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Abstract

Analysis of genetic interaction networks often involves identifying genes with similar profiles, which is typically indicative of
a common function. While several profile similarity measures have been applied in this context, they have never been
systematically benchmarked. We compared a diverse set of correlation measures, including measures commonly used by
the genetic interaction community as well as several other candidate measures, by assessing their utility in extracting
functional information from genetic interaction data. We find that the dot product, one of the simplest vector operations,
outperforms most other measures over a large range of gene pairs. More generally, linear similarity measures such as the
dot product, Pearson correlation or cosine similarity perform better than set overlap measures such as Jaccard coefficient.
Similarity measures that involve L2-normalization of the profiles tend to perform better for the top-most similar pairs but
perform less favorably when a larger set of gene pairs is considered or when the genetic interaction data is thresholded.
Such measures are also less robust to the presence of noise and batch effects in the genetic interaction data. Overall, the
dot product measure performs consistently among the best measures under a variety of different conditions and genetic
interaction datasets.

Citation: Deshpande R, VanderSluis B, Myers CL (2013) Comparison of Profile Similarity Measures for Genetic Interaction Networks. PLoS ONE 8(7): e68664.
doi:10.1371/journal.pone.0068664

Editor: Xiaoning Qian, University of South Florida, United States of America

Received February 12, 2013; Accepted May 31, 2013; Published July 10, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: RD was partially funded by a Biomedical Informatics and Computational Biology (BICB) traineeship, and RD and BV are currently funded by Doctoral
Dissertation Fellowship (DDF), University of Minnesota. CLM, BV and RD are also partially supported by grants from the National Institutes of Health
(1R01HG005084-01A1, 1R01HG005853-01) and a grant from the National Science Foundation (DBI 0953881). CLM is also supported by the CIFAR Genetic
Networks Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cmyers@cs.umn.edu

Introduction

Similarity measures are among the most important operations

used in analyzing genomic data. One of the most widely used

analysis paradigms, guilt-by-association, requires measuring sim-

ilarity between gene pairs or other objects of interest based on a

high-dimensional set of features. Guilt-by-association has proven

particularly important for the analysis of genetic interactions

because similarity of genetic interaction neighbors of two genes is

often easier to interpret than direct interactions between genes [1–

3]. A genetic interaction is a measure of how surprising a double

gene knock-out phenotype is, compared to the phenotype

expected from known single gene knock-out phenotypes [4].

Using this definition, genetic interactions can be quantitatively

measured [5], but often occur between genes that lack an obvious

close functional relationship [2]. Because of the difficulty in

understanding and interpreting individual genetic interactions,

they are frequently studied in the context of other interactions in

the dataset. For example, the complete list of a gene’s interactions,

commonly referred to as a profile, can be compared with other

profiles, and similarities between the gene profiles are indicative of

functional similarity [1,5].

Understanding profile similarity measures for genetic interac-

tions and other related datasets has become increasingly critical in

the recent years because several large-scale or whole-genome

genetic interaction studies have been published in several

organisms including baker’s yeast (Saccharomyces cerevisiae) [1,6],

fission yeast (Schizosaccharomyces pombe) [7–9], bacteria (Escherichia

Coli) [10], fly (Drosophila melanogaster) [11], worm (Caenorhabditis

elegans) [12] and human (Homo sapiens) [13]. Many of these high-

throughput studies use profile correlation for validation and

interpretation of the generated genetic interaction data, or

discovery of new gene functions. Despite its importance, no

systematic study has been conducted to compare the efficacies of

different profile similarity measures on genetic interaction data

using biological relevance as a benchmark. Nevertheless, there are

studies in other fields where correlation measures have been

compared either from a theoretical standpoint [14,15] or for

specific applications such as co-citation data analysis [16,17], co-

localization detection in visualization [18], chemical fingerprint

searches [19], microarray gene expression profile analysis [20],

and cluster analysis [21,22]. Most of these applications either

involve datasets that are binary in nature, such as the co-citation

study, or involve datasets that consist of only positive continuous

elements such as pixel scores. In contrast, genetic interaction data

are continuous and signed. Other data that are continuous and

signed, such as gene expression data, are fundamentally different

in that genetic interaction networks tend to contain much sparser

signal and the different signs in genetic interaction data have very

different biological interpretations [1,5]. The unique properties of

genetic interaction data warrant a separate and systematic study of

the correlation measures.

In this study, we systematically benchmarked several similarity

measures on two of the largest genetic interaction datasets [1,9].
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Further, we investigated how measurement noise and batch

effects, which commonly affect genetic interaction assays [5],

impact the performance of these similarity measures. We also

address the effect of thresholding continuous genetic interaction

data, a common practice in this field [1,2,5,23], on the

performance of the different similarity measures.

Results and Discussion

We compared a diverse set of profile similarity measures that

cover a range of classes including linear similarity measures, set-

overlap measures, rank based similarity measures, hybrid

measures, and L2 normalization based measures (see Table 1).

We also included a similarity score specifically developed for

genetic interactions (COmplex or linear Pathway, COP score; )

[6,24] and a recently developed similarity score that works well for

discovering several non-linear relationships (Maximal Information

Coefficient, MIC) [25]. For a baseline comparison, we use the

product of degrees of the two profiles [26].

We used two genetic interaction datasets from two different

species and laboratories: Costanzo et al. from S. cerevisiae [1] and

Ryan et al. [6] from S. pombe to evaluate these similarity measures.

Our primary basis for evaluation of the similarity measures was

their ability to discover known functional relationships between

genes. More specifically, each metric was used to rank a set of gene

pairs based on their interaction profile similarities, and the highest-

scoring gene pairs were compared with a functional co-annotation

standard developed using the Gene Ontology (GO standard; see

Methods: Creating GO standard) [27,28]. The similarity measures

were evaluated using precision-recall analysis, which is a

continuous way of evaluating top similarities at different similarity

cutoffs with the GO standard. Precision refers to the percentage of

similarities at a given threshold that correctly associate functionally

related gene pairs, while recall refers to the proportion of all

functionally related gene pairs among the set of top similarities.

Similar strategies have been used previously in evaluating other

kinds of genomic data or prediction methods (e.g. see [28]).

Comparison of Different Correlation Measures on Genetic
Interaction Data

Overall, the dot product was the most consistent top performer

in terms of its precision-recall characteristics on both the S. pombe

and S. cerevisiae genetic interaction datasets for both query (rows)

and array (columns) genes’ correlations. Pearson correlation [29],

which is the most widely used profile similarity measure for genetic

interactions, performed well for low recall (Figure 1). Cosine

correlation, also known as un-centered Pearson correlation, shows

precision-recall performance close to that of Pearson correlation

(Figure 1). This similarity in performance is expected as the means

of genetic interaction profiles are very close to zero, which makes

the two metrics equivalent. High precision at low recall appears to

be a general property of similarity measures that normalize

profiles, such as Pearson, cosine, Spearman and Gini correlations.

Another aspect common to these correlations is that their

performance drops sharply for higher recall (Figure 1). In contrast,

metrics that do not normalize genes’ profiles, such as overlap-

negative and the dot product, do not experience a similar dramatic

drop in performances at high recall. Gini correlation [30], which is

considered a hybrid between Pearson and Spearman correlation,

performed similarly to or slightly better than Spearman but its

precision was worse than Pearson correlation’s precision at any

choice of recall (Figure 1).

MIC, a general correlation measure theoretically capable of

discovering a wide variety of relationships, performed non-

randomly but worse than most other similarity measures on the

S. cerevisiae data. On the S. pombe data, the MIC performed slightly

worse than the background (random) expectation, which is

surprising. This low performance may be because MIC might

be emphasizing technical artifacts in the data (e.g. batch effects [5])

not related to the biological signal. Another notable disadvantage

of MIC is that it is computationally very expensive to compute all

pairwise correlations on genetic interaction matrices using this

measure. For example, the MIC tool takes almost one month on

one processor (2.3 GHz, 16 GB RAM) to compute all pairwise

correlations on the Costanzo et al. 2010 genetic interaction matrix,

compared to approximately 1 second to compute the dot product

on the same data. Therefore, it was not possible to consider MIC

in subsequent analyses.

The COP score is a correlation measure developed specifically

for clustering and understanding genetic interaction data. The

original COP score was based on a combination of log-logistic

probabilities of Pearson correlation of the profiles and direct

interaction between the genes. The parameters for the log-logistic

function were determined from a gold standard of protein

complexes [6,24]. One limitation of the original COP score is

that it requires interactions between all pairs of genes, so it can be

applied only to symmetric genetic interaction matrices, such as the

one published in Collins et al. 2007 [6]. In the Ryan et al. S.pombe

study [9], the authors addressed this limitation by using only the

Pearson correlation component of the COP score. We used the S.

pombe similarity matrix published in Ryan et al., 2012 [9], which

was calculated using the modified COP score, for the evaluations

here. We find that the modified COP score performs better than

the Pearson correlation but is slightly worse than the dot product

(Figure 1C, D).

There is a possibility that the top profile similarities are driven

solely by the degrees of the gene profiles [26], trivially favoring

high similarities between pairs of hub genes. To address this

concern, we included the product of the negative genetic

interaction degrees of two genes as a baseline similarity measure

between hubs. Our evaluations show that this measure is slightly

better than background but is much worse than most similarity

measures for both S. cerevisiae and S. pombe data (Figure 1). This

result confirms that the similarity measures are discovering

relationships between genes that cannot be trivially predicted

using genetic interaction degree alone.

Are profile similarity measures discovering the same or different

top most similar gene-pairs? To answer this question, we

compared the ranked lists of gene pairs obtained from different

similarity measures. We find that the top gene-pairs are similar

across similarity measures yet they are not completely identical.

For example, the maximum overlap between top 1000 most

similar gene-pairs for any two similarity measures (except Pearson-

cosine) is at most 500 (Figure 2A). This observation is surprising

considering that several similarity measures exhibit similar

precision-recall performance (Figure 1). This observation suggests

that all similarity measures are not identical even though their

precision-recall performances may be and there is considerable

diversity between the various measures.

Stability of a similarity measure when partial profiles are used is

important as often genetic interactions profiles are incomplete. For

example, for the S. cerevisiae genetic interaction screens, the query

side is incomplete as screens are still ongoing, and for the S. pombe

screens, both query and array sides are incomplete. Gene pairs

assessed as similar by the similarity measures on partial profiles

would ideally not dramatically change as these profiles are

completed. To quantitatively assess the stability of the similarity

measures, we computed gene similarities using partial profiles

Profile Similarity for Genetic Interaction Network
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generated by randomly selecting 50% of the genetic interaction

data. For example, 50% of the array genes were randomly selected

to compute similarities between query genes. This random

selection and computation of similarities was conducted 10 times,

and the top 1000 similar gene pairs were compared across

different selections. We observe that linear similarity measures,

Dot product, Cosine and Pearson are the most stable similarity

measures (Figure 2B). Spearman correlation and overlap negative

are similar in performance. Other similarity measures are either

not consistent across all datasets or are consistent only for a few

cases. For example, Overlap p-value and Jaccard coefficient are

the least stable similarity measures across different datasets. Gini

correlation is an example of a similarity measure that is consistent

only for S. pombe genetic interactions but is the least stable

similarity measure for S. cerevisiae dataset.

Thresholding Effects
Thresholding of the genetic interaction data by considering only

interactions greater than a certain score and setting the rest to zero

is a common way of removing weaker and noisier interactions

[1,5]. Although thresholding focuses the analysis on the stronger

signal, it may have undesirable effects depending on which profile

similarity measure is used. To check the effect of thresholding on

similarity measures, we systematically evaluated the similarity

measures for several cases of thresholding on the query genes’

correlation of Costanzo et al. data (Figure 3; refer to Figure 1A for

no thresholding case).

When absolute thresholding was used (intermediate: |e| .0.08;

stringent: |e| .0.2; Figure 3A,B) we find that the precision-recall

performance of the similarity measures that normalize gene

profiles (Pearson, cosine, Spearman and Gini correlations)

decreases dramatically after stringent thresholding (Figure 3

A,B). On the other hand, non-normalizing correlation measures

(for example, dot product and overlap-negative) were robust to

thresholding (Figure 3). In fact, overlap-negative and overlap p-

value’s performances improve with the stringency of the threshold

cutoff. When only negative interactions were considered (inter-

mediate: e,20.08; stringent: e,20.2; Figure 3 C,D), the

performance was more or less similar to absolute thresholding

for most similarity measures. However, when only positive

Table 1. Similarity measures evaluated in this study.

Correlation Formula (x, y) Description Study

1 Pearson
P

i

(xi{�xx)(yi{�yy)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

(xi{�xx)2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

(yi{�yy)2
r

Linear similarity measure that uses
mean-centering and normalization
of the profiles.

Pearson 1920 [29]

2 Cosine
P

i

xiyiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xi
2

r ffiffiffiffiffiffiffiffiffiffiffiffiP
i

yi
2

r
Linear similarity measure that uses
normalization of the profiles.

3 Spearman
P

i

(ri{�rr)(si{�ss)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

(ri{�rr)2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

(si{�ss)2
r where ri is rank of xi

in x, si is rank of yi in y.

Spearman correlation is Pearson
correlation on the ranks of elements
in the profile.

Spearman 1904 [34]

4 Overlap negative DX\Y D Where X and Yare set of significant
negative interactors for x and y respectively.

A set overlap measure Similar to Russell and Rao’

measure
DX\Y D

N
where N is

size of the profile [35].

5 Overlap positive DX\Y D Where X and Yare set of significant
positive interactors for x and y respectively.

A set overlap measure Similar to Russell and Rao’

measure
DX\Y D

N
where N is

size of the profile [35].

6 Overlap p-value -log10(Hypergeometric p-value of the overlap
of X and Y), where X and Yare set of significant
interactors for x and y respectively.

A statistically relevant set overlap
measure

7 Jaccard DX\Y D
DX|Y D

A set overlap measure Jaccard 1901 [36]

8 Gini
P

i

(2i{n{1)xsiP
i

(2i{n{1)xri

where ri is rank of xi in x, si is rank

of yi in y.

A hybrid measure between Pearson
and Spearman correlations.

Schechtman [30]

9 Dot Product
P

i

xiyi A linear similarity measure.

10 Maximal Information
Coefficient (MIC)

See citation. A coefficient designed to discover a
wide range of relationships including
non-linear relationships.

Reshef 2011 [25]

11 COmplex or linear
Pathway (COP) score

See citation. A similarity measure developed
specifically for genetic interactions.

Collins 2006, 2007 [6,24]

12 Baseline degree product DX D � DY D Where X and Yare set of significant
interactors for x and y respectively.

A baseline similarity measure based
on the degrees of the two genes
in the network.

doi:10.1371/journal.pone.0068664.t001
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interactions were considered (intermediate: e .0.08; stringent: e
.0.2), we found that only the overlap and the dot product showed

performances better than random expectation (Figure 3E,F). This

suggests that negative genetic interactions are the main driver for

most correlation measures.

The drop in the performance of some similarity measures on

thresholded data raises the question of whether there is any

functional signal in the weak interactions, and whether that signal

is contributing to better performance of these measures when not

thresholded. To address this question, we reassigned the weak

interactions (|e| ,0.2) by randomly shuffling their values among

themselves. After randomizing, we were surprised to observe that

the performance of Pearson correlation increased to the near

original performance (Figure 4A). In contrast, the dot product is

neither affected by the thresholding nor by the random shuffling of

the weak interactions (Figure 4B) suggesting that high dot product

similarity is not driven by weak interactions. Both of these

observations clearly suggest that the weak interactions have little or

no biological information in them.

To find out what caused the sensitivity of the Pearson

correlation to thresholding, we investigated two differences

between Pearson correlation and dot product: mean centering of

Figure 1. Comparison of similarity measures applied to genetic interaction datasets. Gene pair correlations derived from each similarity
measure were benchmarked against a Gene Ontology-based standard using precision-recall statistics. The comparison was conducted on (A) S.
cerevisiae genetic interaction data (Costanzo et al. 2010) - query genes’ similarities, (B) S. cerevisiae genetic interaction data - array genes’ similarities,
(C) S. pombe genetic interaction data (Ryan et al. 2012) - query genes’ similarities, and (D) S. pombe genetic interaction data – array genes’ similarities.
The horizontal dotted line shows the background precision expected from randomized ranking of gene pairs. The bar plot on the upper right corner
in each section shows the area under the precision-recall curve (AUPRC) above the background for each similarity measure. The area was calculated
by summation of the areas of trapezoids at increments of 2n (log2 units). The bars are sorted by their respective areas above background.
doi:10.1371/journal.pone.0068664.g001
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the profiles and L2 normalization of the profiles. Pearson

correlation mean centers the profiles, which may affect the

strength of all interactions and disrupt the performance. However,

we rule out this possibility because we observed that the mean of a

genetic interaction profile is normally very close to zero (Mean of

means across gene profiles = 0.002 = = 1% of the 0.2 threshold

used; Figure 4D). Furthermore, cosine correlation, which does not

mean-center the profiles, exhibits similar precision-recall perfor-

mance to Pearson correlation (Figure 1, 2). Therefore, the second

difference, L2 normalization of the profiles, is the main factor in

Pearson correlation’s sensitivity to thresholding. When Pearson

correlation was used on the thresholded data, the normalization

factor in the Pearson correlation (1/L2 norm of the profile) greatly

varied compared to the normalization factor in the non-

thresholded data (Figure 4C). This variance in the normalization

factor means that the interactions in the hub profiles, which have

larger norms, are multiplied by smaller normalization factors, and

on the other hand, non-hubs, because of smaller norms, are

multiplied by a larger normalization factor. This difference in the

normalization leads to a relative magnification of the interaction

values in non-hub profiles, making them falsely similar to many

other profiles. When the interactions are not thresholded or when

random noise is added to the data, the weak interactions or noise

serve as filler that equalizes the normalization factor across all

profiles (Figure 4C). This equalization of the normalization factor

effectively protects the Pearson correlation from low degree genes

exhibiting spurious high correlations. This equalization of the

normalization factor also makes it behave much like the dot

product, which assumes a uniform normalization factor (normal-

ization factor = 1; see [14] for a discussion on linear measures and

their normalization factors).

Simulated Noise
To assess the robustness of the similarity measures to noise in

the genetic interaction measurements, we added three kinds of

noise to the S. cerevisiae data: false negatives, false positives, and

additive Gaussian noise. For false negatives, we assigned 95% of

the interactions in the data to zero which is equivalent to removing

interactions from the data; for false positives, we sampled real

interactions and placed 10 times their number in place of non-

interactions; and for additive noise, we added randomly sampled

Gaussian noise with 0 mean and 0.08 standard deviation to the S.

cerevisiae data (0.08 is the intermediate interaction cutoff for

Costanzo et al. data). Query genes’ correlations from the S. cerevisiae

datasets were evaluated after simulated noise was added.

As expected, all types of noise adversely affect the precision-

recall performance of all similarity measures (Figure 5). However,

the dot product measure appears to be the most robust similarity

measure to all three noise conditions (Figure 5). Surprisingly,

overlap-negative, which is a binary version of the dot product on

negative genetic interactions, performs poorly in the noise

conditions. The two other linear similarity measures, Pearson

and cosine correlation, perform well at low recall but the

precision-recall performance drastically decreases at higher recall

(Figure 5). In contrast, Jaccard coefficient and overlap p-value are

the most affected in all three noise conditions; their performances

drop dramatically from near best performance on the original

dataset to almost random performance in the noise conditions.

Gini correlation is also strongly influenced by noise, but seems to

be most sensitive to false negatives as it performs reasonably well

for the false positives and Gaussian noise conditions.

Batch Effects
High-throughput genetic interactions are adversely affected by

batch effects, traces of which may still remain in spite of

normalization methods for removing them [5]. To determine

how batch effects influence the profile similarity measures, we

simulated batch effects in the S. cerevisiae genetic interaction data by

Figure 2. Comparison of similarity measures based on highly
similar gene pairs and stability on partial data. (A) The overlap of
the top 1000 similar gene pairs for each similarity measure were
compared against each other on the query gene side of the S. cerevisiae
genetic interaction data (B) The stability of the similarity measures was
assessed by comparing the overlap of top 1000 similar gene pairs
computed using 10 different random selections of 50% of the data in
each profile.
doi:10.1371/journal.pone.0068664.g002
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Figure 3. Role of thresholding genetic interaction data in the performance of similarity measures. The precision-recall plots were
compared on the query side of the S. cerevisiae genetic interaction data at several thresholds (A) e,20.08 - only negative genetic interactions at
intermediate threshold, (B) e,20.2 - only negative genetic interactions at a stringent threshold, (C) e .0.08 - only positive genetic interactions at an
intermediate threshold, (D) e .0.2 - only positive genetic interactions at a stringent threshold, (E) |e| .0.08, negative and positive interaction at an
intermediate threshold, and (F) |e| .0.2, negative and positive interaction at a stringent threshold. The bar plot on the upper right corner in each

Profile Similarity for Genetic Interaction Network
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randomly creating batches of 5 query genes and to each profile in

the batch we added a common bias for each gene sampled from a

Gaussian distribution with mean, m= 0 and standard deviation,

s= 0.02 (m= 0, s= 1 for Ryan et al. 2012), and further, we added

Guassian noise (m= 0, s= 0.02 or 1) to the entire dataset. We

simulated more serious batch effects by doubling the magnitude of

both the batch signal and the standard deviation of the Gaussian

noise added to the entire dataset. Query correlations were

analyzed using precision-recall performances to understand the

impact of batch effects.

We find that batch effect conditions are destructive for most

similarity measures, especially those that include normalization

(Figure 6). This reduction in performance is because normalization

magnifies the batch signature for profiles with fewer interactions,

and therefore, falsely predicts genes with weak profiles in the same

batch to be functionally similar (Figure 6).

Other similarity measures that do not use normalization

perform much better. For example, we observe that the dot

product and Jaccard similarity measures are robust to batch

effects. The robustness of Jaccard coefficient to batch effects is

surprising given that it was one of the most sensitive similarity

measures to different noise conditions. The overlap p-value is

another surprising candidate: it performs poorly in the noise

conditions (Figure 5) but is the best performer for query

correlations of Costanzo et al. data under intermediate batch

effect conditions (Figure 6A). However, the performance of

overlap p-value is not consistent for stronger batch effects or for

the S. pombe dataset (Figure 6B,C,D). When the batch effect was

severely increased, all similarity measures break down in terms of

their performance (Figure 6B,D).

There is a peak in the precision-recall performance for higher

recall for Pearson, cosine and dot product which corresponds to

section shows the area under the precision-recall curve (AUPRC) above the background for each similarity measure. The area was calculated by
summation of the areas of trapezoids at in increments of 2n (log2 units). The bars are sorted by their respective areas above background.
doi:10.1371/journal.pone.0068664.g003

Figure 4. Investigation of Pearson correlation relative to the dot product for thresholded genetic interaction data. In each of the
panels, three instances of genetic interaction data have been used: original data, original data with all interactions whose absolute value was less that
0.2 set to zero, and original data where all interactions whose interaction value is less than 0.2 reorganized randomly. The three data instances are
investigated using (A) the precision-recall performance of Pearson correlation on each instance, (B) the performance of dot product on the same
three instances, (C) a histogram of normalization factor (1/norm) of the profiles for the three instances, and (D) a histogram of the mean of profiles for
the three instances.
doi:10.1371/journal.pone.0068664.g004
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the point at which all within-batch gene-pairs are exhausted

(Number of within batch gene-pairs for 1800 query genes in S.

cerevisiae 1800/5 * 5 choose 2 = 3600).

Conclusion

Profile comparison is a widely used approach for genetic

interaction studies. Profile similarity measures are used to validate

genetic interaction data [5], construct functional profile similarity

maps [1], and predict gene functions or drug targets [1,31]. We

routinely use Pearson or cosine correlations to cluster genetic

interaction data for viewing in clustergram format, and we often

look at several versions of the genetic interactions data some of

which are thresholded. In this study, we have shown that some

similarity measures may not reflect reliable gene-associations when

applied to thresholded data, so we need to be aware of this

vulnerability. Furthermore, similarity measures have varying

sensitivities to different noise and batch effects conditions, so

controlling for these conditions may require the use of specific

similarity measures.

The dot product is one of the most consistent performers across

all datasets and conditions evaluated here. Furthermore, it seems

to be more robust to most noise conditions and batch-effects

compared to other similarity measures. The dot product can be

seen as a hybrid between cosine correlation and overlap measures:

applying dot product on binarized data results in the overlap

measure and applying dot product on normalized (L2 norm) data

produces the same result as cosine correlation. Indeed, the dot

product seems to combine the best properties of these two

measures. For instance, cosine correlation performs well on the full

dataset but its performance degrades as the threshold on the data

is increased. The overlap measure, on the other hand, improves

with an increase in the stringency of the threshold and performs

well at higher recalls. The dot product is able to retain the good

performance of cosine correlation at low recall, but is not affected

by thresholds applied to the data and also retains good

performance at higher recall. Furthermore, the dot product is

Figure 5. Role of noise in the genetic interaction data on similarity measure performance. In each panel, simulated noise was added to
the S. cerevisiae genetic interaction data, and query correlations were used for comparing the similarity measures. The simulated noise conditions are
(A) false negatives –95% of the significant interactions whose absolute value of interaction is greater than 0.08 were randomly set to 0, (B) false
positives – values were randomly sampled from the set of genetic interactions whose absolute interaction value were greater than 0.08 and were
randomly substituted in place of randomly selected non-interactions. This random sampling was repeated until 10 times the number of significant
interactions were added as false positives in the original data, and (C) Gaussian noise - random values from a Gaussian distribution of mean 0 and
standard deviation 0.08 were added to all values (interactions and non-interactions) in the dataset. The bar plot on the upper right corner in each
section shows the area under the precision-recall curve (AUPRC) above the background for each similarity measure. The area was calculated by
summation of the areas of trapezoids at in increments of 2n (log2 units). The bars are sorted by their respective areas above background.
doi:10.1371/journal.pone.0068664.g005
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among the fastest profile operations computationally, so it is also

attractive from that perspective. However, there are a few

disadvantages of dot product, the most significant being that

unlike several of the other correlation measures, its value is not

directly interpretable as it is not bounded (e.g. between 21 and 1).

Thus, choosing the right threshold for analysis is highly dataset

specific and depends on the size and scale of the values in the

interaction dataset. Another disadvantage is that dot product may

not be readily available in commonly used clustering softwares.

We have tried to address this disadvantage by implementing a dot

product measure in cluster 3.0 [32], which is frequently used in

combination with Java Treeview [33] for cluster visualization. Our

implementation is freely available and can be downloaded from

http://csbio.cs.umn.edu/people/RaameshDeshpande/profileSim.

For future work, we propose to develop approaches for

combining top similarities from different methods. This proposal

is based on the observation that different correlation measures

detect different top similarities that all seem to provide relatively

high performance in predicting functional associations. This

suggests the potential for developing a combined measure that is

able to combine the strengths of the different measures to provide

superior performance.

Materials and Methods

Creation of GO Standard
The S. cerevisiae Gene Ontology (GO) standard was created using

the approach described in [28], which generates a co-annotation

Figure 6. Role of simulated batch effects in genetic interaction data on similarity measure performance. (A) shows the performance of
similarity measures on the query side of the S. cerevisiae genetic interaction network when simulated intermediate batch effects were added to the
data. The batch effects were added by creating random batches of size 5 and for each batch, Gaussian noise (m= 0 and s= 0.02) was added.
Furthermore, Gaussian noise (m= 0 and s= 0.02) was added to entire dataset. (B) A stronger batch effect signature and noise was added (m= 0,
s= 0.04 for both batch effect and noise) (C), (D) are similar plots for the query side of the S.pombe genetic interaction data (m= 0, s= 1 for (C), and
m= 0, s= 2 for (D)). The bar plot on the upper right corner in each section shows the area under the precision-recall curve (AUPRC) above the
background for each similarity measure. The area was calculated by summation of the areas of trapezoids at in increments of 2n (log2 units). The bars
are sorted by their respective areas above background.
doi:10.1371/journal.pone.0068664.g006
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matrix based on the S. cerevisiae Gene Ontology [27] and

annotations. Both of the datasets were downloaded on January

22, 2012. The final standard includes annotations for all pairs of

5513 genes with some denoted as positives (functionally related),

some as negatives (not functionally related), and some as zero

(neither). The GO standard for S. pombe was created in a very

similar manner to S. cerevisiae and contains 4598 genes. The S.

pombe Gene Ontology data was downloaded on July 4, 2012. The

GO standards for both species are available for download on the

Supplementary website (http://csbio.cs.umn.edu/people/

RaameshDeshpande/profileSim).

Precision-Recall Analysis
Pairwise similarities were calculated for all genes appearing in

each genetic interaction dataset, except for pairs between multiple

alleles of the same gene (multiple alleles for some genes were

screened in Costanzo et al.), in which case the allele with highest

degree was chosen. The calculated gene similarities were sorted

and precision and recall were calculated at different similarity

thresholds, above which similarities were considered to be positive

predictions. These predictions were compared with gold standard

positive and negative sets derived from Gene Ontology [28]. For

programmatic analyses, an all genes by all genes GO standard

matrix is created where values in the matrix are 1, 0 or 21

depending on whether the two genes are co-annotated, undeter-

mined and definitely not co-annotated in Gene Ontology

respectively. A prediction that matches with 1 in the GO standard

is a True Positive, 21 is a False Positive, and 0 s are undetermined

and therefore ignored. Pairs with a 1 in the GO standard, but a

similarity score below the threshold are considered False

Negatives. Precision is given by TP/(TP+FP) and recall by TP/

(TP+FN), where TP, FP, FN stand for numbers of True Positives,

False Positives and False Negatives respectively. In this study, we

have used Recall = TP because the denominator TP+FN is equal

to number of 1 s in the GO standard, which is a constant.

Genetic Interaction Datasets
We used two genetic interaction datasets, one from S. cerevisiae

and another from S. pombe. Similarities between the replicates or

different point mutation alleles of the genes with other genes could

confound precision-recall performance analysis. So in both the

datasets, in case of replicates or multiple alleles of the same gene,

we have retained the profile with the highest negative interaction

degree (e,20.08, pval ,0.05). The details of each dataset after

processing are as follows:

1. S. cerevisiae: Costanzo et al. Synthetic Genetic Array (SGA)

genetic interaction dataset (after removing replicates) dimen-

sions are 1672 query (rows) by 3885 array (columns) genes.

2. S. pombe: Ryan et al. Epistatic MiniArray Profiles (EMAP)

genetic interaction dataset (after removing replicates), dimen-

sions are 879 query (rows) genes by 1955 array (columns) genes.
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