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Abstract

Major depression and schizophrenia are two of the most serious psychiatric disorders and share similar behavioral
symptoms. Whether these similar behavioral symptoms underlie any convergent psychiatric pathological mechanisms is not
yet clear. To address this issue, this study sought to investigate the whole-brain resting-state functional magnetic resonance
imaging (MRI) of major depression and schizophrenia by using multivariate pattern analysis. Thirty-two schizophrenic
patients, 19 major depressive disorder patients and 38 healthy controls underwent resting-state functional MRI scanning. A
support vector machine in conjunction with intrinsic discriminant analysis was used to solve the multi-classification
problem, resulting in a correct classification rate of 80.9% via leave-one-out cross-validation. The depression and
schizophrenia groups both showed altered functional connections associated with the medial prefrontal cortex, anterior
cingulate cortex, thalamus, hippocampus, and cerebellum. However, the prefrontal cortex, amygdala, and temporal poles
were found to be affected differently by major depression and schizophrenia. Our preliminary study suggests that altered
connections within or across the default mode network and the cerebellum may account for the common behavioral
symptoms between major depression and schizophrenia. In addition, connections associated with the prefrontal cortex and
the affective network showed promise as biomarkers for discriminating between the two disorders.
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Introduction

Major depressive disorder (MDD) and schizophrenia are two of

the most serious psychiatric disorders and share similar behavioral

symptoms [1]. Some previous studies indicated that 59% of

patients with schizophrenia met the DSM-III criteria for major or

mild depression [2]. Similarly, other studies have suggested that

patients with schizophrenia are 29 times more likely to have a

lifetime diagnosis of MDD than the general population [3].

Symptoms and clinical findings, such as a depression factor

[4,5,6], genetic risk [7], mild loss of brain volume [8], postnatal

complications of brain development [9], lack of energy, anhedo-

nia, and social withdrawal [10], often cause particular problems

when attempting to differentiate between the two syndromes.

Whether the similar behavioral symptoms underlie any convergent

psychiatric pathological mechanisms is not yet clear, and few

investigations have been performed to address this issue.

Understanding the etiology and pathogenesis of schizophrenia

and depression is a major challenge in the field of psychiatry [11].

Ciaran et al reported that the features of schizophrenia, especially

those that are ‘negative’, exhibit many clinical similarities to the

syndrome of depression [10]. Here, we speculated that schizo-

phrenic and MDD patients share convergent dysfunctional

connectivity patterns that account for their similar behavioral

symptoms. Exploring the convergent and divergent functional

connectivity patterns not only can enhance our comprehension of

the pathophysiology of major depression and schizophrenia, but

may also facilitate the clinical identification of major depression

and schizophrenia, which is currently based largely on self-

reported symptoms and clinical signs.

In recent years, resting-state functional magnetic resonance

imaging (rs-fMRI) techniques have been widely used in the

quantitative analysis of the brain in some neuropsychiatric

disorders, including schizophrenia [12,13] and MDD [14].

Hypotheses regarding functional connectivity abnormalities have

been proposed as physiological explanations of the behavioral

syndromes of MDD patients [15,16]. Furthermore, rs-fMRI

studies have detected resting-state network (RSN) alterations,

specifically, abnormalities in the default mode network (DMN)

[17,18], affective network [19], and visual cortical areas [14] in

MDD patients. Similarly, hypotheses regarding functional con-

nectivity abnormalities in schizophrenic patients have been

investigated in many other neuroimaging studies [12,20]. For

example, Whitfield-Gabrieli et al identified abnormal connectivity

within the DMN in schizophrenic patients compared with healthy

controls [20], and Salvador et al found that some regions of the

DMN showed hyper-connectivity in schizophrenic patients [21].

These studies accelerated the search for pathophysiological

mechanisms of MDD or schizophrenia and supplied some

additional information for current clinical diagnostic systems

which are mainly based on the patients’ clinical manifestations
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[14,22]. From the above-mentioned studies, we noticed that MDD

and schizophrenia exhibited convergent abnormal connections

associated with the same regions, such as the prefrontal lobe

[17,23,24], thalamus [16,25], and hippocampus [26]. However,

whether the two disorders share convergent, in addition to

divergent, functional connectivity patterns has not been well

investigated. The present study sought to investigate the whole-

brain rs-fMRI of major depression and schizophrenia using

multivariate pattern analysis.

Multivariate pattern analysis has generated great interest due to

its capacity to identify potential neuroimaging-based biomarkers to

differentiate patients from healthy controls at the individual

subject level, as well as its ability to detect spatially distributed

information to further highlight the neural mechanisms that

underlie patients’ behavioral symptoms [27,28,29,30], which can

complete previous group-level statistical analysis studies. Recent

studies have used multivariate pattern analysis to explore

structural and functional alterations in schizophrenia or MDD,

obtaining satisfactory correct classification rates [14,31]. In the

current study, multivariate pattern analysis was further extended

to the multiclass discriminative analysis of whole-brain resting-

state functional connectivity in schizophrenic patients, MDD

patients, and healthy controls to explore the convergent and

divergent functional connectivity patterns of schizophrenia and

MDD. Machine learning is an important aspect of multivariate

pattern analysis. In the last few years, several learning techniques

have been widely used in the multivariate pattern analysis of rs-

fMRI, such as principal component analysis (PCA) [32], indepen-

dent component analysis (ICA) [33], and the multivariate linear

model [22]. However, these above-mentioned methods do not

analyze the differences in functional connections, which are more

significant in real-word discriminative analysis. In the current

study, we first used intrinsic discriminative analysis (IDA) [34] in

the multivariate pattern analysis of rs-fMRI data. IDA is a

supervised linear dimensionality reduction method that explicitly

exploits the knowledge of which types of features are critical for

classification and tries to best differentiate different classes by

maximizing the inter-class difference while minimizing the intra-

class difference.

Due to the limited samples size, the leave-one-out cross-

validation (Loocv) strategy was used during the dimensionality

reduction process. When the dataset of features in the embedding

space was obtained, support vector machines (SVMs) with a linear

kernel function were employed to solve the classification problems

[35]. Functional connectivity features with the highest discrimi-

native power were further identified using a reconstruction

technique.

Materials and Methods

Participants
This study was approved by the Ethics Committee of the

Second Xiangya Hospital of Central South University, with

knowing that the participants, including schizophrenic and MDD

patients, belonged to a traditionally vulnerable population.

Participants, including 19 MDD patients, 32 schizophrenic

patients, and 38 healthy controls, were physically healthy as

indicated by physical examinations performed before screening.

All subjects provided their written informed consent after receiving

a complete description of this study. The patients provided

informed consent with accompany of their next of kin, and their

capacity of providing informed consent was confirmed by clinical

psychiatrists. Because the patients belong to a traditionally

vulnerable population, their next of kin also provided informed

consent to participant in this study on behalf of them. MDD and

schizophrenic patients were recruited from outpatient departments

and inpatient units at the Second Xiangya Hospital of Central

South University. All of the patients fulfilled the criteria for

schizophrenia or MDD according to the DSM-IV (Diagnostic and

Statistical Manual of Mental Disorders, Fourth Edition) [36], and

confirmation of the diagnosis was made by clinical psychiatrists.

Symptom severity for the schizophrenic patients was assessed with

the Positive and Negative Syndrome Scale (PANSS) [37]. The

depressive symptoms of the MDD patients were assessed with the

17-item Hamilton Depression Rating Scale (HDRS) on the days of

the scans [38]. Exclusion criteria included acute physical illness,

substance abuse or dependence, a history of head injury resulting

in loss of consciousness, and a major psychiatric or neurological

illness other than schizophrenia or depression. Similar exclusion

criteria were adopted for healthy control subjects, who were

recruited via advertisement and matched to the affected individ-

uals with respect to age, gender, education level, and handedness

(details are shown in Table 1).

Resting Experiment and Data Acquisition
fMRI scans were performed with a 1.5-T GE Signa System (GE

Signa, Milwaukee, Wisconsin, USA) using a gradient-echo echo

planar imaging sequence. The imaging parameters were as

follows: TR = 2000 ms, TE = 40 ms, FOV = 24 cm, FA = 90u,
matrix = 64664, slice thickness = 5 mm, gap = 1 mm, slices = 20.

During the experiment, the subjects were instructed to relax, keep

their eyes closed, remain awake, and perform no specific cognitive

exercises. Foam pads and earplugs were used to minimize head

motion and scanner noise, respectively. Each functional resting-

state session lasted ,6 minutes, resulting in 180 volumes.

Data Preprocessing
Image preprocessing was performed using the statistical

parametric mapping software package (SPM8, Welcome Depart-

ment of Cognitive Neurology, Institute of Neurology, London,

UK, http://www.fil.ion.ucl.ac.uk/spm). For each subject, the first

five volumes of the scanned data were discarded due to magnetic

saturation effects. The remaining volumes were corrected by

registering and reslicing them to account for head movement.

Then, the volumes were normalized to the standard echo planar

imaging template in the Montreal Neurological Institute space.

The resulting images were spatially smoothed with a Gaussian

filter of an 8-mm full-width half-maximum kernel and then

temporally filtered with a Chebyshev band-pass filter (0.01–

0.08 Hz). The registered fMRI volumes were further divided into

116 regions according to the anatomically labeled atlas previously

validated and reported by Tzourio-Mazoyer et al [39]. The atlas

Table 1. Demographic and clinical profiles of the participants
in this study.

variable MDD patients Schizophrenia Healthy controls

Gender (M/F) 11/8 25/7 27/11

Age (years) 26.65(67.62) 2465.66 24.4464.45

Education (years) 12.41(62.24) 11.1562.50 13.6562.78

PANSS score –– 80.06616.55 ––

HRSD score 25.43 (66.34) –– ––

PANSS: Positive and Negative Syndrome Scale; HDRS: Hamilton Depression
Rating Scale.
doi:10.1371/journal.pone.0068250.t001
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divides the cerebrum into 90 regions (45 in each hemisphere) and

divides the cerebellum into 26 regions (9 in each cerebellar

hemisphere and 8 in the vermis).

Functional Connectivity
Regional mean time series were acquired for each individual by

averaging the fMRI time series over all voxels within each of the

116 regions. For each regional mean time series, we performed

further regression of the global mean signals and assessed the

effects of translations and rotations of the head as estimated in the

course of initial movement correction by image realignment. The

residuals of the above regressions constituted the set of regional

mean time series used for further functional connectivity analysis

[40]. We then evaluated the functional connection between each

pair of regions using Pearson’s correlation coefficient, resulting in a

6670-dimensional feature vector for each subject.

IDA Algorithm and Intrinsicconnectomes
Suppose that there are N training samples sampled from k

classes (each class has Ni, (i~1,2,:::,k) samples and N~
Pk
i~1

Ni) in

the original high-dimensional space and that xi
j in <D denotes the

jth sample in the ith class.

We now consider the following matrixes:

HM~ X 1
1 {m,X 1

2 {m,:::,X k
Nk

{m,
h i

[<D|N : ð1Þ

Hi

M
~ X i

1{mi,X
i
2{mi,:::,X

i
Ni

{mi,
h i

[<D|Ni ,i~1,2,:::,k: ð2Þ

where

m~1=N

XN

i~1

XNi

j~1

xi
j : ð3Þ

mi~
1=Ni

XNi

j~1

xi
j : ð4Þ

Suppose that r~rank(HM ) and that the singular value

decomposition of HM is HM~U
P

VT , where U and V are

orthogonal. Partitioning U , V , and
P

results in the following:

U~½Ur, ~UUr�, where Ur[<D|N and ~UUr[<D|(D{r).

V~½Vr, ~VVr�, where Vr[<N|r and ~VVr[<N|(N{r).P
~

P
1

0

0

0

� �
, where

P
1[<r|r is nonsingular.

Similarly, we suppose that ri~rank(Hi
M ) and acquire Ui from

the SVD of matrix Hi
M (Hi

M~Ui
P

ViT ).

After performing the above calculation, we can decompose xi
j

into the following form:

xi
j~(I{UrUr

T )xi
jz(UrUr

T{Ui
ri U

i
ri T)xi

jzUi
ri U

i
ri Txi

j : ð5Þ

where I is the identity matrix.

This formula describes the three components of the original

sample after being decomposed. It has been proven that these

three components correspond to different properties.

(I{UrUr
T )xi

j is a common component corresponding to the

common nature of all the training samples, (UrUr
T{Ui

ri U
i
ri T)xi

j

is a common component of all the training samples belonging to

the same class, and Ui
ri U

i
ri Txi

j can be viewed as the difference of

an individual in a particular class. Thus, the intrinsic model is

established.

Eq. (5) can then be rewritten as the following formula when

projecting the sample onto a lower d-dimensional space by using a

D|d transformation matrix G.

GT xi
j~GT (I{UrUr

T )xi
jzGT (UrUr

T{Ui
ri U

i
ri T)xi

j

zGT Ui
ri U

i
ri Txi

j :
ð6Þ

The transformation matrix G can be obtained by solving the

maximization problem of the following objective function:

arg max
trace(GT SCG)

trace(GT SI G)
~ arg max

trace(GT XCXC
T G)

trace(GT XI XI
T G)

: ð7Þ

where

XC~ (UrUr
T {U1

r1 U1

r1 T)x1
1,:::,(UrUr

T {Ui

ri U
i

ri T)xi
j ,:::,(UrUr

T {Uk

rk Uk

rk T)xk
Nk

h i
:

and

SC~XCXC
T :

XI~ U1

r1 U1

r1 Tx1
1,:::,U1

r1 U1

r1 Tx1
N1

,:::,Uk

rk Uk

rk Txk
1,:::,Uk

rk Uk

rk Txk
Nk

h i
:

and

SI~XI XI
T :

The objective function is usually approximated as the following

form because Eq. (7) does not often have a closed-form solution.

arg max trace(GT SI G){1(GT SCG): ð8Þ

The dimensionality reduction algorithm based on the above

intrinsic discriminant criterion is called intrinsic discriminant

analysis.

The optimal transformation vectors g1,g2,:::,gd are given by

solving the following generalized eigenvector problem:

SCg~lSI g: ð9Þ

However, SI is argued to be singular when the number of

training samples is smaller than the dimensionality. The pertur-

bation technique was introduced to overcome this problem, that is,

we changed Eq. (9) to the following form:
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SCg~l(SIzDI)g: ð10Þ

where D is a relatively small positive number and I is the identity

matrix.

Obtaining the transportation vectors g1,g2,:::,gd corresponding

to the d maximum eigenvalue solutions, the final transformation

matrix G from the original sample space to the embedded space is

formed as:

G~ g1,g2,:::,gd½ �: ð11Þ

The IDA algorithm procedure is formally stated as:

Step 1. Without loss of generality, we store the training samples

of a certain class compactly in the original training data matrix X

using order rearrangement, i.e., X~ x1
1,:::,x1

N1
,x2

1,:::,x2
N2
:::,

h
xk

1,:::,xk
Nk
�:

Step 2. The SVD of HM and Hi
M (i~1,2,:::,k) is computed to

obtain Ur and Ui
ri . Then, SC and SI are computed using Eq. (7).

Step 3. The generalized eigenvector problem is solved, and the

transportation matrix G is obtained.

The column vectors of G are called intrinsicconnectomes in

subsequent discussion.

Multiclass Classification Based on Intrinsic Discriminative
Analysis

The multivariate pattern analysis of fMRI is a challenging task

due to the high dimensionality of the data. IDA was applied here

to reduce the dimensionality of the original feature space. When

the data set of features in the embedding coordinate were

obtained, SVM with a linear kernel function was employed to

solve the classification problem [35]. A one-against-rest strategy

was used to design our classifiers [41]. For a k-class problem, the

one-against-rest method constructs k SVM models. The ith SVM

is trained with the training samples in the ith class with positive

labels and other samples with negative labels. The final output of

the one-against-rest method is the class that corresponds to the

SVM with the highest output value. A Loocv strategy was

employed to estimate the generalization ability of the classifiers. A

flowchart of our method is shown in Fig. 1. To comprehensively

investigate the discriminative ability of the IDA method, the

classification performance of our IDA algorithm was compared

with that of the PCA method.

Identification of Features with High Discriminative Power
We determined the functional connection features with the

highest discriminative power via the reconstruction technique

based on the performance of each one-against-rest classifier.

Because each feature influences the classification by its weight, the

larger the absolute magnitude of a feature’s weight, the more it will

affect the classification result. For each one-against-rest classifier,

we obtained a weight vector in each Loocv experiment. The

weight vector for this one-against-rest classifier was finally

acquired by averaging the aforementioned weight vectors. We

therefore obtained three weight vectors representing the features’

discriminative power for each one-against-rest classifier. Because

we performed the classification in the dimension-reduced

subspace, to determine the original functional connections that

make significant contributions to the classification, we then

mapped back each weight vector to the original high-dimensional

space. Thus, for all of the 6670 resting-state functional connec-

tions, we obtained the order of their contribution to the

classification for each one-against-rest classifier. In the subsequent

study, the top 5% of functional connection features with the

greatest weights were extracted as the most discriminative

functional connections. Region weight, representing the relative

contribution of each region to the classification, was denoted by its

occurrence number in the consensus functional connections.

Results

Intrinsicconnectomes
According to theoretical analysis, the columns of the transfor-

mation matrix G are called intrinsicconnectomes, and any

functional connections can be represented as a combination of

these intrinsicconnectomes. We displayed the first nine intrinsic-

connectomes in Fig. 2.

Classification Results
As we described in the Materials and methods section, a total of

89 samples were used in the discriminative analysis in this work,

and by using Loocv, our IDA method achieved an accuracy of

80.9% at the individual level (84.2% for MDD patients, 78.9% for

healthy controls, and 81.3% for schizophrenic patients; details are

shown in Table 2). The dimensionality of the embedding space

was set using a grid search format [2, 88] with a granularity of 1.

All of the results were reported based on the best parameter

settings. To further validate the discriminative ability of the IDA

method, we compared the IDA algorithm with the traditional

PCA method, which achieved an accuracy of 79.8%. The best

classification rates for the two methods, along with their associated

dimensionality, are summarized in Fig. 3.

Functional Connections with High Discriminative Power
In this study, 5% consensus functional connections were

identified for each one-against-rest classifier. Compared with the

healthy controls, the MDD and schizophrenia patients showed

convergent altered functional connectivity patterns related to the

DMN (mainly containing the parahippocampal gyrus, precuneus,

anterior cingulate cortex, hippocampus, thalamus, inferior tem-

poral gyrus, posterior cingulate cortex, and medial prefrontal

cortex), as well as the cerebellum. Several brain regions exhibited

greater weights than others (i.e., the medial prefrontal cortex,

anterior cingulate cortex, thalamus, hippocampus, cerebelum_7b,

cerebelum_9, cerebelum_vermis10, and cerebelum_crus1). Those

functional connections with high discriminative power were

observed within or across the DMN and the cerebellum (Fig. 4),

i.e., connections between the medial prefrontal cortex and the

precuneus, thalamus, and inferior temporal gyrus; connections

between the thalamus and the anterior cingulate cortex and

hippocampus; as well as connections between the cerebellum and

the medial prefrontal cortex, hippocampus, thalamus, and anterior

cingulate cortex. Divergent functional connectivity patterns that

make key contributions to the identification of schizophrenic and

MDD patients were obtained by combining the MDD-against-rest

classifier and the schizophrenia-against-rest classifier. Some

consensus functional connections related to the prefrontal cortex,

temporal poles, and amygdala were identified. Such connections

included connections between the amygdala and the medial

prefrontal cortex, parahippocampus, hippocampus, precuneus,

and some cerebellar regions, as well as connections between the

temporal poles, amygdala, and medial prefrontal cortex (Fig. 5).

Connection in Schizophrenia and Depression
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Discussion

The rs-fMRI technique is currently generated increasing

interest because the imaging of baseline states is fundamental in

understanding human brain functions [42]. In the present study,

rs-fMRI was extended to the field of discriminative analysis of

schizophrenia and depression to identify the potential convergent

and divergent functional connectivity patterns associated with the

two disorders. Selecting low-dimensional embedding of rs-fMRI

acquired using IDA as classification features, we have designed a

data-driven multiclass classifier and successfully extracted the

significant discriminative functional connections that potentially

underlie the spontaneous neural activities in the brains of MDD

patients, schizophrenic patients, and healthy controls. Our

preliminary study suggested that resting-state functional connec-

tions are promising for use in classifying schizophrenic patients,

MDD patients, and healthy controls, and, accordingly, rs-fMRI

could be potentially useful in revealing the convergent and

divergent functional connectivity patterns associated with the two

disorders.

In recent years, the multivariate pattern analysis method has

been widely used in neuroimaging studies [28,30]. Compared with

the group comparison methods, which have been previously used

in some studies to explore abnormal function connectivity to

differentiate patients from healthy controls, there are many

benefits of using multivariate pattern analysis. First, group-level

statistical methods are less helpful in diagnosis due to complex

dysfunction in the entire brain in psychiatric disorders

[14,25,31,43]. Second, group-level methods are not helpful in

clinical diagnosis at the individual subject level. In recent years,

multivariate pattern analysis methods have been widely used in

neuroimaging studies, as they can not only identify potential

neuroimaging-based biomarkers with which to differentiate

patients from healthy controls at the individual subject level, but

they can also detect interesting spatially distributed information to

further highlight the neural mechanisms underlying the behavioral

symptoms of MDD and schizophrenia. Our previous studies have

used multivariate pattern analysis to explore the resting-state

functional alterations in schizophrenia and depression compared

with the general population, obtaining satisfactory correct

classification rates [14,31]. In the present study, we extended the

multivariate pattern analysis method to the multiclass discrimina-

tive analysis of rs-fMRI to explore the convergent and divergent

functional connectivity patterns in schizophrenic and MDD

patients. To our knowledge, this study was the first to use the

IDA algorithm in the discriminative analysis of rs-fMRI data,

which may provide some useful insights into how to address the

challenging problem of the dimensionality reduction of rs-fMRI

data. IDA is a supervised linear dimensionality reduction.

Compared with nonlinear algorithms, linear algorithms were

suggested to be more insensitive to over-fitting problems, especially

in case with a large number of dimensions and small sample sizes

[44]. Another advantage of linear algorithms is that they can

reveal potential neuroimaging-based biomarkers using the recon-

struction technique. On the basis of their experimental results,

Young Wang et al. suggested that IDA exhibited better perfor-

Figure 1. Flow chart of the intrinsicconnectome method.
doi:10.1371/journal.pone.0068250.g001
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mance than PCA [34]. Our experimental results also showed a

slight superiority of IDA over the PCA method. The most likely

explanation for the superiority of IDA in performance compared

with the unsupervised PCA algorithm is that IDA explicitly uses

data label information to supervise the implementation of

dimensionality reduction. In other words, IDA uses the knowledge

of which types of functional connections are critical for discrim-

inative analysis, which in theory can lead to better discriminative

performance. In this aspect, IDA is more generalized and suitable

in multi-class discriminative analysis. However, the difference

Figure 2. The first nine intrinsicconnectomes calculated by our method.
doi:10.1371/journal.pone.0068250.g002

Figure 3. The curve of classification accuracy of the IDA and PCA methods.
doi:10.1371/journal.pone.0068250.g003
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between the two methods is, in practice, only one sample.

Accordingly, it would be very important to evaluate the

performance of the IDA method with a larger sample size using

neuroimaging data in the future.

A number of previous studies have identified abnormalities in

the function of the DMN in schizophrenia and MDD, such as

abnormalities in the bilateral hippocampus [18], anterior

cingulate cortex, thalamus, inferior temporal gyrus, and

posterior cingulate cortex [14,16] in MDD patients, as well as

abnormalities in the hippocampus [45], medial prefrontal

cortex, anterior cingulate cortex [24], thalamus, and posterior

cingulate cortex [46] in schizophrenic patients. Regarding the

convergent functional connectivity patterns, regions with high

discriminative power related to the DMN were consistent with

these previous findings. The DMN is known to be involved in

self-referential activity [47,48]. Furthermore, ample evidence

suggests that the anterior cingulate cortex, a key component of

the DMN, plays a distinctive role in cognitive functions and

information processing [49,50]. Altered functional connections

related to the anterior cingulate cortex have been implicated as

a focus of dysfunction in MDD [16,18] and schizophrenic [23]

patients. The hippocampus has been suggested to be critical in

memory formation [51], and it is involved in the deficits in

working memory observed in MDD [52] and schizophrenic [53]

patients. Although schizophrenia and depression are conven-

tionally viewed as two distinct disorders, similar symptoms are

evident during the disease courses [54]. Ciaran et al suggested

that depression and schizophrenia are not simply two indepen-

dent illnesses, and moreover, that the neurobiology of depressive

symptoms in schizophrenia may have similarities to that of

depressive disorder [10]. Kohler et al suggested that frontal lobe

dysfunction may account for the depressive symptom in

schizophrenia [55]. Previous studies have also provided

presumptive evidence for the common pathology of schizophre-

nia and MDD, particularly in the prefrontal cortex, for

example, a reduction in grey matter volume, changes in glucose

metabolism, and changes in blood flow have been reported in

the prefrontal cortex in both schizophrenia [56,57] and MDD

[58]. Accordingly, we assumed that convergent dysfunctions of

the identified brain regions may reveal the convergent

neuroimaging-based pathological mechanisms of depression

and schizophrenia. Abnormalities in the cerebellum have been

previously reported in schizophrenic and MDD patients

[19,59,60]. A previous study also suggested that the cerebellum

is involved in cognitive and emotional activities [61]. In our

study, compared with the healthy controls, the connections

between the cerebellum (cerebelum_7b, cerebelum_9, cerebe-

lum_vermis10, and cerebelum_crus1) and some cerebral regions

exhibited very high discriminative power in both the MDD and

schizophrenic patients. Therefore, we speculated that the

convergent aberrant connections between the cerebellum and

the cerebral cortex may contribute to part of the common

behavioral symptoms in MDD and schizophrenia. Further work

is required to clarify our speculation.

Resting-state functional connections between the amygdala and

prefrontal cortex, hippocampus, and precuneus, as well as

connections between the temporal poles and the amygdala and

the prefrontal cortex, were found to be different between the

MDD and schizophrenic patients. A large number of studies have

reported that people with schizophrenia demonstrate dysfunction

of the prefrontal cortex during the performance of working

memory tasks [62,63]. Although other reports have suggested that

people with major depression also display prefrontal cortex deficits

[64], these deficits were reported to be not as severe as those found

in schizophrenia [65]. A recent fMRI study suggested that the

deficits in prefrontal cortex function are different in schizophrenia

and MDD [66]. Consistent with this study, we predicted that

schizophrenic and MDD patients exhibit different functional

impairments in the prefrontal cortex. The affective network is

known to be involved in mood regulation and affective processing

[67]. The amygdala has a wide variety of functions, such as

cognition, memory consolidation, and control of affective behav-

iors [68,69]. Morphometric and histological abnormalities have

been reported in the amygdala of patients with schizophrenia [70].

Meta-analyses also showed volume reductions in the amygdala in

patients with schizophrenia [70]. Other studies argued that

abnormal connections related to the amygdala may affect the

regulation of mood [71] and reflect dysfunctions in visceral

monitoring, which is compromised in MDD [18]. However, our

experimental results suggested that the amygdala was affected

differently in schizophrenia and depression. Abnormalities in the

amygdala in patients with these psychiatric diseases may be

pathophysiologically explained as follows. On one hand, abnor-

malities of the amygdala constitute a universal phenomenon

throughout the brain of psychiatric patients, which may account

for the respective physiological mechanisms of MDD and

schizophrenia. On the other hand, the functional integration of

the amygdala is differently affected between the two disorders. A

recent study revealed that fatty acid metabolism in the amygdala is

different between MDD and schizophrenia [72], which partially

substantiates our explanation. Moreover, with respect to the

temporal poles, some studies suggested that their dysfunctions are

associated with clinical symptoms in schizophrenia [73]. Both the

amygdala and the temporal pole are coincidently located within

the affective network (including the amygdala, temporal poles,

pallidum, insula, and superior temporal gyrus). Accordingly, we

speculated that the functional integration of the prefrontal cortex

and the affective network may be differently affected in the MDD

and schizophrenic patients. The difference may partially reflect the

different emotional and cognitive behavioral symptoms seen

between MDD and schizophrenic patients and may enable the

development of neuroimaging-based approaches to distinguish the

two patient groups. This preliminary speculation needs to be

further investigated.

Limitations
Although the classification results of the present study are

encouraging, several possible limitations still need to be consid-

ered. First, due to the limited sample size, it is important to test the

classification performance of our methods and to confirm our

findings with a larger sample size in the future. Second, global

signal regression was applied in the data preprocessing for the

consideration of removing potential sources of physiological noise.

Table 2. Confusion matrix for results in leave-one-out cross-
validation.

Classes MDD Healthy controls Schizophrenia

MDD 84.2% 5.3% 10.5%

Healthy controls 13.2% 78.9% 7.9%

Schizophrenia 12.5% 6.2% 81.3%

The rows of this matrix indicate the groups of the subjects (ground truth), and
the columns indicate the predictions by the classifier. The cells in each row
contain the proportion of trials in which subjects responded with the category
indicated by the column.
doi:10.1371/journal.pone.0068250.t002
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Figure 4. Left and bottom views of the convergent functional connectivity patterns with high discriminative power. Regions are
color-coded by category. The line colors representing the discriminative power of the relative connections are scaled with their mean discriminative
power in the leave-one-out cross-validation.
doi:10.1371/journal.pone.0068250.g004
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Figure 5. Left and bottom views of the divergent functional connectivity patterns with high discriminative power. Regions are color-
coded by category. The line colors representing the discriminative power of the relative connections are scaled with their mean discriminative power
in the leave-one-out cross-validation.
doi:10.1371/journal.pone.0068250.g005
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However, the success of this technique has been variable between

studies. For example, Fox et al used global signal regression in

functional connectivity analysis and suggested that this technique

may remove several potential sources of physiological noise [74].

Therefore, there is much work being conducted in the use of

global signal regression to correct for physiological confounders.

Murphy et al suggested that this technique may result in a negative

mean correlation value in functional connectivity analysis such

that it may consequently change the inherent functional connec-

tivity patterns [75]. Based on their experimental results, Saad et al

suggested that this technique can induce false anti-correlations and

even induce false between-group differences. Therefore, we

performed the classification without removing the global signal.

Keeping the parameters unchanged, the results showed that the

overall classification accuracy did not differ from the previous

accuracies.

Conclusions
In the present study, we designed a data-driven multiclass

classifier based on the intrinsicconnectomes model and successfully

extracted the significant discriminative functional connections that

potentially underlie spontaneous neural activity in the brains of

MDD and schizophrenic patients, which should shed new light on

how to address the challenging problem of dimensionality

reduction of rs-fMRI data. Moreover, this preliminary study

suggested that rs-fMRI could be potentially useful in revealing the

convergent and divergent functional connectivity patterns of

schizophrenia and depression. Compared with the healthy

controls, the MDD and schizophrenic patients both exhibited

altered functional connections within or across the DMN and the

cerebellum, which may account for the similar behavioral

symptoms seen in the two disorders. In addition, our results

demonstrated that the prefrontal cortex and the affective network

played notable roles in distinguishing the MDD patients from the

schizophrenic patients. Further work is required to clarify these

findings.

Acknowledgments

We thank the volunteers and patients for their participation in the study.

Author Contributions

Conceived and designed the experiments: DH. Performed the experiments:

YY HS LLZ. Analyzed the data: YY HS LLZ QM. Contributed reagents/

materials/analysis tools: YY LLZ QM. Wrote the paper: YY.

References
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