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Abstract

Low temperature is a major limiting factor in rice growth and development. Mapping of quantitative trait loci (QTLs)
controlling cold tolerance is important for rice breeding. Recent studies have suggested that bulked segregant analysis
(BSA) combined with next-generation sequencing (NGS) can be an efficient and cost-effective way for QTL mapping. In this
study, we employed NGS-assisted BSA to map QTLs conferring cold tolerance at the seedling stage in rice. By deep
sequencing of a pair of large DNA pools acquired from a very large F3 population (10,800 individuals), we obtained
,450,000 single nucleotide polymorphisms (SNPs) after strict screening. We employed two statistical methods for QTL
analysis based on these SNPs, which yielded consistent results. Six QTLs were mapped on chromosomes 1, 2, 5, 8 and 10.
The three most significant QTLs on chromosomes 1, 2 and 8 were validated by comparison with previous studies. Two QTLs
on chromosomes 2 and 5 were also identified previously, but at the booting stage rather than the seedling stage,
suggesting that some QTLs may function at different developmental stages, which would be useful for cold tolerance
breeding in rice. Compared with previously reported QTL mapping studies for cold tolerance in rice based on the traditional
approaches, the results of this study demonstrated the advantages of NGS-assisted BSA in both efficiency and statistical
power.
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Introduction

Many traits of agronomic importance in crops, including those

related to abiotic stress tolerance, are quantitatively inherited. The

genomic regions containing genes controlling a given quantitative

trait are known as quantitative trait loci (QTLs). QTL mapping is

one of the most common approaches for the genetic study of

quantitative traits, which provides the basis for map-based cloning

of related genes and marker-assisted selection (MAS) in crop

breeding. However, QTL mapping is usually carried out by

genotyping a large number of individuals that are progeny of a

biparental cross, which is labor-intensive, time-consuming and

costly.

The strategy of bulked segregant analysis (BSA) proposed by

Michelmore et al. [1] provides a simple and effective approach to

rapidly search for markers linked to specific genes or QTLs

affecting a trait of interest by genotyping only a pair of pooled

DNA samples from two sets of individuals with distinct or opposite

extreme phenotypes. Since 2000, high-throughput genotyping

technologies based on microarray [2] and next generation

sequencing (NGS) [3] have developed very quickly. Using these

technologies, BSA can identify large numbers of markers linked to

the target genes or QTLs. Based on these linked markers, the

target genes or QTLs can be directly mapped by referring to

reference genome sequences. Hence, with the availability of high-

throughput genotyping technologies and with reference genome

sequences from more and more species, BSA is becoming an

increasingly useful approach for gene or QTL mapping.

Many studies on the methodology and application of the high-

throughput genotyping-assisted BSA have been reported, but they

have been mainly focused on qualitative traits [4]–[9] while those

on quantitative traits are still very limited. Wolyn et al. [10] first

proposed an approach named eXtreme Array Mapping (XAM),

which combines microarray-based genotyping with BSA for QTL

mapping. With a practical example in Arabidopsis thaliana and a

simulation study, they demonstrated that the method is effective

for mapping single major QTLs. Later studies in yeast (Saccharo-

myces cerevisiae) [11] and by simulation [12] also demonstrated the

effectiveness of microarray-assisted BSA in mapping major QTLs.

Ehrenreich et al. [13] first applied NGS to BSA for QTL mapping.

By utilizing NGS-assisted BSA as well as microarray-assisted BSA,

they mapped a number of QTLs for 17 chemical resistance traits

in yeast (S. cerevisiae), showing that the methods are applicable to

various quantitative traits with different levels of genetic complex-
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ity, ranging from simple ones influenced by a major locus to very

complex traits affected by at least 20 loci. Magwene et al. [14]

proposed a statistical framework for QTL mapping based on

NGS-assisted BSA and applied it to analyzing colony morphology

in yeast (S. cerevisiae) as a demonstration. Swinnen et al. [15]

mapped three major QTLs and additional minor QTLs conferring

ethanol tolerance in yeast (S. cerevisiae) using NGS-assisted BSA.

The studies reported have been largely conducted in yeast (S.

cerevisiae). Only until recently, a study was reported using NGS-

assisted BSA for QTL mapping in rice, in which they mapped

several QTLs underlying resistance to rice blast, grain amylose

content and germination rate under low temperature, demon-

strating the applicability of the approach to plants [16].

Low temperature is one of the main abiotic stresses in rice

cultivation. Low temperature in early spring can lead to slower

growth, discoloration, withering, or even seedling death. There-

fore, improvement of Cold Tolerance at the Seedling Stage

(CTSS) is important for stable rice production. CTSS in rice is a

complex trait controlled by multiple genes [17], [18]. A number of

QTLs underlying CTSS have been mapped in rice using

traditional molecular marker technologies and QTL mapping

methods [19]–[27], and two major QTLs have been fine mapped

[25], [28], [29]. In this study, we chose rice CTSS as an example

for investigating the feasibility and efficiency of NGS-assisted BSA

for QTL mapping in plants. Since many QTLs for CTSS have

been mapped in rice before, it is possible for us to evaluate the

reliability of the QTLs mapped in this study by comparison.

Compared with the study of Takagi et al. [16], our study was

performed using a much larger segregating population and a pair

of much bigger pools of extreme segregants as well as a much

higher sequencing depth for the NGS-assisted BSA, hoping to

exploit as far as possible the potential of the approach in the

precision mapping of QTLs.

Materials and Methods

Plant materials
An F3 population was created for the experiment from a cross

between a japonica rice variety Nipponbare, of which the whole

genome sequence is publicly available, and an indica rice variety

LPBG developed by Fujian Agriculture and Forestry University.

Our preparative had indicated that Nipponbare is more tolerant to

low temperature than LPBG.

Seed sowing and planting
Pregerminated seeds of the mapping population were sown on

clean sand contained in rectangular (35625 cm2) plastic trays,

with 225 seeds per tray (15 rows615 seeds/row). Seedlings were

grown at 25uC in a greenhouse. The sand was kept wet by

watering daily with tap water and applying Yoshida nutrient

solution [30] every 3 days after the seedlings had reached the two-

leaf stage. One hundred seeds of each parental line were also sown

to provide a reference.

Identification of individuals with extreme phenotypes on
cold tolerance

Seedlings with uniform growth performance at the three-leaf

stage were treated with low temperature in a phytotron growth

chamber under a cycle of 12-h light (15000 LX) and 12-h dark.

The seedlings were initially exposed to 14uC for 2 h, followed by

12uC for 4 h and 10uC for 4 h. During this period, the seedlings

that were the most sensitive to cold (i.e., became withered) were

identified visually as the extremely sensitive (ES) individuals, and

were transplanted to the normal growth condition for recovery.

The remaining seedlings were kept in the chamber and the

temperature continued to incrementally decrease from 9uC for

14 h, 8uC for 6 h and 7uC for 2 h. During this period, most of the

seedlings died, but a small proportion of seedlings survived and

appeared normal. The surviving seedlings were collected as the

extremely tolerant (ET) individuals and transplanted to the normal

growth condition for recovery. A total of 48 trays were screened in

6 batches, with 8 trays for each batch. In each batch, ,70 ES and

ET individuals were selected, each accounting for ,4% of total

seedlings tested.

DNA isolation and sequencing
A segment of fresh leaf (,0.02 g) was excised from each selected

seedling. Leaf tissues from 430 ES and 385 ET seedlings were

pooled separately to extract DNA using the CTAB method [31].

The two DNA pools were purified with the GenElute Plant

Genomic DNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO,

USA), respectively. A genomic DNA library was prepared for each

DNA pool using the Illumina TruSeq DNA Sample Preparation

Kit (Illumina Inc., San Diego, CA, USA) according to the

manufacturer’s instructions. Each DNA library was sequenced

using an Illumina Hiseq 2000 sequencing platform. All raw high-

throughput sequencing data have been deposited in the SRA

database with accession number SRP021494.

Data processing and SNP identification
The raw DNA-seq reads were trimmed and filtered to remove

low-quality sequences via a modified Mott trimming algorithm

implemented by a custom Perl script that we wrote by referring to

the CLC Genomics Workbench quality trimming tools. An error

probability limit of 0.05 and an ambiguous nucleotide limit of 2

were applied and reads shorter than 25 bp were discarded. The

preprocessed reads that passed the quality control were then

aligned to the published rice (Nipponbare) reference genome

(RGAP 7; http://rice.plantbiology.msu.edu/) using the program

Bowtie 0.12.7 [32] with the following parameter settings: -n 2 -l 20

-e 100 –best –strata -a -m 1. Reads aligned to more than one

position in the reference genome were filtered out. Based on the

mapping files (SAM files) of both pools generated by Bowtie, SNP

identification was performed using the Bayesian model imple-

mented by the programs mpileup and bcftools of SAMTools [33]

with the parameter of base PHRED quality filtering cutoff set to

20. To avoid the influence of segregation bias from the theoretical

ratio (1:1) between the two parental alleles and small sample size

(sequencing depth) of individual SNPs on QTL analysis, the

identified SNPs were further filtered according to the following

requirements: 1) the overall Nipponbare allele frequency of a SNP

in the whole pool (the two pools as a whole) was neither ,20% nor

.80%; 2) the total depth of a SNP in the whole pool was neither

,100 nor .400; and 3) the depth of a SNP in each pool was not

,40.

QTL analysis
With the SNPs selected, QTL analysis was performed using the

method proposed by Magwene et al. [14]. A sliding window with a

fixed width of 1000 kb was used to calculate the value of statistic

G9 at every SNP so as to identify the genomic regions that showed

G9 peaks, which indicated the possibility of QTL existence. The G9

value at a SNP was calculated using the following formula under

the condition that the SNP was located at the centre of a window:

G’~
X

j

kjGj
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where Gj and kj are the values of statistic G and weight k at the j th

SNP, and the sum includes all SNPs within the window. The G

value at a SNP was calculated using the following formula:

G~2
X4

i~1

ni ln
ni

n̂ni

where n1 and n2, and n3 and n4, are the counts of the alleles from

parent 1 (e.g. Nipponbare in this study), and parent 2 (LPBG), in

the low trait value (ES) and the high trait value (ET) pools,

respectively; and n̂ni is the expected value for ni under the null

hypothesis (H0: there are no QTLs linked to the SNP), e.g.

n̂n1~(n1zn2)(n1zn3)=(n1zn2zn3zn4). The k value at a SNP in

a window was calculated using the following formula:

kj~
(1{D3

j )3

P
j

(1{D3
j )3

where Dj is the standardized distance from the window centre to

the j th SNP, of which the value varies from 0 (at the window

centre) to 1 (at the window edge); and the sum again is for all the

SNPs within the window.

The significance threshold of G9 was estimated using an

emprical approach proposed by Magwene et al. [14] with a little

modification. The approach is based on the assumptions that G9

asymptotically follows a log-normal distribution under the null

hypothesis and the observed distribution of G9 is a mixture of the

null distribution (in non-QTL regions) and several contaminating

distributions (in QTL regions) [14]. The procedure is [14]: (1)

Calculate x = ln(G9) for all G9 values. (2) Find Median(x). (3)

Calculate z = Median(x)2x for all x#Median(x). (4) Find Med-

ian(z). (5) Construct a trimmed data set of G9 values by discarding

those G9 values for which x2Median(x).5.26Median(z). (6) Find

Median(G9) and Mode(G9) in the trimmed data set and calculate

the approximate estimates m = ln[Median(G9)] and s2 = m2ln[Mo-

de(G9)] for the null distribution lnN(m, s2). (7) Calculate the p values

of all the G9 values using the estimated null distribution. (8) Sort

the p values in the order of small to large, namely,

p1,p2,…,pi,…,pn. (9) For a required false discovery rate

(FDR) q*, find the largest i (denoted as k) for which pi#q*6i/n. (10)

Calculate the corresponding G9 value of pk, which is the

approximate estimate of G9 threshold at the significance level of

the required FDR.

The key point in the above approach is to estimate the null

distribution parameters, m and s2 of ln(G9), by treating the G9

values from the contaminating distributions as outliers, which need

to be identified and removed. For this purpose, it is important to

reduce the proportion of contaminating components in the

mixture distribution as much as possible. Therefore, instead of

using all the G9 values, we only chose those from the regions that

were less likely to harbor QTLs for the estimation of the null

distribution parameters. In addition, to reduce the influence of

uneven distribution of G9 values in the genome and correlations

between closely linked G9 values, we did not use the whole G9

values but randomly selected one G9 value every 200 kb from the

putative non-QTL regions for estimating the null distribution

parameters. This procedure was repeated 20 times, and their

averages were taken as the estimates of the null distribution

parameters. With the null distribution obtained, the probabilities

of a subset of G9 values were estimated and the p-value threshold as

well as the corresponding G9 threshold for the FDR of 0.05 was

estimated. The G9 subset was obtained by randomly selecting one

G9 value every 200 kb across the whole genome for the similar

reasons mentioned above and a consideration that a space of

200 kb between testing points, which is approximately equivalent

to 1 cM on average in rice, could provide sufficient resolution for

QTL mapping, while the residual G9 values are redundant.

Apart from the above analysis, we also employed the method of

Jensen-Shannon divergence to detect differential SNPs (regions

with an imbalance between allelic contributions from the two

parents) between the two pools with a Bonferroni FWER multiple

test correction at an overall significance level of 0.05 implemented

by the GeneSpring NGS (Agilent Technologies). The genomic

regions with a high frequency of differential SNPs also indicated a

high likelihood of containing QTLs and therefore could provide a

validation for the result of the G9 analysis.

In addition, to identify which parent possesses the resistant allele

of a putative QTL, the profile of Nipponbare allele frequency

difference (NAFD) between the ET and ES pools was plotted using

a 300-kb sliding window moving across the genome with a fixed

step length of 10 kb. The Nipponbare allele frequency (fN) within

a window in a pool was estimated using the following formula:

fN~

Pm

i~1

nNi

Pm

i~1

(nNiznLi)

where m is the total number of SNPs within the window; and nNi

and nLi are the numbers of Nipponbare allele and LPBG allele of

the ith SNP, respectively. For a putative QTL, the Nipponbare

allele would act to increase the cold tolerance if NAFD.0, but to

decrease the cold tolerance if NAFD,0.

Results

In total, 10,800 F3 seedlings from the cross between rice

varieties Nipponbare and LPBG were tested for cold tolerance,

from which 430 ES and 385 ET individuals were selected and a

pair of DNA pools was obtained. Through high-throughput

sequencing of the two DNA pools, a total of ,800 M 101-bp pair-

end reads were obtained, with approximately 360 M and 440 M

from the ES and ET pools, respectively (Table 1). After trimming

and filtering, over 99% of the reads were selected in both pools,

with the average length reduced to ,98 bp. About 70% of the

selected reads were mapped to unique positions in the reference

(Nipponbare) genome (Table 1). These uniquely mapped reads

covered ,92% of the genome in both pools, with an average

depth of ,70 and 89 in the ES and ET pools, respectively, or

,158 altogether (Table 2).

Based on the uniquely mapped reads, a total of 456,777 SNPs

met the chosen requirements for QTL analysis (see Materials and

methods). These SNPs showed an approximately symmetric

unimodal distribution of the Nipponbare allele frequency in the

whole pool with an average of ,45%, which was close to the

expected value 50%, suggesting that the genetic segregation of

these SNPs was approximately normal. However, the distribution

of these SNPs in the genome was not even. The SNP density

(shown as the number of SNPs per Mb or within the sliding

window) varied greatly within the genome (Figure 1A).

Calculation of G9 values at these SNPs showed that there were

five large major G9 peaks located on chromosomes 1, 2, 5, 8 and

10, with the peaks on chromosomes 1 and 8 being the highest

(Figure 1B), suggesting that these five major G9 peaks were likely

QTL regions. Hence, we excluded them and only selected G9

values from other regions to estimate the null distribution of G9.

QTL Mapping by Sequencing Pooled Extremes in Rice
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The obtained null distribution was lnN(0.9945, 0.3315) (Figure 2),

according to which the significance threshold of G9 for the FDR of

0.05 was estimated to be 11.81. The five major G9 peaks with

putative QTLs all greatly exceeded the threshold (Figure 1B),

indicating that these five major G9 peak regions in high likelihood

contain QTLs.

Jensen-Shannon divergence analysis indicated that the differ-

ential SNPs between the two pools were basically distributed in the

five major G9 peak regions, showing profiles consistent with the

corresponding G9 peaks (Figure 1C). These results further support

the assertion that the five major G9 peak regions contain QTLs.

We named these QTLs as qCTSS-1 (abbreviation of ‘‘quantitative

trait locus for CTSS on chromosome 1’’; similar for others),

qCTSS-2, qCTSS-5, qCTSS-8 and qCTSS-10, respectively.

Apart from the five major G9 peaks, there were several small

(minor) G9 peaks scattered throughout the genome (Figure 1B).

Four of them were at the margin of significance, with two (towards

the left end of chromosomes 2 and 8) slightly exceeding and two

(one at the left end of chromosome 1, the other at the right end of

chromosome 9) nearly reaching the threshold; while all others

were apparently under the threshold (Figure 1B). For reliability,

we only took the major G9 peaks as QTLs.

The full intervals of the QTLs (or the regions covered by the

major G9 peaks) were all very wide, ranging from 8.68 Mb for

qCTSS-5 to 15.36 Mb for qCTSS-2 (Figure 1B; Table 3). However,

it can be seen that each of the major G9 peaks exhibited a clear

‘‘shoulder’’, which divided the peak into two distinct parts, the

‘‘head’’ part over the ‘‘shoulder’’ and the ‘‘body’’ part under the

‘‘shoulder’’ (Figure 1B). Obviously, each QTL should be most

probably located within the region covered by the ‘‘head’’ part of

the corresponding G9 peak. Hence, we took the ‘‘head’’-covered

regions as the most probable intervals of the QTLs, which were all

much narrower than the full intervals except for qCTSS-2

(Figure 1B; Table 3).

The profile of NAFD between the ET and ES pools (Figure 1D)

was consistent with the G9 profile (Figure 1B). The summit NAFD

value of a QTL can reflect the size of the effect and the direction of

action of the Nipponbare allele of the QTL. It can be seen that

qCTSS-1 showed the largest effect, followed by qCTSS-8, qCTSS-2,

qCTSS-10 and qCTSS-5; and the resistant alleles of qCTSS-1,

qCTSS-2 and qCTSS-10 were from Nipponbare, while those of

qCTSS-5 and qCTSS-8 were from LPBG (Figure 1D; Table 3). This

is consistent with the fact that Nipponbare is more tolerant than

LPBG to low temperature stress (see Materials and Methods).

It is noticeable that the major G9 peak on chromosome 2

displayed a wide fluctuating top without a clear peak and appeared

to be a mixture of two adjacent component peaks divided by a

shallow valley (Figure 1B). By referring to NCBI mapview (http://

www.ncbi.nlm.nih.gov/ mapview/), we found that the lowest

point of the valley (at ,13.61 Mb) happened to fall inside the

centromere region (ranging approximately 13.57–13.75 Mb),

where no genes were annotated. Therefore, the putative QTL in

this region could only be located at either side of the centromere.

However, if this was the case, it can be expected that the G9 profile

in this region would exhibit a clear sharp peak and there would be

no valley at the centromere. Thus, in light of the result, we suspect

that there might be two QTLs harbored in this region, with one on

each side of the centromere (named as qCTSS-2a and qCTSS-2b,

respectively; Table 3). These two QTLs must be linked in coupling

phase, with both resistant alleles coming from Nipponbare. The

two component peaks that represented the two QTLs could not be

clearly separated from each other, probably because of the

generally low recombination rate in the centromere region.

Comparing Figure 1A and B, we see that there is no obvious

correlation between G9 value and SNP density. However, it can be

found that the major G9 peak regions all have high (or at least not

very low) SNP density, and there were few large G9 values found in

the regions with very low SNP density. This implies that G9 values

tend to be underestimated within regions of very low SNP density.

We have noticed that the SNP density was very low in the region

between the minor and the major G9 peaks on chromosome 2.

This means that the G9 values in this region might be

underestimated. If this was true, the minor G9 peak might be an

artefact and actually be a part of the major G9 peak.

Discussion

Traditional QTL mapping methods require that every individ-

ual in a mapping population is genotyped and phenotyped.

Genotyping with traditional molecular marker technologies is

Table 1. Statistics of sequencing results.

DNA pool Number of raw reads Trimmed and filtered reads Uniquely mapped reads

Number % Number %

ES 356,193,956 353,856,120 99.34 244,801,282 69.18

ET 442,404,686 439,177,251 99.27 309,826,517 70.55

Total 798,598,642 793,033,371 99.30 554,627,799 69.94

doi:10.1371/journal.pone.0068433.t001

Table 2. Coverage of the rice genome by the uniquely mapped reads.

DNA pool Coverage length (bp) Coverage rate (%) Total length of reads (bp) Coverage depth

ES 342,446,650 91.75 24,152,244,325 70.53

ET 340,022,302 91.10 30,351,271,370 89.26

Total 344,387,370 92.27 54,503,515,695 158.26

Note: The size of the reference genome is 373,245,519 bp.
doi:10.1371/journal.pone.0068433.t002

QTL Mapping by Sequencing Pooled Extremes in Rice
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laborious and time-consuming and therefore has been a bottleneck

for QTL mapping studies. In recent years, NGS technologies have

been utilized to genotype mapping populations [34], [35]. This

greatly increases the efficiency of genotyping and enables the

construction of a genetic map with very high marker density.

Hence, it would be very useful for QTL mapping. However,

genome resequencing for hundreds of individuals is expensive and

laborious. This limits the size of the population that can be used

for QTL mapping. In contrast, NGS-assisted BSA only involves a

pair of pooled DNA samples. Therefore, it is much cheaper and

less laborious and has no limitation on population size for

genotyping work.

In some cases, phenotyping can also be a bottleneck for QTL

mapping studies, especially for the traits that are difficult to

quantify. The target trait of this study is an example. CTSS is a

complex trait, which is difficult to measure precisely and

quantitatively, and is usually measured with various artificial scale

systems such as the 1–9 scale system [19], [26] and the 0–4 scale

system [24] or some related indices such as seedling survival

percentage [20], [22], seedling mortality [23] or cold response

Figure 1. Statistical difference between the two pools along the genome revealed by three methods. A: SNP distribution in the genome.
B: G9 value profile. The horizontal dotted line shows the significance threshold for FDR#0.05. The upper longer and lower shorter horizontal bars
under each major G9 peak indicate the ranges of the full and the most probable intervals of a putative QTL, respectively. The downward black
arrowhead marked as CM within the interval of qCTSS-2 indicates the position of centromere on chromosome 2. C: Distribution of differential SNPs in
the genome. D: Profile of Nipponbare allele frequency difference.
doi:10.1371/journal.pone.0068433.g001

Figure 2. Frequency histogram and estimated null distribution
of G9 values. The G9 values were sampled by randomly selecting one
every 200 kb from the whole genome excluding the five major G9 peak
regions.
doi:10.1371/journal.pone.0068433.g002

QTL Mapping by Sequencing Pooled Extremes in Rice
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index calculated based on seedling vigor traits [21]. All of these

indices of CTSS can only be measured based on lines. Therefore,

rice QTL mapping studies for CTSS so far were all conducted

based on populations of recombinant inbred lines, doubled

haploid lines and F2:3 lines [19]–[26]. Compared with the

traditional QTL mapping methods, NGS-assisted BSA has the

very desirable feature that it does not require the precise trait value

of each individual (or line) but only requires identification of the

individuals (or lines) that exhibit opposite extreme phenotypes.

This is not difficult in general because opposite extreme

individuals (or lines) can usually be distinguished easily. In

addition, BSA is more insensitive to the occasional phenotyping

mistake [4]. This means that the requirement for phenotyping in

NGS-assisted BSA is less stringent than in the traditional QTL

mapping methods. Hence, QTL mapping by NGS-assisted BSA

can be carried out based on a population of individuals rather than

lines, even for such trait as CTSS, as demonstrated in this study.

Taken together, it is clear that NGS-assisted BSA makes both

genotyping and phenotyping much easier and cheaper and thus

greatly simplifies and accelerates QTL mapping. In addition,

NGS-assisted BSA allows using a very large population, which

increases the statistical power [13].

In this study, using a very large F3 population, we mapped 6

QTLs conferring CTSS in rice by NGS-assisted BSA (Table 3).

The number of QTLs mapped by traditional QTL mapping

methods is generally smaller, varying between 0 and 6, with an

average of 3.0, according to previous studies of QTL mapping for

CTSS in rice [17]–[24]. These results suggest that NGS-assisted

BSA could be equally or more powerful than the traditional QTL

mapping.

Among the 6 QTLs mapped in this study, the three most

significant ones (qCTSS-1, qCTSS-2b and qCTSS-8) have been

detected before (Table 4). For comparison, we identified the

physical positions of the flanking markers of reported QTLs by

referring to the Gramene database (http://www.gramene.org/) or

by searching the rice genome with the markers’ primer sequences

using the BLAST program. By comparing Tables 3 and 4, it can

be seen that the marker intervals of qCTS1, qCTS-2 and qCTS8-1

are all contained in the full intervals and largely overlapped with

the most probable intervals of qCTSS-1, qCTSS-2b and qCTSS-8,

respectively. These results indicate the reliability of QTL mapping

based on NGS-assisted BSA.

The other three QTLs identified in this study are novel for the

CTSS trait in rice. However, QTLs controlling cold tolerance at

the booting stage have been reported in the regions of qCTSS-2a

and qCTSS-5 (Table 4). It can be seen that the position intervals of

these reported QTLs (Table 4) coincide with those of qCTSS-2a

and qCTSS-5 (Table 3), implying that they might be the same

QTLs. This result further verifies the reliability of NGS-assisted

BSA in QTL mapping. In addition, it also suggests that some

QTLs controlling cold tolerance may function at different

developmental stages in rice. A similar result has been reported

before [34]. These QTLs would be particularly useful for cold

tolerance breeding in rice.

Another merit of using NGS-assisted BSA for QTL mapping is

that the genomic sequence data obtained by NGS allows

identification of the allelic variation (polymorphisms) between

the parents, which will facilitate subsequent fine mapping and

positional cloning of the QTLs. With the large number of

identified polymorphisms, it will be easy to develop appropriate

markers for the marker-assisted breeding of isogenic lines, which

are generally required for fine mapping of QTLs. In addition, the

identified sequence variations in genes combined with the

information such as gene annotation and gene expression from

other sources will be helpful for the identification of candidate

genes of the QTLs. In this study, we identified all the genes that

show amino acid variations between the parental varieties and

significant responses to low temperature stress within the most

probable intervals of the mapped QTLs (Tables S1, S2, S3, S4, S5,

Table 4. Common QTL regions conferring cold tolerance in
rice identified in the present study and previous studies.

QTL
Acting
stage Marker interval (Mb) Reference

qCTSS-1

qCTS1 Seedling RM297-RM319 (32.10–33.68) [19]

qCTSS-2a

qCTB2 Booting RM324-RM301 (11.39–12.22) [37]

qCTSS-2b

qCTS-2 Seedling RM561-RM341 (18.77–19.34) [22]

qCTSS-5

qCTB5 Booting RM26-RM334 (27.40–28.55) [37]

qCTB-5-1 Booting RM7452-RM7271 (26.99–27.03) [36]

qCTB-5-2 Booting RM19106-RM31 (27.89–28.61) [36]

qCTSS-8

qCTS8-1 Seedling RM284-RM230 (21.14–25.84) [19]

doi:10.1371/journal.pone.0068433.t004

Table 3. QTLs conferring cold tolerance at seedling stage in rice mapped in this study.

QTL Position interval (Mb) Summit Summit Source of

Full Most probable G9 value NAFD resistant allele

qCTSS-1 21.45–38.22 30.09–33.28 34.38 0.41 Nipponbare

qCTSS-2 8.21–23.57 9.63–19.27 21.11 0.33 Nipponbare

qCTSS-2a 8.21–13.61 9.63–13.61 21.11 0.33 Nipponbare

qCTSS-2b 13.61–23.57 13.61–19.27 20.27 0.32 Nipponbare

qCTSS-5 21.28–29.96 25.40–29.63 16.45 20.28 LPBG

qCTSS-8 14.57–27.68 21.14–25.17 34.18 20.35 LPBG

qCTSS-10 12.64–23.19 15.48–21.06 17.14 0.30 Nipponbare

doi:10.1371/journal.pone.0068433.t003
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S6 in File SI), which could serve as the preferred list of candidate

genes for these QTLs in further studies.

Supporting Information

File S1 Tables S1, S2, S3, S4, S5, S6.

(XLS)
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