific markers Tuj1, Pax6 and
Nestin were increased in miR-200a treatment comparing to
control (Figure 1E). Our findings demonstrated that miR-200a
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maintained ES cell pluripotency and suppressed differentiation
capacity of endoderm and mesoderm.

Grb2 as a novel and important target gene for miR-200a
It was not clear whether miR-200a exerted its effects by

negatively regulating multiple genes that are involved in ES cell
identity. Grb2 had been suggested to be a putative target for
miR-200a according to the miRDB, miRanda, TargetScan,
PicTar and miRWalk algorithms, as well as a recent study [47].
The predicted interaction between the Grb2 3’ UTR and
miR-200a is illustrated in Figure 2A. To confirm the post-
translational repression of miR-200a, Grb2 3’ UTR reporter
luciferase assays were performed. The delivery of miR-200a
mimics significantly suppressed Grb2 3’ UTR reporter
luciferase activity more than 25% over the empty vector, and a
mutation in the miR-200a binding site blocked this suppression
(Figure 2B). Additionally, we performed transient transfections
of the miR-200a vector and sponge 200a vector into ES cells at
a ratio of 3000 ng vectors per 5 × 104 cells to investigate the
regulation of Grb2. At 48 h post-transfection, Western blotting
analysis showed that miR-200a reduced the level of
endogenous Grb2 protein, whereas the Grb2 protein level was
rescued from endogenous miR-200a by the sponge 200a
treatment of ES cells (Figure 2C Figure S1A). Furthermore,
Grb2 expression was upregulated during EB formation, unlike
miR-200a expression (Figure 2D). These findings indicated that
miR-200a specifically bound the predicted translation repressor
site on Grb2 and repressed the expression of Grb2 in ES cells.

Knockdown of Grb2 overlaps phenotypically with the
enforced expression of miR-200a

To determine whether the knockdown of Grb2 affected layer
formation, we established two candidate Grb2 shRNA vectors,
shGrb2-1 and shGrb2-2. shGrb2-1 did not significantly affect
Grb2 expression. However, the results demonstrated that
shGrb2-2 effectively reduced Grb2 protein expression (Figure
3A Figure S1B), and thus shGrb2-2 was used in subsequent
studies.

To evaluate the effects of Grb2 during differentiation, we
collected RNA at day 10 and performed quantitative real-time
PCR for lineage-specific marker analysis. Gene expression
analysis showed that when Grb2 expression was knocked
down, changes in the expression of genes associated with
differentiation were observed. Expression levels of genes
related to differentiated states were significantly changed. The
expression levels of genes associated with endoderm
formation, such as Gata4, Afp and Apoa1, were
downregulated. The induction of genes involved in mesoderm
specification, such as T, alpha-Sma and Snail, was decreased
in Grb2-deficient EBs, compared to those with scrambled
controls. However, expression levels of the neuronal cell
markers, Tuj1 and Pax6 were upregulated in response to Grb2
knockdown (Figure 3B).

As expected, the immunostaining of proteins associated with
differentiation genes showed the same results. Grb2 shRNA
and control EBs were plated at spontaneous differentiation day
10. We performed immunofluorescent staining and observed
that the Afp and alpha-Sma protein levels were significantly

decreased in the Grb2 shRNA EBs (Figure 3C). Grb2 is known
to be involved in the Erk signaling pathway, and thus we
measured the state of this signaling pathway to survey the role
of Grb2 in ES cell differentiation. Similar to previous findings in
tumors [48] and Grb2-null embryos [49], Grb2 knockdown led
to reduced levels of phosphorylated Erk in spontaneous
differentiated EBs (Figure 3D Figure S1C). Taken together,
these data indicate that the loss of Grb2 suppressed
differentiation toward the endoderm and mesoderm lineages
under spontaneous differentiation conditions.

Neutralization of Grb2 rescues aberrant miR-200a-
induced endoderm and mesoderm repression

To investigate whether the Grb2-miR-200a interaction is
needed for the spontaneous differentiation of ES cells in vitro,
ES cells were infected with a lentiviral vector that
overexpressed Grb2 without the 3’ UTR. The cells were
subsequently transfected with a miR-200a vector, followed by
the immediate induction of spontaneous differentiation. We
plated the ES cells at a density of 103 cells/cm2 in the absence
of LIF for 3 days. Under these conditions, in which miR-200a
expression was rapidly induced, the Grb2 protein expression
levels significantly decreased. An analysis of colony formation
showed that ES cells that overexpressed miR-200a appeared
to retain the classic compact morphology and well-defined
borders of undifferentiated ES cell colonies. However, the
colonies that overexpressed both Grb2 and miR-200a were flat
and displayed abundant cytoplasmic prolongations when
compared to the empty-vector control ES cells (Figure 4A).
Next, we performed alkaline phosphatase staining to confirm
this result. Only the miR-200a-overexpressing ES cell colonies
showed strong staining; the majority of the control and Grb2/
miR-200a-overexpressing ES cell colonies showed faint or no
staining under the same conditions.

Interestingly, during EB formation, lower levels of the
primitive endoderm markers Afp, Gata4, Apoa1 and the
mesoderm markers T, alpha-Sma and Snail were observed in
response to miR-200a overexpression, as well as opposite
effects on the ectoderm markers Tuj1, Pax6 and Nestin. By
contrast, the overexpression of Grb2 significantly rescued the
expression of those genes (Figure 4B).

Furthermore, we performed immunofluorescent staining to
examine the effects of the Grb2 expression constructs on ES
differentiation. Consistently, miR-200a-overexpressing ES cells
displayed much lower Afp, Gata4 and alpha-Sma expression
levels and higher Tuj1 and Nestin expression levels. In
contrast, Grb2-overexpressing ES cells had similar expression
levels of the above-mentioned genes to the control cells
(Figure 4C). This finding suggested that the overexpression of
Grb2 partially reversed the changes in morphology and losses
of endoderm and mesoderm formation that were induced by
miR-200a.

To confirm the function of Grb2, we analyzed the activation
of the downstream signaling protein Erk. In miR-200a-treated
cells, both the Grb2 protein and the Erk phosphorylation levels
were low. When we restored Grb2 expression, Erk
phosphorylation was restored (Figure 4D Figure S1D). This
finding suggested that Erk activation is controlled by miR-200a
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Figure 1.  Effects of miR-200a in ES cells and ES cell differentiation.  (A) The expression of miR-200a, miR-200b and miR-429
in ES cell diferentiation. (B) Brightfield images and alkaline phosphatase staining of ES cells without LIF at 72 hours post-
transfection with miRNA-200a. The scale bar represents 100 µm. (C) Relative levels of Oct4, Nanog, Sox2 and Rex1 mRNA in
control or miR-200a-transfected ES cells. (D) Representative immunofluorescence images of control and miR-200a overexpression
after 10 days of EB formation. Red, layer markers; blue, nuclei. The scale bar represents 100 µm. (E) Expression levels of genes
associated with the differentiated state in EBs in response to miR-200a expression. All data are shown as the means ± SD.
Statistical significance was assessed by the two-tailed Student’s t test. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
doi: 10.1371/journal.pone.0068990.g001
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Figure 2.  miR-200a targets Grb2 at the protein level.  (A) Outline of the interaction of miR-200a with the Grb2 3’ UTR. (B)
Repression of luciferase activity validates the interaction between miR-200a and the specific predicted sites in the Grb2 3’ UTR. (C)
Overexpression of miR-200a downregulates Grb2 expression, and sponge 200a rescues Grb2 expression in ES cells. (D) The
expression of Grb2 in ES cell diferentiation. All data are shown as the means ± SD. Statistical significance was assessed by the
two-tailed Student’s t test. **, p < 0.01.
doi: 10.1371/journal.pone.0068990.g002
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Figure 3.  Knockdown of Grb2 during EB formation.  (A) Western blotting analysis demonstrates that shGrb2 knocks down Grb2
protein levels in ES cells. (B) Relative levels of layer markers are varied in shGrb2-treated EBs. (C) The in situ expression of layer
markers in day 10-differentiated EBs. Red, layer markers; blue, nuclear DNA staining. The scale bar represents 100 µm. (D) Erk
activity decreases in response to Grb2 knockdown. All data are expressed as the means ± SD. Statistical significance was
assessed by the two-tailed Student’s t test. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
doi: 10.1371/journal.pone.0068990.g003
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Figure 4.  Grb2 can rescue cells from the effects of miR-200a.  (A) Brightfield images and AP staining of wild-type ES cells,
miR-200a-expressing ES cells and exogenous Grb2-expressing ES cells plus expressing miR-200a. The scale bar represents 100
µm. (B) Expression levels of genes associated with the differentiated state in EBs. (C) Immunofluorescence shows that Grb2
reversed the miR-200a-induced failures in endoderm and mesoderm differentiation. The scale bar represents 100 µm. (D) Erk
activity can be rescued by Grb2 in miR-200a-expressing ES cells. All data are expressed as the means ± SD. Statistical significance
was assessed by one-way ANOVA, followed by Tukey’s post-test. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
doi: 10.1371/journal.pone.0068990.g004
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via the repression of Grb2 and that the main defect in
miR-200a-induced endoderm and mesoderm formation was
due to decreased Erk activation in response to reduced Grb2
levels.

Discussion

During early embryogenesis, specific miRNAs have been
shown to be essential for the maintenance of bias-in-fate
decisions [50]. miR-206 promotes mesendoderm formation by
targeting Prickle1a, which subsequently regulates Jnk2
phosphorylation, thereby indicating the potential function of
miR-206 in embryonic axis formation [51]. miR-1 and miR-133
are essential to cardiac and skeletal muscle development [28].
During the differentiation of ectoderm, Let-7, miR-9 and
miR-124a are specifically required for neuron production
[52,53]. miR-124 targets Ptb and switches the balance between
the expression of Ptb and nPtb to promote neuronal
differentiation [54]. In our study, we found that miR-200a acted
as an inhibitor of endoderm and mesoderm formation by
repressing the expression of genes involved in mesoderm and
endoderm formation. In contrast, ectoderm genes were
enhanced in response to miR-200a. To further address the
mechanisms underlying the effects of miR-200a, we predicted
that Grb2 was a target of miR-200a repression and confirmed
this by using a partial-length Grb2 3’ UTR reporter. The
addition of miR-200a or Sponge 200a to ES cells further
validated the potent and specific miR-200a-Grb2 connection at
the protein level. To extend these findings, we investigated the
effects of Grb2 knockdown and miR-200a overexpression, and
we found that these induced similar characteristics during EB
differentiation. Our data suggested that the effects of miR-200a
might depend on the repression of Grb2.

Grb2 is an adapter protein that participates in the fibroblast
growth factor (FGF) receptor signaling pathway and thus is
involved in multiple aspects of cellular function. FGF, which
controls the responsiveness of differentiation regulators, is of
particular importance to mesoderm and endoderm formation
[55]. Gene knockout experiments show that FGFR1 [56],
FGFR2 [57] and FGF4 [58] mutant embryos fail to develop a
primitive endoderm layer and die in blastocyst outgrowths or in
vivo. Similarly, expression of negative FGF receptors does not
contribute to the endoderm in chimeras due to a failure of the
primitive streak [59]. On the other hand, FGF signaling in early
embryogenesis initiates the activation of transcription factors
that function in the differentiation of the endoderm and
mesoderm layers. Our findings showed that, in response to
Grb2 knockdown or miR-200a overexpression, Gata4 and Afp
expression was decreased. Gata4 expression is upregulated
by exogenous FGF1 in response to cardiac genes in
differentiating embryonic carcinoma cell cultures [43], and Afp
expression is dependent on FGFs that are produced by the
cardiac mesoderm in embryonic endoderm cells [49].
Expression of the mesoderm marker T was also reduced; T is
positively regulated by FGFR1 and controls mesodermal
morphogenesis [60]. Similarly, decreases in Alpha-Sma
expression were observed; in Xenopus, this gene is specifically
induced in the ventrolateral mesoderm in response to bFGF

[61]. Our data showed that Grb2 knockdown or miR-200a
overexpression likely mediated FGF signaling that stimulated
layer formation. A further suggestion was that Grb2, as a main
intermediary, is indispensable to FGF signaling-mediated
endoderm and mesoderm formation. miR-200a is involved in
endoderm and mesoderm formation in a Grb2-dependent
manner.

Previous studies have demonstrated that Grb2 transmitted
FGF signaling to Erk and thus controlled the basal balance
between the ES cell state and inductive differentiation [61].
Autoactivation of the Erk pathway provokes ES cell
differentiation [62,63] and eliminates self-renewal [64–66]. The
SH2 (Src Homology 2) domain of Grb2 fused with Son of
sevenless (Sos) to induce downstream Ras activation, which
specifically induces the phosphorylation and activation of Erk
and rescues the endoderm differentiation phenotype in Grb2
mutant ES cells [44]. Activated Ras mutant constructs induce
ES cell differentiation to the primitive endoderm layer [67], and
similar results are observed in response to the expression of an
activated form of Erk [68]. Erk2-null embryos results in
embryonic lethality at the gastrulation and ES cell deficient in
Erk1 and Erk2 is defective in mesoderm differentiation [69]. In
Erk2-/- ES cells, T expression is downregulated and
pluripotency markers Oct4 and Nanog are maintained and they
fail to differentiate into lateral mesoderm cells under mesoderm
differentiation condition [62]. In neural induction in vitro, FGF-
induced Erk signalling is required in a short period in the
absence of BMP [62,63]. Our results showed that the
extraneous addition of miR-200a significantly repressed Erk
activation, due to the loss of Grb2 expression. Subsequently,
endoderm and mesoderm formation was repressed, and
ectoderm formation was induced. Furthermore, Grb2
supplementation rescued miR-200a-induced Erk inactivation
and losses in endoderm and mesoderm differentiation after 10
days of EB formation. These findings revealed that miR-200a
directly targeted Grb2, thereby mediating Erk signaling. The
miR-200a-Grb2-Erk axis is therefore indispensable to layer
formation in embryogenesis.

Conclusion

Taking these findings together, we postulate that Erk
signaling and miR-200a maintain a balance in specific cell fate
decisions such that Erk signaling regulates differentiation into
the mesoderm and endoderm lineages and miR-200a
suppresses differentiation into these lineages. The link
between these factors is Grb2, which delivers activation signals
to Erk. Our findings suggest that miR-200a mediates Grb2
expression, thereby blocking Erk activation, which leads to the
arrest of endoderm and mesoderm lineage differentiation and
promotes ectoderm lineage commitment.

Supporting Information

Figure S1.  Quantifications of protein levels.  (A)
Quantifications of Grb2 in miR-200a and Sponge 200a treated
ES cells in Figure 2C. (B) Quantifications of Grb2 in shGrb2-1
and shGrb2-2 treated ES cells in Figure 3A. (C) Quantifications
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of Grb2 and p-Erk in shGrb2 treated ES cells in Figure 3D. (D)
Quantifications of Grb2 and p-Erk in Grb2 rescue assay in
Figure 4D. All data are expressed as the means ± SD.
Statistical significance was assessed by the two-tailed
Student’s t test. **, p < 0.01; *, p < 0.05.
(TIF)

Table S1.  Real-Time PCR primers used in this study.
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