
Functional Cortical Hubs in the Eyes-Closed Resting
Human Brain from an Electrophysiological Perspective
Using Magnetoencephalography
Seung-Hyun Jin1,2,3, Woorim Jeong1, Jaeho Seol1, Jiyeon Kwon1,5, Chun Kee Chung1,2,3,4*

1MEG center, Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea, 2Department of Neurosurgery, Seoul National University Hospital, Seoul,

Korea, 3Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea, 4Department of Neurosurgery, Seoul National University

College of Medicine, Seoul, Korea, 5 Seoul National University College of Medicine, Seoul, Korea

Abstract

It is not clear whether specific brain areas act as hubs in the eyes-closed (EC) resting state, which is an unconstrained state
free from any passive or active tasks. Here, we used electrophysiological magnetoencephalography (MEG) signals to study
functional cortical hubs in 88 participants. We identified several multispectral cortical hubs. Although cortical hubs vary
slightly with different applied measures and frequency bands, the most consistent hubs were observed in the medial and
posterior cingulate cortex, the left dorsolateral superior frontal cortex, and the left pole of the middle temporal cortex. Hubs
were characterized as connector nodes integrating EC resting state functional networks. Hubs in the gamma band were
more likely to include midline structures. Our results confirm the existence of multispectral cortical cores in EC resting state
functional networks based on MEG and imply the existence of optimized functional networks in the resting brain.
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Introduction

Recently, spontaneous brain activity in the resting state, defined

as the absence of a task, has been investigated as a means to

observe intrinsic brain activity. In functional magnetic resonance

imaging (fMRI) studies, several resting state networks (RSNs) have

been consistently observed across time and subjects [1–3], and the

reliability of the intrinsic functional connectivity of the resting state

has been confirmed [4]. Studies using electrophysiological

modalities, including magnetoencephalography (MEG) [5–8] and

electrocorticography [9,10], have permitted the study of the

dynamic integration of functional networks in the resting human

brain with high temporal resolution.

Whole-brain functional networks can be investigated with MEG

because of the wide coverage associated with this technique. Many

MEG-based studies have focused on sensory-level functional

networks in the resting state or during a task [11–14]. Recently,

functional connectivity studies using MEG at the source space

have been reported [5–8,15]. Source-level connectivity analysis

with MEG is recommended to reduce the well-known field spread

effect [16], thus facilitating great advances in understanding RSNs

from an electrophysiological perspective.

One of the advantages of investigating human brain networks is

that it enables an examination of functional integration, one of the

emergent properties of the brain. Human brain networks can be

modeled as a number of nodes interconnected by a set of edges

[17] and as a complex network of local and long-range

connections [18], spurring efforts to identify ‘‘cortical core

regions’’ or hubs in functional brain networks. Hubs ensure

information integration in system-wide communication and

contribute to brain economy as specialized ‘‘integrators’’ [19].

Among nodes composing the well-known default-mode network

(DMN), the posterior cingulate cortex (PCIN) has been identified

as a functional hub [8], and several other candidates have been

suggested, depending on the frequency bands observed [15].

However, the greatest drawback of these previous studies involving

spontaneous MEG activity is that the MEG signals were recorded

in the eyes-open (EO) resting state with fixation. The resting state

can be considered a behavioral state characterized by quiet repose

with the eyes closed (EC) or EO with or without visual fixation [2].

However, the EO resting state with fixation can also be regarded

as a passive fixation task. In fact, significantly higher functional

connectivity and regional amplitude of low frequency fluctuations

have been reported in both the EO with or without fixation

conditions compared to the EC condition [20]. Moreover, we

previously demonstrated that the EO resting state was associated

with greater reproducibility in functional networks at sensor level

than the EC resting state [14] because the EO resting state is

associated with nonspecific or non-goal-directed visual information

gathering and evaluation [20].

Here, unlike previous studies focusing on the EO resting state

[8,15], we focused on the EC resting state, which is an

unconstrained state of free from any passive or active tasks, in

order to investigate functional cortical cores. Therefore, the main

aim of this study was to examine the functional cortical hubs in the
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EC resting state at different frequency bands using several known

hub identification measures and to compare the results between

subjects to determine whether there are cortical core regions

across participants and frequency bands in a large population of

88 subjects.

To this end, we recorded MEG signals from 88 subjects in the

EC resting state. We extracted the source activities at the 72 nodes

(Table 1) covering the whole cortex on the basis of the automated

anatomical labeling (AAL)-atlas [21]. Mutual information (MI),

which quantifies the shared information between 2 time series

based on information theory, was calculated to obtain the

functional connectivity association matrix for each of 4 frequency

bands corresponding to the classical EEG bands: theta (4–7 Hz),

alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–45 Hz). We

characterized the functional cortical hubs by estimating graph-

theory-based network measures, such as nodal degree (Dnodal),

nodal efficiency (Enodal), normalized betweenness centrality

(normBC), and modularity analysis, followed by hub classification.

For Dnodal, Enodal, and normBC measures, a node larger than

2 SD was chosen as a hub after z score transformation. For

modularity analysis, a hub node was classified by partitioning the

network into modules and calculating the contribution of each

node to inter- and intramodule connections represented in a z-P

parameter plot (denoted as z-P).

Table 1. List of the anatomical regions of interest.

Anatomical description Label

Central Precentral gyrus PRE

Postcentral gyrus POST

Frontal Lateral Surface Superior frontal gyrus, dorsolateral F1

Middle frontal gyrus F2

Inferior frontal gyrus, opercular part F3OP

Inferior frontal gyrus, triangular part F3T

Medial surface Superior frontal gyrus, medial F1M

Supplementary motor area SMA

Paracentral lobule PCL

Orbital surface Superior frontal gyrus, orbital part F1O

Superior frontal gyrus, medial orbital F1MO

Middle frontal gyrus, orbital part F2O

Inferior frontal gyrus, orbital part F3O

Gyrus rectus GR

Temporal Lateral Surface Superior temporal gyrus T1

Heschl gyrus (transverse, BA41, 42) HES

Middle temporal gyrus T2

Inferior temporal gyrus T3

Parietal Lateral Surface Superior parietal gyrus P1

Inferior parietal, but supramarginal and angular gyri P2

Angular gyrus AG

Supramarginal gyrus SMG

Medial Surface Precuneus PQ

Occipital Lateral Surface Superior occipital gyrus O1

Middle occipital gyrus O2

Inferior occipital gyrus O3

Medial and inferior surfaces Cuneus Q

Calcarine fissure and surrounding cortex V1

Lingual gyrus LING

Fusiform gyrus FUSI

Limbic Temporal pole: superior temporal gyrus T1P

Temporal pole: middle temporal gyrus T2P

Anterior cingulate and paracingulate gyri ACIN

Median cingulate and paracingulate gyri MCIN

Posterior cingulate gyrus PCIN

Hippocampus HIP

doi:10.1371/journal.pone.0068192.t001
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Materials and Methods

Ethics Statement
The study protocol was approved by the local Institutional

Review Board at Seoul National University Hospital (IRB no. H-

0607-029-178). Written informed consent was given by all

participants.

Subjects
A total of 88 right-handed healthy subjects (mean 6 SD:

24.2864.03 years [range from 18 to 35], 54 males) voluntarily

enrolled, and no participants had neurological problems. Hand-

edness was tested using the Edinburgh Handedness Inventory

[22].

MEG Signal Acquisition and Preprocessing
We recorded MEG signals in the EC resting state (average

duration, approximately 120 s). Magnetic fields (filter 0.1–200 Hz,

600 Hz sampling rate) were recorded inside a magnetically

shielded room using a 306-channel whole-head MEG system

(VectorView, Elekta Neuromag Oy, Finland). Head position

relative to the sensor array was tracked with 4 additional head

position indicator coils attached to the scalp. Signals were analog-

filtered between 0.1 and 200 Hz and digitally sampled with a

frequency of 600 Hz (when a different sampling frequency was

used, a resampling process was applied to set the same frequency

for all data). In addition to MEG, electrooculograms (EOG) and

electrocardiograms (ECG) were simultaneously recorded. It should

be noted that resting-state data were collected from participants

who were engaged in several different studies; thus, the tasks that

they participated in were different. However, the resting-state

recordings in the eyes-closed state were conducted before the tasks.

As a preprocessing step, environmental and movement noise

were removed with the temporal signal space separation (tSSS)

method [23], which is a required and effective artifact removal

preprocessing step for data recorded with the Elekta-MEG system

[24]. Besides tSSS, no additional computerized corrections for

eye-blinking and muscle movement were applied. Instead, the

MEG signals having no excessive eye-blinking or eye-movement to

minimize the artifacts were visually inspected, especially with the

EOG signals. Epoching was done with Graph software (Elekta

Neuromag Oy, Helsinki, Finland) after applying the tSSS method.

We manually selected five 10-sec epochs each out of the

continuous signal.

Anatomical Segmentation and Extracting Source
Waveforms from MEG Signals
The anatomical locations of 72 nodes (36 nodes in each

hemisphere) are listed in Table 1, and corresponding MNI

coordinates are shown in the Supplemental Information (Table

S1). These 72 nodes were selected based on the AAL-atlas, which

is used for anatomical parcellation of the brain [21]. We tried to

include many nodes covered by the MEG recording among the

AAL-atlas based nodes; thus, several sub cortical regions were

excluded. The AAL-atlas has been used in studies that defined

brain network nodes using fMRI [25–28].

Source waveforms were extracted from a set of 72 nodes

covering the whole brain with BESAH2000 software (MEGIS

Software GmbH, Germany). A template head implemented in

BESA software was used when determining the source location

instead of an individual MRI. MEG-MRI coregistration is possible

using a template head under conditions that assure accurate

digitization of individual head shape and with careful visual

inspection [29]. We tried to follow this recommendation as much

as possible. Note that it is not source imaging but reconstruction of

source waveforms at 72 nodes in a simultaneous 72 dipole time-

series extraction procedure.

Estimation of Functional Connectivity
Various types of measures can be used for functional

connectivity estimation, which include linear measures such as

correlation and coherence, and nonlinear measures such as phase

leg index and nonlinear synchronization [30]. Here, we choose MI

which quantifies the shared information between two time series

based on information theory. The main advantage of MI is that it

can capture both linear and nonlinear relationships between time

series.

From the extracted source waveform, we estimated MI values of

the bandpass filtered waveforms to create an association matrix

between the 72 nodes for each of 4 frequency bands corresponding

to the classical EEG bands: theta (4–7 Hz), alpha (8–12 Hz), beta

(13–30 Hz), and gamma (31–45 Hz). MI was calculated using the

following equation:

MI~MIXY ~MIYX ~MI(X (t),Y (t))

~{
X

X (t),Y (t)

p (X (t),Y (t) ) log
p (X (t),Y (t))

p(X (t))p(Y (t))

where p(X (t),Y (t)) is the joint probability density function (PDF)

between the 2 time seriesX (t)and Y (t) . Thirty-two bins for the

construction of the approximated PDF were adopted for 4096

samples like our previous study [31]. A corrective term was added

Table 2. Summary of most dominant hubs and hub identification measures in each frequency band.

Dnodal Enodal normBC z-P

h a b c h a b c h a b c h a b c

F1_L ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

T2P_L ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

MCIN_L ! ! ! ! ! !

MCIN_R ! ! ! ! !

PCIN_L ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

A ! mark indicates that the node was identified as a hub.
doi:10.1371/journal.pone.0068192.t002

Cortical Hubs in EC Resting State
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when calculating MI to compensate for the effect of finite data and

quantization on the PDF as proposed by Roulston [32]. MI

matrices of each epoch and frequency band were calculated, and

5 MI matrices were averaged for the subsequent estimation of

graph-theoretic measures [33]. MI is a relatively sensitive way to

identify frequency-specific functional connectivity compared to

cross-correlation, generalized synchronization, and phase synchro-

nization [34]. To construct more accurate models of the complex

brain networks, weighted graphs (MI matrices) were used for

further graph-theoretic analyses. Because spurious correlations

between MEG signals could occur because of the low spatial

resolution of source-space MEG [8,35] and the effect of spatial

spread functions when multiple sources are estimated [36], pairs of

nodes closer than 40 mm [37] were excluded in the present study.

Grand averaged functional networks projected onto the cortex at

each frequency are shown in Figure S1 (Supporting information).

Nodal Network Metrics to Assess Nodal Centrality
The centrality of a node expresses its functional importance.

Highly central nodes may serve as centers of information

integration [38]. N is the set of all nodes, and n is the number of

nodes. The total number of nodes was 72, corresponding to the

number of source locations. The links between 2 nodes i and j are

associated with the connection weight wij. The weights were

normalized by the maximum value of the MI matrix so as to

produce 0# wij #1 for all nodes. The shortest weighted path

length of the path from node i to node j, the so called di,jw, was
calculated as

P
wst[gw

i?j
f (wst), where f is the inverse of the weight

to length and gi?jwis the shortest weighted path between the 2

nodes, i and j [39].

To identify cortical hubs from the functional network, 3

centrality measures were employed: Dnodal, Enodal, and

normBC. Dnodal indicates the total weight connected to a node,

which refers to how strong the connection represented at a node is.

Dnodal was calculated at each node i as
P

j [N wij with the

normalized connection weight wij.

Enodal is regarded as a measure of communication efficiency

[40] and is derived from the following equation.

Enodal (i)~
1

n{1

X
j[N,j=i

1

di,jw

Betweenness centrality (BC) measures how often nodes occur on

the shortest paths between other nodes [41,42]. It is defined as the

following equation:

BC~
P

h, j[N
h=j,h=i, j=i

ghj (i)
ghj

, where ghj is the number of

shortest paths between node h and j andghj(i)is the number of

shortest paths between node h and j passing through i. BC was

normalized by the mean value of BCs in a network [43,44], and

thus, we denoted it as normBC.

These analyses were performed with the Brain Connectivity

Toolbox (http://www.brain-connectivity-toolbox.net/). When

necessary, the scripts were modified. Each nodal network metric

was standardized by conversion to z scores as follows:

zi~
metric(i)-mean(metric)

SD(metric)
,

where ‘metric’ indicates each nodal network metric applied such as

the Dnodal, Enodal, and normBC; metric (i) denotes the nodal

network metric at node i. Mean (metric) is the mean nodal network

metric across all nodes in the network, and SD (metric) is the

standard deviation of the network. The conversion to z scores does

cause the values in each subject map to be comparably scaled [41].

The nodes with z scores larger than 2 SD were chosen as a hub for

each nodal network metric.

The conversion to z scores does cause the values in each subject

map to be comparably scaled [41]. The nodes with z scores of

larger than 2 SD were chosen as a hub for each nodal network

metric.

Community Detection with Modularity and Hub
Classification
Modularity analysis was performed to identify hubs based on

the network community structure. In accordance with previous

studies [35,39], the modularity of brain networks suggests that the

nodes in any module will be more densely connected to each other

than to nodes in other modules, as defined by.

QW ~ 1
lW

P
i, j [N wij{ kiWkjW

lW

h i
dmi,mj, where

kiw~
P

j [N wij is a weighted degree of node i and

lw~
P

i, j [N wij is a sum of all weights in the network.

Hub locations were classified from the modularity analysis. The

within-module degree z score, which indicates how well-connected

the node i is to other nodes within module, and the participation

coefficient PC, which assesses the diversity of intermodular

interconnections of individual nodes [35,39], were used for hub

classification as follows:

ziW ~ kiw(mi){�kkw(mi)
skW (mi)

,

where mi is the module containing node i, kiw(mi) is the within-

module degree of i (the number of links between i and all other

nodes in mi ), and �kkw(mi)and skW (mi) are the respective mean

and standard deviation of the within-module mi degree distribu-

tion.

PCi~1{
X
m[M

kiw(m)

kiw

� �
2,

where M is the set of modules and kiw(mi) is the number of links

between i and all nodes in module m.

With those measures, we adopted a conservative hub classifi-

cation method using the z-P parameter space proposed by

Guimera and Amaral [45]. According to the within-module

degree, we classified nodes with z $2.5 as module hubs and nodes

with z ,2.5 as nonhubs. More specific roles of each node were

characterized with the values of the participation coefficient [45].

Provincial (PC #0.30), connector (0.30,PC #0.75), and kinless

(PC .0.75) hubs were classified at each condition and frequency

band.

Results

Functional Cortical Hubs with High Degree
We first identified hubs by identifying nodes with a high degree

of connectivity using Dnodal.

Figure 1 shows hubs based on their aggregated ranking percent

across 88 participants and their topological maps projected into a

cortical surface at each frequency band. Overall, there are

similarities in the hub locations from the theta to beta bands,

although the percentage varies with the frequency bands. By

Cortical Hubs in EC Resting State
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contrast, the gamma band hubs were somewhat different from the

hub distributions in the other frequency bands.

Specifically, in the theta band, the left dorsolateral superior

frontal gyrus (F1_L), the left pole of the middle temporal gyrus

(T2P_L), the left hippocampus (HIP_L), the left posterior cingulate

gyrus (PCIN_L), and the left inferior frontal gyrus (F3OP_L) were

identified as the top 5 hubs (Figure 1A and 1B). The most

prominent hub was found at F1_L, where a hub was identified in

Figure 1. Hubs with high degree. Hubs based on the aggregated ranking percent of each node across 88 participants and their topological maps
projected into a cortical surface at the theta (A and B), alpha (C and D), beta (E and F), and gamma (G and H) bands obtained from Dnodal estimation.
The ranked distribution of aggregated ranking percent included only nonzero percent nodes, and the numbers in the topological maps denote the
top 5 hub locations. Abbreviated notations for each node can be found in Table 1, and ‘_L’ and ‘_R’ denote the left and right hemisphere,
respectively, at each node. The horizontal axes in A, C, E, and G indicate percentage (%).
doi:10.1371/journal.pone.0068192.g001

Cortical Hubs in EC Resting State
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93% of the 88 subjects. In the alpha band, the top 5 hubs were

located at the same locations as the theta band: F1_L, HIP_L,

T2P_L, PCIN_L,, and F3OP_L. However, the number of subjects

was different; approximately 81% of all subjects peaked at F1_L

(Figure 1C and 1D). In the beta band, nodes at F1_L, PCIN_L,

T2P_L, and HIP_L were again observed, and the right posterior

cingulate gyrus (PCIN_R) appeared as a hub (Figure 1E and 1F).

The most prominent hub location was also the same as in the theta

and alpha bands (F1_L), with 92% of all subjects peaking at this

location. The dominant role of F1_L was supported by its

appearance as the top hub over the entire theta to beta frequency

range (4–30 Hz). The commonly found hubs, such as the

PCIN_L, T2P_L, and HIP_L might be important hubs over the

theta to beta bands as well. In the gamma band, the bilateral

median cingulate gyri (MCIN_L & MCIN_R) were among the top

5 hubs. Notably, hub locations in the gamma band were different

from previous bands, but F1_L, T2P_L, and PCIN_L still

remained in the top 5 nodes (Figure 1G and 1H). PCIN_L was

the most prominent hub node in 71% of subjects.

Functional Cortical Hubs with High Efficiency
Efficiency in brain networks, defined as the inverse of the

harmonic mean of the shortest path length between one node and

all other nodes, is regarded as a measure of the communication

efficiency in the network [46]. Therefore, a hub with high

efficiency can be regarded as the main location of information

processing.

Ranked distributions of hubs based on the aggregate ranking

percent across 88 subjects and their topological maps character-

ized by Enodal are shown in Figure 2. As in the Dnodal analysis,

the hubs from the theta to beta bands were similar. By contrast,

hubs in the gamma band network were distributed mainly over

midline structures.

In the theta (Figure 2A and 2B) and alpha (Figure 2C and 2D)

bands, F1_L, T2P_L, PCIN_L, HIP_L, and T2P_L were the top

5 hubs. In the beta band, the top 5 hubs were located at F1_L,

PCIN_L, T2P_L, HIP_L, and PCIN_R. F1_L was again the most

prominent hub and was found in 91% of subjects (Figure 2E and

2F). In the gamma band, cortical midline structures appeared as

hubs, including the cingulate cortex, PCIN_L, MCIN_L, and

MCIN_R. T2P_L was the major hub (Figure 2G and 2H).

PCIN_L was identified as a hub in 60 subjects.

Functional Cortical Hubs with High Centrality
Betweenness centrality is defined as the fraction of the shortest

paths in the network that pass through a given node [39]. A region

with high betweenness centrality represents a position that

frequently becomes a shortcut between nodes within the network.

Ranked distributions of hubs based on aggregated ranking

percent across all subjects and their topological maps character-

ized by normBC are shown in Figure 3.

In the theta band, F1_L, T2P_L, HIP_L, PCIN_L, and

F3OP_L were the top 5 hubs in order, and F1_L was a hub in

80 of 88 subjects (91%), making it the most prominent hub

(Figure 3A and 3B). In the alpha band, F1_L, HIP_L, PCIN_L,

T2P_L, and F3OP_L were the top 5 hubs. The most prominent

hub location was the same as in the theta band (F1_L) but

occurred in a slightly low percentage of subjects, 81% (Figure 3C

and 3D). In the beta band, F1_L, PCIN_L, T2P_L, HIP_L, and

PCIN_R were the top 5 hubs (Figure 3E and 3F). In the gamma

band, the top 5 hubs were PCIN_L, F1_L, MCIN_L, MCIN_R,

and T2P_L (Figure 3G and 3H). The most prominent hub

location was PCIN_L, which was identified in 71% of subjects.

Again, the main hubs in the gamma band appeared to be located

in the vicinity of midline structures.

Functional Cortical Hubs with a High Degree and
Centrality
Modularity analysis was also performed to identify hubs based

on the network community structure. The modularity measure

and the hub classification within a module [45] provide useful

tools for understanding network structure [13,35,47]. We accepted

a conservative hub classification criteria using the z-P with the

within-module degree z score and the participation coefficient (PC)

determining the universal role of a node within a module based on

the method introduced by Guimera and Amaral [45]. Using this

method, it is possible to derive hubs with high degree and

centrality.

Figure 4A displays the z-P of a subject, in which several hubs

can be observed. Interestingly, all identified hubs across subjects

were connector hubs that have high degree and centrality, but, by

definition, their connections run between 2 or more modules.

Overall, the number of subjects with identified hubs using the z-P

method was less than previous hub identification measures, which

may be due to the strict definition of a hub by a z score larger than

2.5 within a module. In fact, no hubs were identified in many

subjects (Figure 4B).

In the theta band, the top 5 hubs were F1_L, PCIN_L, T2P_L,

MCIN_R, and MCIN_L (Figure 4C and 4D). The most

prominent hub was F1_L, identified in 45% of subjects. In the

alpha band, the top 5 hubs were F1_L, the left superior temporal

pole (T1P_L), MCIN_L, MCIN_R, and PCIN_L (Figure 4E and

4F). Even the most prominent hub (F1_L) was found in only 19 of

88 subjects (22%). In the beta band, F1_L, PCIN_L, MCIN_L,

T1_R, and T2P_L appeared as hubs (Figure 4G and 4H). Again,

the most prominent hub was F1_L, which was found in 36% of

subjects. In the gamma band, PCIN_L, F1_L, MCIN_L, T2P_L,

and MCIN_R were the top 5 hubs (Figure 4I and 4J). Among

them, PCIN_L was found in the greatest number of subjects,

approximately 47%. If we eliminated the subjects who had zero

hubs, PICN_L was identified in all subjects (41/41).

Consistent Hubs across Hub Identification Measures
The above analyses focused on identifying functional hubs in

different frequency bands using multiple hub identification

methods. To identify dominant hubs based on the hub identifi-

cation measurements, we investigated the ranked distribution of all

nodes irrespective of frequency bands. F1_L in the theta (Dnodal,

Enodal and normBC) band was the most prominent hub

(Figure 5A, 5C, and 5E). PCIN_L in the gamma band was the

top hub in z-P (Figure 5A). The most consistent hubs across hub

identification methods were PCIN_L, F1_L, MCIN, and T2P_L

(Figure 5B, 5D, 5F, and 5H). As seen above, hubs in the gamma

band were more likely to include midline structures such as the

median and posterior cingulate regions.

F1_L appeared across all frequency bands and hub identifica-

tion measures, meaning that this node is highly efficient, with high

degree and centrality from the theta to beta bands. T2P_L and

PCIN_L were characterized as hubs in almost all cases, across all

frequency bands and methodologies. Although PCIN_R was seen

in the beta band with high degree and efficiency, and in the beta

band with high centrality, its contribution appeared to be minimal

compared to PCIN_L. This suggests that F1_L, T2P_L, and

PCIN_L are global hubs that act as connectors in functional brain

networks in the EC resting state from the theta to beta bands. By

contrast, the bilateral MCIN were identified as hubs in the gamma

band with all measures.

Cortical Hubs in EC Resting State

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e68192



Discussion

Here, we demonstrated the existence of multispectral cortical

hubs integrating the EC resting state functional networks by

electrophysiological methods. Cortical hubs varied slightly with

different hub identification measures and frequency bands. The

most consistent hubs across hub identification measures were

observed in the medial and PCIN and the left dorsolateral superior

frontal and middle temporal pole regions. They were character-

ized as connector hubs that play an important role in promoting

Figure 2. Hubs with high efficiency. Hubs based on the aggregated ranking percent of each node across 88 participants and their topological
maps projected into a cortical surface at the theta (A and B), alpha (C and D), beta (E and F), and gamma (G and H) bands obtained from Enodal
estimation. The ranked distribution of aggregated ranking percent included only nonzero percent nodes, and the numbers in the topological maps
denote the top 5 hub locations. Abbreviated notations for each node can be found in Table 1, and ‘_L’ and ‘_R’ denote the left and right hemispheres,
respectively, at each node. The horizontal axes in A, C, E, and G indicate percentage (%).
doi:10.1371/journal.pone.0068192.g002
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information flow between otherwise segregated brain regions. In

the gamma band, midline structures such as the median cingulate

cortices were predominantly involved. The functional hubs that

we identified could be the cores of the electrophysiological self,

representing embedded self-referential or self-regulatory processes

and the manifestation of optimized multispectral functional

networks ready to react to unexpected external stimuli. A system

of brain oscillators allows brain operations to be performed

simultaneously at multiple temporal and spatial scales [48,49].

Electrophysiological approaches such as those used in our study

Figure 3. Hubs with high centrality. Hubs based on the aggregated ranking percent of each node across 88 participants and their topological
maps projected into a cortical surface at the theta (A and B), alpha (C and D), beta (E and F), and gamma (G and H) bands obtained from normBC
estimation. The ranked distribution of aggregated ranking percent included only nonzero percent nodes, and the numbers in the topological maps
denote the top 5 hub locations. Abbreviated notations of each node can be found in Table 1, and ‘_L’ and ‘_R’ denote the left and right hemispheres,
respectively, at each node. The horizontal axes in A, C, E, and G indicate percentage (%).
doi:10.1371/journal.pone.0068192.g003
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have a distinct advantage over fMRI, which measures hemody-

namic responses and may be insufficient to capture complex brain

systems.

Functional Cortical Hubs in the EC Resting State
We identified several functional cortical hubs in the EC resting

state, an unconstrained state free from any given passive task,

based on MEG analysis of 88 participants. A close relationship

between the RSNs identified by fMRI and the electrophysiological

resting state obtained from MEG was confirmed previously [6–8],

and frequency-specific hub candidates were suggested [15] in the

EO resting state with fixation. However, the literature confirms

that the network features in the EO condition are different from

the EC condition, even though the physiological principles

underlying these differences have yet to be established. In fact,

in the EO with or without fixation condition, significantly higher

functional connectivity [50] and a robust estimation of functional

connectivity compared with the EC condition were demonstrated

[20]. The EO state also exhibits greater reproducibility compared

to the EC state [14]. In the present study, to overcome the lack of

robustness in the EC resting state, we analyzed MEG signals

obtained from a large population of 88 participants. Our results

provide several missing pieces of information about spontaneous

brain activity by confirming the existence of dominant functional

cortical hubs in the EC resting state by electrophysiological

methods.

Although our results included similarities and dissimilarities with

previously reported structural and functional hubs, we presume

Figure 4. Functional cartography of a subject using the within-module z score and participation coefficient (PC) of each node, and
hubs with high degree and centrality derived from modular structure. Seven hubs were characterized as connector hubs (red box) in this
subject. Nodes were classified as hubs according to z-P cartography for all subjects (A). Because all subjects presented hubs, Figure 4B displays the
number of subjects who had hubs (first bar and figure) and the number of subjects who had each predominant hub depending on frequency bands
(second bar and figure). Hubs were characterized in 71, 49, 78, and 80 of 88 subjects depending on frequency bands, and among them, 40, 19, 32,
and 41 subjects demonstrated each predominant hub at each frequency band. Hubs based on the aggregated ranking percent of each node across
88 participants and their topological maps projected into a cortical surface at the theta (C and D), alpha (E and F), beta (G and H), and gamma (I and J)
bands obtained from the modularity-based hub identification method are shown. The ranked distribution of the aggregated ranking percent
included only nonzero percent nodes, and the numbers in the topological maps denote the top 5 hub locations. Abbreviated notations for each
node can be found in Table 1, and ‘_L’ and ‘_R’ denote the left and right hemispheres, respectively, at each node. The horizontal axes in A, C, E, and G
indicate percentage (%), not corrected by the number of subjects who had hubs in Figure 4B.
doi:10.1371/journal.pone.0068192.g004
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that the hubs we identified are the manifestation of characteristic

features of the EC resting state that differ from those of the EO

resting state. In a previous study, global hubs in the EO resting

state were identified in the medial temporal lobe in the theta band,

in lateral parietal areas in the alpha to beta bands and in

sensorimotor areas for higher frequencies [15]. By contrast, the

hubs identified in our study were located mainly in the cingulate

cortex (PCIN, MCIN), the left dorsolateral superior frontal cortex

(F1_L), and the left middle temporal pole (T2P_L). Hubs appeared

over almost all frequency bands, with the exception of the

preference of MCIN for the gamma band. PCIN and F1_L largely

overlapped with core regions identified by structural connectivity

[38,41,51,52], which implies a close relationship between func-

tional hubs in the EC resting state and structural hub regions. In

addition, PCIN was also identified as a hub in the EO resting state

[8]. Even in the same EO resting state, the main hubs are not

identical [8,15], possibly due to differences in node selection, i.e.,

seed-based [8] versus the whole brain [15]. In fact, the seed-ROIs

used by de Pasquale and colleagues [8] were selected based on the

RSN components identified using fMRI, while more dense nodes

covering the entire cortex were used by Hipp and colleagues [15].

Since we do not know about the physiological principles

underlying differences between the EC and EO resting states as

of yet, the investigation of the physiological principles in the EC

and EO resting states would be the next research topic.

Potential Functional Roles of Hubs and their Contribution
to the Resting State Brain Network
Because spontaneous brain activity reflects endogenous network

activity in the brain, which is metabolically costly [53], and

cortical connectivity plays a crucial role in shaping resting state

neural dynamics [19], cortical hubs in the resting state may have

functional significance. One of the most important goals of this

study was to identify hubs and their characteristics. Thus, it is

interesting that the hubs we identified are connector hubs, which

reflect the hub’s contribution to facilitating functional integration

and their important role in system-wide information integration.

According to the definition, hub nodes can be naturally

categorized into 3 different roles: provincial, connector, and

kinless hubs [45]. Connector hubs are hubs with many links to

most of the other modules. Because hub nodes have high values of

within-module connectivity by definition, a connector hub node is

a well-connected node within a module and is simultaneously

responsible for many between-module connections.

PCIN stands out as a hub over almost all frequency bands and

hub identification measures, indicating its global influence in

maintaining resting state functional networks regardless of spectral

characterization with high degree, centrality and efficiency. There

is a large body of work on PCIN in the resting state, which is

characterized by high metabolic activity [54–57], structural

connectivity [38,41,51,52], functional connectivity [8,41], and

Figure 5. Ranked distribution of Dnodal (A, B), Enodal (C, D), normBC (E, F), and z-P (G, H). Shown are the top 20 hubs based on the
aggregated ranking percent of each node across 88 participants and their topological maps projected into a cortical surface derived from Dnodal (A
and B), Enodal (C and D), normBC (E and F), and z-P (G and H) measures irrespective of frequency bands. The most consistent hubs, F1, T2P, MCIN, and
PCIN, are marked in each topological map. Horizontal axes in A, C, E, and G indicate percentage (%). The size of the filled circles is proportional to the
corresponding percent, and the color indicates each frequency band (Theta: red, alpha: green, beta: yellow, gamma: blue).
doi:10.1371/journal.pone.0068192.g005
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even a developmental role [58]. The presence of PCIN as a hub is

agreement with previous findings on PCIN as a cortical site that

allows communication between different cortical modules previ-

ously described in a MEG study [8], and PCIN as extremely

robust functional cores at rest that represent a convergence site for

both intra- and inter-network interactions described in a recent

fMRI study [59]. Of course, PCIN overlapped with the region

constituting DMN [56,60], which might support the role of DMN

allowing the off-line internally focused processes [59].

F1_L was another dominant functional hub. Again, the

dorsolateral superior frontal cortex is one of the components of

the DMN [1,59,61]. As mentioned above, PCIN and F1_L may be

associated with structural connectivity. In addition, dense long-

range connections between the superior frontal cortex and PCIN

are more prevalent in adults compared to children [58], which

emphasizes an important developmental role of long-range

connections between the F1_L and the PCIN regions. Our results

suggest that F1_L and PCIN contribute to information integration

within the cerebral cortex.

The temporal pole (BA= 38) has been positively correlated with

PCIN during rest [62]. The temporal pole is one of the

components involved in ‘‘mentalizing’’, the ability to represent

the mental state of both oneself and other people [63]. There is

general agreement among many studies about the role of the

temporal pole in the theory of mind [64], in line with the

mentalizing concept. Thus, the appearance of T2P_L over almost

all frequency bands reflects the manifestation of self during EC

rest.

MCIN involvement (ventral anterior cingulate cortex, Table 1;

BA= 24, Table 1S) in self-referential or self-awareness processing

with PCIN has been reported [60,65–67], constituting the cortical

midline structure, the potential core of the ‘‘self’’. Therefore, like

T2P_L, MCIN seems to represent self-referential processing.

Unlike other hubs, the MCIN hubs were only identified in the

gamma band with high degree, and efficiency, which might

indicate an association of the gamma frequency with self-

referential mental processing mediated by the MCIN. Hubs in

the gamma band are likely to reside in the vicinity of midline

structures, which could be a manifestation of spectral character-

izations in self-referential processes. Thus, the functional hubs we

identified might be associated with the cores of the electrophys-

iological self, representing embedded self-referential or self-

regulatory processes. In addition, because midline structures are

associated with the DMN [59], the presence of MCIN as a cortical

hub can be regarded as another presentation of the default state of

the brain at rest.

In addition to the self-related processes corresponding to the

internal world, the brain must also be sensitive to the external

world during rest. In contrast to a recent study [15], our study

identified cortical hubs over all frequency bands rather than within

specific frequency bands. We believe that this implies that the

optimized functional networks are ready for unexpected external

stimuli. Because our brain networks should be able to rapidly

adapt and consequently reorganize in response to sensory input,

each frequency band should be prepared to adapt the brain to

external stimuli. Extensive nested frequencies, in which the phase

of lower frequencies modulates the amplitude of higher frequen-

cies, have been reported [68]. The feature of nested frequencies

would be one of the manifestations of an optimized multispectral

brain network that would facilitate brain function in various

environments. Reorganization of brain functional networks has

been reported in motor tasks [69,70], and abnormal reactivity to a

task was reported with schizophrenia and focal hand dystonia,

suggesting the lack of ability to adapt to the task [12,33,71]. Thus,

the strategy for optimizing brain networks to environmental

changes employs multispectral functional networks and cortical

connector hubs.

In our study, hubs were primarily identified in the left

hemisphere in many cases, potentially due to the influence of

the handedness of the participants; it was recently reported that

hemispheric asymmetry of functional connectivity depends on

handedness [72]. Further studies comparing hubs with different

hand preference groups are warranted.

Methodological Considerations
The fundamental reason for the similarities or dissimilarities in

the hub locations identified in our study and previous studies is a

matter of debate. As we emphasized above, the first possible

reason would be the difference between the EO with fixation and

EC resting states. However, because even hubs in the same EO

condition were not identical, other factors should be considered,

such as the method of node selection (seed-based vs. whole brain

segmentation) and functional connectivity estimation (power

envelop correlation vs. MI). Because different methods yielded

different results [5], the different methods likely represent different

aspects of the brain network.

The second issue involves the absence of an individual

anatomical MRI. However, MEG-MRI coregistration is possible

using a template head under conditions that assure the accurate

digitization of the individual head shape, with careful visual

inspection [16]. We tried to follow this recommendation as much

as possible. Moreover, because the nodes were based on the AAL-

atlas, we minimized the possibility of placing nodes on the wrong

representative brain regions.

The third issue is related to node selection. The number of

source nodes used in the present study was 72, 36 for each

hemisphere. There is no clear answer to the question of how many

nodes would most accurately represent the brain functional

network. Finer segmentation may be beneficial to obtain a more

localized focus; however, the well-known field spread effect of

MEG increases with increasing node number. Thus, the trade-off

between finer segmentation and the field-spread effect should be

considered. We supposed that our nodes were numerous enough

to represent each brain region while avoiding the field spread

effect. Because there is no guarantee that source-level connectivity

is free from field spread effects, MI connectivity between nodes

located less than 40 mm apart was discarded as a second means of

ensuring minimal field spread effects [8,35].

A final issue is the limited ability to cover the deep structures of

the brain with MEG. Deep structures such as the brainstem may

be key to understanding the human conscious state. Impaired

neural synchronization between the brainstem and the cerebral

cortex was observed in patients with lock-in-syndrome, a typical

conscious state with brainstem damage [73]. Thus, despite its

importance, the contribution of the brainstem to resting state

functional networks is impossible to examine with MEG, as is also

the case for fMRI. PET can capture brainstem activity, but it

measures metabolic changes rather than direct electrical activity

and consequently has a limited temporal scope. Therefore, despite

a lack of coverage of deep structures, MEG is a good method to

investigate the spectral characteristics of functional networks.

Implications for Future Study and Conclusions
The examination of functional cortical hubs is as important as

examining the human connectome from a neuronal perspective

and will shed light on complex brain functions. Here, we showed

that multispectral functional cortical hubs can be consistently

identified by different hub classification measures. With this
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background of functional cortical hubs, the substrate of the EC

resting state, diverse applications can be envisioned. Identification

of the causal relationships among cortical hubs during specific

tasks or brain diseases could provide new insights into brain

function. Because of the dependency of cortical networks on

specific tasks given to the brain, attacks to break the networks, or

pathological states, examining the brain during a given task or

comparing healthy and diseased brains would be useful to

understand what happens in the brain. Moreover, it is even

possible to examine a patient who has difficulty maintaining the

EO fixation state. It would be interesting to determine which

spectral responses emerge from the multispectral functional

networks to adopt them to a given situation.

In conclusion, the investigation of functional networks has an

impact on understanding how cortical areas form a configured

structure and cooperatively interact each other. Examination of

hubs in functional brain networks in multispectral ranges is

possible with MEG by virtue of its high temporal resolution. We

emphasized the existence of functional cortical hubs and their

spatial and spectral characteristics in the EC state. Moreover, we

showed their features as connector hubs that play an important

role integrating functional networks across frequency bands with

high degree, efficiency, and centrality.
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