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Abstract

Text tokenization is a fundamental pre-processing step for almost all the information processing applications. This task is
nontrivial for the scarce resourced languages such as Urdu, as there is inconsistent use of space between words. In this
paper a morpheme matching based approach has been proposed for Urdu text tokenization, along with some other
algorithms to solve the additional issues of boundary detection of compound words, affixation, reduplication, names and
abbreviations. This study resulted into 97.28% precision, 93.71% recall, and 95.46% F1-measure; while tokenizing a corpus of
57000 words by using a morpheme list with 6400 entries.
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Introduction

Urdu is a morphologically rich language, spoken by more than

150 million people of the world; either as their mother tongue or

second language. It is composed of many different languages of the

world, e.g., Arabic, Persian, Turkish, Hindi, Sanskrit, and English.

It frequently adopts new words from the other languages as well. It

is a bidirectional language and uses Arabic based orthography,

whereas its morphology is influenced by all the above mentioned

languages [1].

Tokenization is a very first step for numerous language

processing tasks, e.g., part of speech tagging, machine translation,

spell checking, sentence boundary detection, information retrieval,

and information extraction. It is simpler for inflectional languages

such as English, where space is used as word delimiter. In some of

the Asian languages, space is frequently used even after each

character, e.g., Chinese, Thai, and Lao. In such languages, the

challenge for tokenization is to omit the space which comes

between the characters forming a single word. In hand written

Urdu text there is no convention of delimiters; words are written in

continuation without any space between them. There are two

types of characters in Urdu; joiners and non joiners as shown in

table 1 and 2 respectively. Joiners are the characters which can

occupy the initial, medial or final forms in the word. If a word ends

with a joiner character and no delimiter is used after it then it will

join itself with its following word, resulting into a vague one, which

will not be understandable even for the native speaker of the

language. That’s why space is used after such words just to make

them reader understandable. Sometimes instead of this space

a special Urdu character, Zero Width Non Joiner (ZWNJ) is used

to keep such words apart from their followings.

Non joiners are the characters which do not concatenate

themselves with their following characters or words; therefore it is

not needed to place any delimiter after a word ending at a non

joiner.

The uneven use of delimiters makes the tokenization of Urdu

text more difficult. During tokenization it is also needed to assign

single boundary to compound words, words with affixations,

reduplicated words, names, and abbreviations.

Tokenization approach proposed in this paper is based on

morpheme matching. Forward maximum matching, dynamic

maximum matching and dynamic maximum matching along with

maximum likelihood approach have been used to split the Urdu

text into tokens. Some other algorithms also have been designed to

solve the issues of compound words, affixation, reduplication,

names and abbreviations. This work has been tested over a corpus

of 57000 words using a lexicon with 6400 entries. It produced

97.28% precision, 93.71% recall, and 95.46% F1-measure with all

known words in the corpus.

1. Issues of Urdu text tokenization
It is easy to tokenize the string by just splitting it using the space

between words. But it is difficult for the languages which do not

use space or use it inconsistently between words. Space is not used

in hand written Urdu text and it is the one’s own job to identify the

individual words in continuum string. In computerized Urdu text

documents, space is used occasionally according to diverse nature

of Urdu characters. The problems of Urdu text tokenization can

be divided into two; space inclusion issues and space exclusion

issues.

1.1. Space inclusion issues. In computerized Urdu text, it is

needed to insert space between words or add ZWNJ at the end of

first word, if it ends at a joiner character.

In table 3, (I) string is written without inter word space and (II)

with space at the end of each word. It is obvious that all the words

end at non joiners, that’s why in example (I) and (II), both give the

same meanings. Native speaker can understand that both of the
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examples have same words but example (I) will appear as a single

vague word for the machine.

ZWNJ is used between two words, if it is needed to keep them

apart from each other. But it does not help to identify a word

boundary; rather it helps to look them apart from each other. For

example, in the table 4, there is a string ‘‘ کڑسینارپ ’’ (old track), in

this the two words are separated by an additional ZWNJ

character.

1.2. Space exclusion issues. Space exclusion is another

issue of text tokenization. Sometimes it is needed to insert space

between the words which collectively give the single meaning. In

tokenization process, these words should be assigned a single

boundary, while ignoring the space between them.

Table 5 shows some examples of space exclusion issue.

2. Tokenization techniques
There are numerous tokenization techniques available for the

various languages of the world, e.g., rule based techniques [2] [3],

statistical techniques [4], fuzzy techniques [5], lexical techniques

[6], [7], and feature based techniques [8]. Significant work has

also been done for Arabic [9] and Persian language [10] [11],

which are closer to Urdu because of the same script.

In [12] Thai language text has been segmented using the longest

matching technique. Algorithm reads the input text from left to

right and searches for the longest match in the dictionary. If

a match is found but it does not allow the algorithm to find rest of

the words in the dictionary, then algorithm will back track and will

search for another suitable match. This work produced 97.03%

accuracy for Thai language text (composed of all known words).

In [13] the authors used forward maximum matching to

segment Chinese text and they reported an error rate of 0.26% for

1.2 million characters. In this work a lexicon of 85855 words has

been used and words in it have been divided according to their

length. For efficient searching, authors placed all single length

words in one table and all the words with length 2 in a separate

table. They divided the words with length 3 into prefixes of length

2 and suffixes of length 1, while the words with four characters

have been divided into prefixes and suffixes of length 2. Words

with length greater than four have been divided into prefixes,

infixes and suffixes of length 2. In all combinations each prefix was

pointing to the corresponding suffix.

In [4] Chinese text has been statistically segmented using

mutual information value. Mutual information of the characters

was computed and statistical methods were applied to segment the

text. They divided input text into consecutive sequences of

characters. For every character in a phrase the bi-gram mutual

information value was computed. Characters with the highest bi-

gram mutual information value were considered the words and

removed from the consecutive sequences of characters. The

process was repeated until the last phrase consisted of words of

length 1 or 2. This approach produced 73.49% precision and

73.90% recall for the articles obtained from the 442 Chinese news

papers.

In [14] Thai text has been segmented using Ripper. It is an

algorithm that learns the prepositional rules and constructs a rule

set. This rule set is used to classify the training data. In this

approach, these rules have been applied on the N-best segmenta-

tions, which were obtained after applying maximum matching

technique along with POS tagger on the input text. This technique

produced 91.27% and 89% precision for a test corpus of 2500

sentences, using context independent and context dependent

features respectively.

In [9] rule based approach has been implemented to tokenize

the Arabic script. In the very first step authors delimited main

tokens on the basis of white spaces. In next step three different

models have been designed to detect sub tokens, clitics, and stems

Table 2. Joiner Urdu Alphabets.

یھءہنملگکقفغعظطضصشسخحچجثٹتپب

doi:10.1371/journal.pone.0068178.t002

Table 3. Words ending at non joiners.

اچنہپاجرہابےسرہشدسا (I) اچنہپاجرہابےسرہشدسا (II)

Asad reached out of the city.

doi:10.1371/journal.pone.0068178.t003

Table 4. ZWNJ between words.

(old track) کڑسینارپ

(Words without space or ZWNJ)

(old track) کڑسینارپ

(Words separated by space)

(old track) کڑسینارپ

(Words separated by ZWNJ)

doi:10.1371/journal.pone.0068178.t004

Table 5. Space exclusion issues.

Word Category of the word

اڑپکیٹور (basic needs of life) Compound

طبضومظن (discipline)

رظندح (scene limit)

ندبند (day by day) Reduplication

حبصحبص (early morning)

کاھٹکيھٹ (absolutely fine)

تميقشيب (expensive) Prefixation

کھتنا (hard work)

راکہلآ (apparatus) Suffixation

درگیتشہد (terrorism)

ہقيرفایبونج (South Africa) Proper Noun with more than one word

رونبنيز (Zainab Noor)

ےرٹشيا (ash tray) English words

کروٹين (network)

یشيرقميا (M. Qureshi) Abbreviations

یپليانيا (NLP)

doi:10.1371/journal.pone.0068178.t005

Table 1. Non-Joiner Urdu Alphabets.

ےوژڑزرذڈدا

doi:10.1371/journal.pone.0068178.t001
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inside the main tokens. The first model used Arabic morphological

analyzer to identify the sub tokens; while the second model

identified clitics with the help of clitic guesser and clitic transducer.

The final model was also a morphological analyzer to identify the

token boundary between clitic and stem. In the next step

multiword expressions were delimited in the tokens, white spaces

were normalized and tokenization ambiguities were removed.

Authors in [11] developed a tokenizer for Persian language by

combining dictionary based and rule based approaches. This

tokenizer delimits words, multipart verbs, abbreviations, numbers,

dates and proper nouns.

In [15] authors developed a segmenter for Urdu language using

the bilingual corpora and statistical techniques. The task of space

omission in Urdu text has been completed in two main phases; in

first phase the merged words have been delimited and in the

second phase the individual words identified inside the merged

words. This segmenter has been tested for 1.61 million words and

it showed 99.15% accuracy for the words facing the space

omission problem. The study in [16] used n-gram technique along

with maximum matching to build a segmenter for Urdu language

and achieved 95.8% accuracy.

Proposed Methods to Tokenize Urdu Text

In proposed work, Urdu text has been tokenized by using

forward maximum matching algorithm, dynamic maximum

matching algorithm, and the combination of dynamic maximum

matching along with maximum likelihood approach. In prepro-

cessing phase of our approach, we removed the diacritics, ZWNJ,

and white spaces from the text. So the text could acquire the form

of space free string, which could be further divided into

morphemes by using available algorithms and morpheme look-

up list. Once the basic morphemes were available from the input

text, we applied our supporting algorithms to join them where

needed.

1. Forward maximum matching
In forward maximum matching, string tokenization is started

from right to left. Urdu character string without any space or

ZWNJ and list of free morphemes (sorted and reversed) have been

passed to the algorithm and the algorithm returned the list of

individual tokens of the string.

1.1. Algorithm

1. Search in the morpheme list for the free morpheme that

matches with the start of the string.

2. If it is found, append it to the token list and strip it out from the

string but if no match is found, strip a single character and

append it with the token list.

3. Repeat the above two steps until the string gets empty.

4. Finally search for all the single characters in the token list and

concatenate them to the previous token in the list.

The above algorithm is explained in the following example and

its output as shown in the table 6 and 7.

‘‘ برعیدوعس ’’ (Saudi Arab) is an Urdu text string, having free

morphemes [‘‘ دوعس ’’ (Saud), ‘‘ یدوعس ’’ (Saudi), ‘‘ ید ’’ (di), ‘‘ عید ’’ (diA),

‘‘ رع ’’ (Ar), ‘‘ برع ’’ (Arab), ‘‘ بر ’’ (Rab)]. All these morphemes are

obtained from the list of free morphemes. For the tokenization of

the Urdu text it is required to insert and delete the space from the

text according to conditions. To resolve this ambiguity, algorithm

removes all the spaces and ZWNJ characters from the input text

and tokenizes it according to the list of free morphemes. Tokens

demanding no space between them are merged to form a single

token by applying some other supporting algorithms. These

algorithms are discussed in coming sections. After removing space,

the string acquires the form ‘‘ برعیدوعس ’’ (Saudi Arab). Algorithm

sorts and reverses the morpheme list and new morpheme list

becomes [‘‘ برع ’’ (Arab), ‘‘ رع ’’ (Ar), ‘‘ یدوعس ’’ (Saudi), ‘‘ دوعس ’’

(Saud), ‘‘ عید ’’ (diA), ‘‘ ید ’’ (di), ‘‘ بر ’’ (rab)]. Algorithm searches from

left to right, in the morpheme list for the morpheme which

matches with the start of the string. It finds ‘‘ یدوعس ’’ (Saudi) in the

list and strips it from the string and string becomes ‘‘ برع ’’ (Arab).

This morpheme is striped out from the string and stored in the

token list.

Algorithm starts its search again in the morpheme list for the

remaining characters of the string. Searching from left to right it

finds ‘‘ برع ’’ (Arab) in the very start, as the string starts with this

morpheme so it is stripped out from the string and appended to

the token list.

2. Dynamic maximum matching
Forward maximum matching gives only one tokenization

sequence; while dynamic matching gives all the possible tokeniza-

tion sequences of the given string according to the available

morpheme list. If it can not find any match then it splits the string

into characters. Total number of single characters in each

tokenization sequence is considered as number of errors in it. It

selects one having minimum number of tokens, as best tokeniza-

tion sequence. But if there are more than one tokenization

sequences with same number of words, it selects one of them

having minimum number of errors.

2.1. Algorithm

1. In the list of free morphemes find all those morphemes which

match with the start of the string.

2. Once they are found, populate the 2-D array with them which

is used to store the all possible combinations of input string,

number of tokens and number of errors in each combination.

3. If no match is found then strip a single character from the input

string and store it in the 2D-array and update the error field

against that specific segmentation sequence.

4. At the end select one with the minimum number of tokens and

errors.

5. Concatenate each single character with the previous token in

the list.

Consider the same example which has been used in forward

maximum matching algorithm; for the above algorithm, it is

explained in the tables 8, 9, 10, 11. String to be tokenized is

‘‘ برعیدوعس ’’ (Saudi Arab) along with the list of free morphemes

[‘‘ دوعس ’’ (Saud), ‘‘ یدوعس ’’ (Saudi), ‘‘ ید ’’ (di), ‘‘ عید ’’ (diA), ‘‘ رع ’’ (Ar),

‘‘ برع ’’ (Arab), ‘‘ بر ’’ (rab)]. Like forward maximum matching, it

Table 6. Output of forward maximum matching.

یدوعس (Saudi)

doi:10.1371/journal.pone.0068178.t006

Table 7. Output of forward maximum matching.

یدوعس (Saudi) برع (Arab)

doi:10.1371/journal.pone.0068178.t007
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will eliminate white spaces, diacritics and ZWNJ characters from

input string. So the input string will look like ‘‘ برعیدوعس ’’ (Saudi

Arab). It will create a 2-D matrix for different segmentation

sequences. The second last column in the 2-D matrix is used to

represent number of tokens in the row, whereas the last column is

used to represent the number of errors in it.

In the first step, the algorithm will search in the list of free

morphemes for all the possible morphemes which match with the

start of the input string. It will find ‘‘ دوعس ’’ (Saud) and ‘‘ یدوعس ’’

(Saudi), and will store them in the 2-D matrix as shown in table 8.

In next step it will take the token ‘‘ دوعس ’’ (Saud) and will find

morphemes in the list that follow this token in the input string. As

it does not find any match, so it will read only next character from

the input string and will store it in the array after incrementing the

error variable by 1.

For the first array, it will start its search again for the

morphemes following ’’ی‘‘ (i) in the string. As it finds two

morphemes, therefore it will store a copy of this row in the next

empty row available, to append the corresponding morphemes.

Entire process will continue until all possible segmentation

sequences are completed for the input string. The final 2-D matrix

will be as shown in table 11.

To find the best segmentation amongst all, the algorithm will

compare the number of tokens and the number of errors in all the

segmentation sequences. One with the minimum number of

tokens will be considered the best segmentation sequence for the

input string. If more than one segmentation sequences have the

same number of tokens then the one having minimum number of

errors will be selected. In the example given in table 11, last

segmentation with two tokens and without any error will be

selected.

3. Dynamic maximum matching along with maximum
likelihood approach
This technique works on more than one possible outcomes of

the dynamic matching algorithm. It calculates probability of each

token in the corpus and computes cumulative probability of each

tokenization sequence. Tokenization sequence with highest

cumulative probability is considered the most optimal tokenization

scheme for the input string.

If the DMM algorithm returns more than one token combina-

tions with equal number of tokens and errors, then bigram

probability of each token will be calculated for each combination

and the model will return the one with highest cumulative

probability value P(T) =>i = 12n P(ti|ti21) (Eq. 1) [17]. In Eq. 1, T

represents the contestant combination having all possible tokens

and t represents the individual tokens in T.

Consider the example given in table 12.

Suppose these two segmentations are obtained from dynamic

matching, both having equal number of words and no error. In

order to select one of them, both of these will be passed to the bi-

gram statistical model. Cumulative probability values 1.6e-11 and

2.4e-16 have been calculated the segmentations in the first and

second row of the table respectively. As the first segmentation has

the highest value of cumulative probability, therefore it will be

selected as the best tokenization sequence.

4. Supporting algorithms
Forward maximum matching and dynamic maximum matching

techniques tokenize the input text into free morphemes, but to

handle the issues of affixation, compound words, names, and

abbreviations following algorithms have been designed.

N Algorithm for compound word generation

N Algorithm for prefixation

N Algorithm for suffixation

N Algorithm for full reduplication

N Algorithm for partial reduplication

N Algorithm to handle names and abbreviations

4.1. Algorithm for compound word generation

1. In the token list, group two consecutive tokens such that neither

should be ‘ روا ’ (and) nor ’و‘ (and).

2. Find a match for the new token in the list of compound

morphemes. If a match is found then replace the first token in

the token list with new token and remove the next token from

the list.

3. If the second token is ‘ روا ’ (and) or ’و‘ (and) then group three

consecutive tokens to create the new one. Find a match for it in

Table 8. Output of dynamic maximum matching.

دوعس (Saud) 1 0

یدوعس (Saudi) 1 0

doi:10.1371/journal.pone.0068178.t008

Table 9. Output of dynamic maximum matching.

دوعس (Saud) (i)ی 2 1

یدوعس (Saudi) 1 0

doi:10.1371/journal.pone.0068178.t009

Table 10. Output of dynamic maximum matching.

دوعس (Saud) (i)ی رع (Ar) 3 1

یدوعس (Saudi) 1 0

دوعس (Saud) (i)ی برع (arab) 3 1

doi:10.1371/journal.pone.0068178.t010

Table 11. Output of dynamic maximum matching.

دوعس (Saud) (i)ی رع (Ar) (ab)ب 4 2

یدوعس (Saudi) رع (Ar) (ab)ب 3 1

دوعس (Saud) (i)ی برع (Arab) 3 1

یدوعس (Saudi) برع (Arab) 2 0

doi:10.1371/journal.pone.0068178.t011

Table 12. Segmentations produced by dynamic matching.

سا ےن اہک ہک ےسا ےنج ود Correct

سا ےن اہک اہک ےس ےنج ود Incorrect

He said let him in. (Correct).

doi:10.1371/journal.pone.0068178.t012
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the compound word list. If it is found then replace the first

token in the list with this and remove next two tokens from the

token list. Group the tokens in a way such that if the preceding

token ends with joiner character then embed the ZWNJ

between preceding and following token.

The words shown in table 13 and 14 are the lists of tokens

generated by any of the forward maximum matching or dynamic

maximum matching algorithm. If table 13 is passed to compound

word generation algorithm, it will search for the every element of

the token list, in the list of compound words. For the given

example, if it reads the token ‘‘ تنحم ’’ (hard work) and finds it also

in the compound words list; in this case it will read previous token

of it ‘‘ تہب ’’ (very) and the next token ’’و‘‘ (and). According to

algorithm first condition is not met as previous token ‘‘ تہب ’’ (very)

is not in the compound words list, therefore for the second

condition algorithm will read the token ‘‘ تقشم ’’ (struggle) as next

token. Now ‘‘ تنحم ’’ (hard work), ’’و‘‘ (and) and ‘‘ تقشم ’’ (struggle)

will become previous, current and next tokens respectively. The

first condition of algorithm is not satisfied as the current token is

’’و‘‘ (and), therefore it will check for the second condition. As

previous, current and next, all the tokens are available in the list of

compound morphemes and current token is ’’و‘‘ (and), so it will

join them while embedding ZWNJ after previous token to form the

compound word ‘‘ تقشموتنحم ’’ (hard work). It will replace previous

token ‘‘ تنحم ’’ (hard work) with this compound word while

removing ’’و‘‘ (and) and ‘‘ تقشم ’’ (struggle) from the list of tokens.

4.2. Algorithm for prefixation

1. Search for every element of the token list, in the list of prefixes.

2. If it is found then group it with the next token in the token list.

If the previous token ends with a joiner character then embed

ZWNJ between previous and the next token.

Consider the examples shown in table 15 and 16. The above

algorithm will search for every token in the list of prefixes until it

finds a match or array traversing is completed. For the given

example after finding the token ‘‘ ان ’’ (un) in the list of prefixes, it

will read the token (next token) ‘‘ لہا ’’ (able) which follows it in the

token list and will concatenate both of them to form ‘‘ لہاان ’’

(unable). Further it will replace ‘‘ ان ’’ (un) with the new token ‘‘ لہاان ’’

(unable) and will remove ‘‘ لہا ’’ (able) from the token list. Output of

this algorithm will be as given in table 16.

4.3. Algorithm for suffixation

1. After fixing the prefixes reverse the order of the token list.

2. Search for every token in the list of suffixes.

3. If a match is found then concatenate first token at the end of

the next, in the token list, such that if next token ends with

a joiner then embed ZWNJ between two tokens.

4. Reverse the order of the token list.

The different stages of the suffixation process have been shown

in the tables 17, 18, 19, 20.

Algorithm will reverse the list of tokens shown in table 17.

Now it will start reading the tokens from left and for each token

it will try to find a match in the list of suffixes. In the given

example, it finds ‘‘ نک ’’ in the suffix list and reads next token ‘‘ رثاتم ’’

(impressed). Further both of these tokens will be concatenated to

form ‘‘ نکرثاتم ’’ (impressing). Now suffix ‘‘ نک ’’ will be removed

Table 13. Compound word generation.

ہو تہب تنحم و تقشم ےس ماک اترک اھت

He had been working very hard.

doi:10.1371/journal.pone.0068178.t013

Table 14. Compound word generation.

ہو تہب تقشموتنحم ےس ماک اترک اھت

He had been working very hard.

doi:10.1371/journal.pone.0068178.t014

Table 15. Example of prefixation.

بس ان لہا ےھت کيا لکشم لح ہن رک ےکس

They were even unable to solve a single problem.

doi:10.1371/journal.pone.0068178.t015

Table 16. Example of prefixation.

بس لہاان ےھت وج لکشم لح ہن رک ےکس

They were even unable to solve a single problem.

doi:10.1371/journal.pone.0068178.t016

Table 17. Example of suffixation.

سا ےن تہب رثاتم نک ماک ايک

He performed impressively.

doi:10.1371/journal.pone.0068178.t017

Table 18. Example of suffixation.

ايک ماک نک رثاتم تہب ےن سا

He performed impressively.

doi:10.1371/journal.pone.0068178.t018

Table 19. Example of suffixation.

ايک ماک نکرثاتم تہب ےن سا

He performed impressively.

doi:10.1371/journal.pone.0068178.t019

Table 20. Example of suffixation.

سا ےن تہب نکرثاتم ماک ايک

He performed impressively.

doi:10.1371/journal.pone.0068178.t020

Text Tokenization for a Scarce Resourced Language

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e68178



from the token list and ‘‘ رثاتم ’’ (impressed) will be replaced with

‘‘ نکرثاتم ’’ (impressing).

Finally the list will be reversed to get the real order of tokens as

in the input token list.

4.4. Algorithm for full reduplication

1. For every token in the list of token, compare each to the next in

the token list.

2. If both are equal then combine them to form a new token. If

the token ends at a joiner character, then embed a ZWNJ

between them.

Table 21 and 22, show the input and output for the full

reduplication algorithm respectively.

Algorithm will read the tokens in the array, in the form of the

pair of previous and next token. If a pair contains similar contents

then it joins them to form a single token. In the given example,

when algorithm reads the token ‘‘ ود ’’ (two) as previous token and

next to it is also ‘‘ ود ’’ (two), therefore it will join both of these to

form ‘‘ ودود ’’ (two) and will replace the previous token in the list

with this newly concatenated token. This algorithm will also

remove the next token ‘‘ ود ’’ (two) from the token list.

4.5. Algorithm for partial reduplication

1. For every token in the token list, compare the length of two

consecutive tokens. If they are equal in length and the length is

not less than 4 [16], then compare them character by

character. If one character is dissimilar, it means they can be

combined to form a partial reduplicated word.

2. If there is difference of one character in the length of two

tokens and excluding the first character of the second token,

both the tokens are similar then combine them to form a new

token. If the first token ends with a joiner then embed a ZWNJ

between them.

Table 23 and 24, show the input and output token lists for the

partial reduplication algorithm respectively.

When the algorithm will start reading the above token list, in its

first iteration, it will find the token ‘‘ ہو ’’ (he) as previous token and

‘‘ ےہاگ ’’ as the next. But both of these do not satisfy the condition of

having three or more than three corresponding similar characters.

In the next iteration the token ‘‘ ےہاگ ’’ will become previous token

and ‘‘ ےاگب ’’ the next. As both of these have more than three similar

characters, so the algorithm will concatenate them by placing the

ZWNJ between them and new token will become ‘‘ ےہاگبےہاگ ’’

(time to time). It will replace ‘‘ ےہاگ ’’ with newly concatenated token

and will remove token ‘‘ ےاگب ’’ from the token list.

4.6. Algorithm for names and abbreviations

1. Search for every token in the list of names and in the list of

English characters, if match is found then check the previous

token.

2. If the previous token is in the name list or ends with a name, it

is an English character or ends with an English character, or it

is not equal to ‘-’ but ends with a ‘-’ then combine both of the

tokens. If first token ends with a joiner character then embed

a ZWNJ between them.

3. If the newly formed token ends with the ‘ ےک ’ then split it into

two, by separating ‘ ےک ’ from the token.

Different phases of this algorithm are shown in the tables 25, 26,

27, 28, 29. As algorithm starts reading the elements in the token

list, it will find the very first token in the list of names. As it has no

previous token therefore algorithm will read the next token ‘‘ یلع ’’

in the token list. It will also be found in the list of names; therefore

it will read the previous token of it and will search for it in the same

list. As it is available in the name list also, therefore new token will

be composed by concatenating both of these, while inserting

ZWNJ between them. The new token ‘‘ یلعدسا ’’ will replace the

previous token ‘‘ دسا ’’ in the list and the token ‘‘ یلع ’’ will be

removed from it, as shown in table 26.

Onwards it will read the next token ‘‘ ےن ’’ in the token list, but as

it does not exist in the list of names, neither it is a ’۔‘ nor an English

character, therefore algorithm will look for the next token in the

list. It reads ‘‘ وي ’’ but previous token ‘‘ ےن ’’ does not satisfy the

condition; therefore algorithm will go for the next token. It finds ’۔‘

Table 21. Example of full reduplication.

سا ےن ود ود راہ ےديرخ

He bought two necklaces.

doi:10.1371/journal.pone.0068178.t021

Table 22. Example of full reduplication.

سا ےن ودود راہ ےديرخ

He bought two necklaces.

doi:10.1371/journal.pone.0068178.t022

Table 23. Example of partial reduplication.

ہو ےہاگ ےاگب ايج اترک اھت

He had been visiting time to time.

doi:10.1371/journal.pone.0068178.t023

Table 24. Example of partial reduplication.

ہو ےہاگبےہاگ ايآ اترک اھت

He had been visiting time to time.

doi:10.1371/journal.pone.0068178.t024

Table 25. Example of names and abbreviate.

دسا یلع ےن وي ۔ سيا ۔ ےا ۔ اناج ےہ

Asad Ali has to visit U.S.A.

doi:10.1371/journal.pone.0068178.t025

Table 26. Example of names and abbreviations.

یلعدسا ےن وي ۔ سيا ۔ ےا ۔ اناج ےہ

Asad Ali has to visit U.S.A.

doi:10.1371/journal.pone.0068178.t026
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as next token and ‘‘ وي ’’ as the previous token. As the condition of

the algorithm is satisfied, so both of these tokens will be combined

as ‘‘ ۔وي ’’. New token will replace the previous token ‘‘ وي ’’ in the

token list and ’’۔‘‘ will be removed from the list, as shown in

table 27. Algorithm reads the next token ‘‘ سيا ’’ in the token list, it

is also an English character and according to the algorithm,

previous token ‘‘ ۔وي ’’ ends with ,’’۔‘‘ therefore both of these will be

merged as shown in table 28. Similarly the next token ’’۔‘‘ will be
joined to previous token ‘‘ سيا۔وي ’’ to form ‘‘ ۔سيا۔وي ’’ and the same

process will be followed for the next two tokens ‘‘ ےا ’’ and .’’۔‘‘ The
output of this process is shown in the table 29. At last the algorithm

will check in the list for the token which starts with a name and

ends with ‘‘ ےک ’’. If a match is found, it will split it into name and

‘‘ ےک ’’; as in the table 29 there is no such case, therefore it is the

final output for the given example.

Experimental Results and Discussion

Experimental results are calculated by tokenizing the corpus

with 57000 words by using a morpheme list containing 6400 free

morphemes. Test corpus has been tokenized by using three

different approaches; forward maximum matching, dynamic

maximum matching and dynamic maximum matching along with

maximum likelihood approach. Following two paragraphs illus-

trate how the corpus has been tokenized by using the three

mentioned techniques.

Suppose there is a string ‘‘ ودےناجےساہکانسےنسا ’’ (He heard

that let him leave.) and list of free morphemes related to it [‘‘ ےن ’’,

‘‘ کان ’’, ‘‘ اہک ’’, ‘‘ ہک ’’, ‘‘ ےس ’’, ‘‘ انس ’’, ‘‘ نس ’’, ‘‘ ود ’’, ‘‘ ےناج ’’, ‘‘ اج ’’, ‘‘ ےسا ’’,

‘‘ سا ’’]. Maximum matching will return the list of tokens [‘‘ سا ’’,
‘‘ ےن ’’, ‘‘ انس ’’, ‘‘ اہک ’’, ‘‘ ےس ’’, ‘‘ ےناج ’’, ‘‘ ود ’’] for the input string

and it contains two words ‘‘ اہک ’’ and ‘‘ ےس ’’ which have been

tokenized incorrectly.

Dynamic matching tokenizes the similar string into [‘‘ سا ’’,

‘‘ ےن ’’, ‘‘ انس ’’, ‘‘ اہک ’’, ‘‘ ےس ’’, ‘‘ ےناج ’’, ‘‘ ود ’’] and [‘‘ سا ’’, ‘‘ ےن ’’, ‘‘ انس ’’,

‘‘ ہک ’’, ‘‘ ےسا ’’, ‘‘ ےناج ’’, ‘‘ ود ’’], with equal number of tokens and

without any error. It will select the first tokenization sequence with

two incorrect tokens, because both sequences appear same to it, as

they have equal number of tokens and errors. But if it is combined

with maximum likelihood approach then it will select the three

Table 27. Example of names and abbreviations.

یلعدسا ےن ۔وي سيا ۔ ےا ۔ اناج ےہ

Asad Ali has to visit U.S.A.

doi:10.1371/journal.pone.0068178.t027

Table 28. Example of names and abbreviations.

یلعدسا ےن سيا۔وي ۔ ےا ۔ اناج ےہ

Asad Ali decided to visit U.S.A.

doi:10.1371/journal.pone.0068178.t028

Table 29. Example of names and abbreviations.

یلعدسا ےن ۔ےاےا۔سيا۔وي اناج ےہ

Asad Ali has to visit U.S.A.

doi:10.1371/journal.pone.0068178.t029

Figure 1. Performance comparison.
doi:10.1371/journal.pone.0068178.g001
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best segmentations out of all produced tokenization schemes and

will compute bi-gram probability for each. So for the given

example, dynamic maximum matching along with maximum

likelihood will return the tokenization sequence [‘‘ سا ’’, ‘‘ ےن ’’,

‘‘ انس ’’, ‘‘ ہک ’’, ‘‘ ےسا ’’, ‘‘ ےناج ’’, ‘‘ ود ’’], containing all correct tokens in

it.

The results obtained after applying the proposed three different

techniques over 57000 words are shown in figure 1. Using forward

maximum matching 93.78% precision, 91.06% recall, and

92.39% F1-measure are obtained. Dynamic matching produced

96.00% precision, 93.06% recall, and 94.31% F1-measure. Best

results have been seen by using dynamic maximum matching

along with maximum likelihood approach, which are 97.28%

precision, 93.71% recall, and 95.46% F1-measure.

The study in [15], achieved 99.29% recall and 99.38%

precision for Urdu merged word recognition component. The

author used Urdu, Hindi, and English morphological rules to find

the merged words in the text. He used longest matching,

maximum matching and statistical rules to fix only the space

omission issues in Urdu text. Author had the advantage of

availability of the bilingual corpus which had been helpful, while

solving the ambiguities seen during maximum matching process.

In a study [16] similar to ours, the same corpus was used while

applying same techniques but in a different way. Authors initially

segmented the text with the available spaces between the words,

further they searched for orthographic words inside the available

segments for space omission problem. After fixing space omission

problem they applied their rules for space insertion errors. This

study reported an accuracy of 95.8%. Following formulas are used

for precision, recall and F1-measure;

Precision = number of correct tokens returned by tokenizer/

total number of tokens returned by tokenizer

Recall = number of correct tokens returned by tokenizer/total

number of tokens in Corpus

F1-measure = 2*Precision*Recall/(Precision+Recall)

Conclusion

The problem of tokenizing Urdu text strings revolves around

the insertion and deletion of the space between the words. In the

hand written Urdu text, there is no use of space between the words

but in case of the computerized text files space is inserted after the

words ending at joiner characters (characters which join them-

selves with the following characters). In this work Urdu text has

been tokenized using three different approaches; forward maxi-

mum matching, dynamic maximum matching, and dynamic

maximum matching along with maximum likelihood approach.

All of these approaches work with some other algorithms which

have been proposed to resolve the issues of identification of

compound words, affixations, reduplication, names, and abbrevia-

tions. This work produced up to 97.28% precision, 93.71% recall,

and 95.46% F1-measure with the test data comprising of 57000

words. The work proposed in this paper is more dependent on the

corpus; it definitely affects the results, if there are unseen words

(words not available in the corpus) in the text to be segmented. In

future we are aimed to develop a tokenization method which

would be least dependant on the corpus, and using machine

learning techniques, would be able to learn the morphological

patterns of the valid morphemes in Urdu text. So instead of

searching for morphemes in a corpus, it could be searched for

specific morphological patterns in the text in order to tokenize it.
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