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Abstract

This paper investigates the steady hydromagnetic three-dimensional boundary layer flow of Maxwell fluid over a
bidirectional stretching surface. Both cases of prescribed surface temperature (PST) and prescribed surface heat flux (PHF)
are considered. Computations are made for the velocities and temperatures. Results are plotted and analyzed for PST and
PHF cases. Convergence analysis is presented for the velocities and temperatures. Comparison of PST and PHF cases is given
and examined.
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Introduction

Interest of recent researchers in analysis of boundary layer flows

over a continuously moving surface with prescribed surface

temperature or heat flux has increased substantially during the

last few decades. These flows have abundant applications in many

metallurgical and industrial processes. Specific examples of such

industrial and technological processes include wire-drawing, glass-

fiber and paper production, the extrusion of polymer sheets, the

cooling of a metallic plate in a cooling bath, drawing of plastic

films etc. Such situations occur in the class of flow problems

relevant to the polymer extrusion in which the flow is generated by

stretching of plastic surface [1,2]. In addition, internal heat

generation/absorption has key role in the heat transfer from a

heated sheet in several practical aspects. The heat generation/

absorption effects are also important in the flow problems dealing

with the dissociating fluids. Influences of heat generation/

absorption may change the temperature distribution which

corresponds to the particle deposition rate in electronic chips,

nuclear reactors, semiconductor wafers etc. The idea of boundary

layer flow over a moving surface was introduced by Sakiadis [3].

He discussed the boundary layer flow of viscous fluid over a solid

surface. This analysis was extended by Crane [4] for a linearly

stretched surface. He provided the closed form solutions of two-

dimensional boundary layer flow of viscous fluid over a surface.

Numerous literature now exists on the boundary layer flow with

heat transfer and in the presence of heat generation/absorption

effects (see [5–10] and many refs. therein).

A large number of industrial fluids like polymers, soaps, molten

plastics, sugar solutions pulps, apple sauce, drilling muds etc.

behave as the non-Newtonian fluids [11]. The Navier-Stokes

equations cannot explore the properties of such materials. In the

literature, different types of fluids models are developed according

to the nature of fluids. The non-Newtonian fluids are mainly

divided into three categories which are known as the differential,

rate and integral types. The fluid considered here is called the

Maxwell fluid. It is subclass of rate type fluids predicting the

characteristics of relaxation time. The properties of polymeric

fluids can be explored by Maxwell model for small relaxation time.

Zierep and Fectecau [12] discussed the energetic balance for the

Rayleigh-Stokes problem involving Maxwell fluid. Closed form

solutions of unsteady flow of Maxwell fluid due to the sudden

movement of the plate was described by Hayat et al. [13]. Fetecau

et al. [14] provided the exact solutions for the unsteady flow of

Maxwell fluid. Here they considered that the flow is generated due

to the constantly accelerating plate. Flow of Maxwell fluid with

fractional derivative model between two coaxial cylinders was also

addressed by Fetecau et al. [15]. Here the inner cylinder is

subjected to the time-dependent longitudinal shear stress gener-

ating the fluid motion. Helical unidirectional flows of Maxwell

fluid due to shear stresses on the boundary have been studied by

Jamil and Fetecau [16]. They provided the exact solution by

Hankel transform method. Stability analysis for the flow of

Maxwell fluid under soret-driven double-diffusive convection in a

porous medium was examined by Wang and Tan [17]. Two-

dimensional boundary layer flow of Maxwell fluid over a linearly

stretching surface was analyzed by Hayat et al. [18]. Mukhopad-

hyay [19] presented an analysis for the unsteady flow of Maxwell

fluid in a porous medium with suction/injection. Falkner-Skan

flow of Maxwell fluid with mixed convection over a surface was

analytically discussed by Hayat et al. [20].

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68139



The main theme of present analysis is to discuss the steady

three-dimensional boundary layer flow of Maxwell fluid over a

bidirectional stretching surface subject to prescribed surface

temperature and prescribed surface heat flux. The effects of

applied magnetic field are also included in this analysis. To our

knowledge, not much is known about flows induced by a

bidirectional stretching surface. Wang [21] discussed the three-

dimensional flow of viscous fluid over a bidirectional stretching

surface. Ariel [22] provided the exact and homotopy perturbation

solution for ref. [21]. Liu and Andersson [23] discussed the heat

transfer analysis over a bidirectional stretching surface with

variable thermal conditions. Ahmed et al. [24] extended the

analysis of ref. [23] for hydromagnetic flow in a porous medium.

They presented the series solutions. Hayat et al. and Shehzad et al.

[25,26] studied the boundary layer flows of Maxwell and Jeffery

fluids over a bidirectional stretching surface. The present analysis

is arranged as follows. The next section contains the mathematical

formulation of the problem. Sections three and four are for the

homotopy solutions (HAM) [27–34], convergence study and

discussion. Both cases of prescribed surface temperature (PST)

and prescribed surface heat flux (PHF) are given due attention in

the discussion section. The main observations of this research are

listed in the last section. Further, the correct modelling for

magnetohydrodynamic case of Maxwell fluid is given.

Flow Model

Consider three-dimensional magnetohydrodynamic (MHD)

boundary layer flow of an incompressible Maxwell fluid. The

flow is induced by bidirectional stretching surface (at z~0) with

PST and PHF. Steady flow of an incompressible Maxwell fluid is

considered for zw0: Flow analysis is carried out in the presence of

heat generation/absorption parameter. The fluid is electrically

conducting in the presence of applied magnetic field with constant

strength B0: No electric field contribution is taken into account.

Induced magnetic field effects are ignored through large magnetic

Reynolds number consideration. The geometry of considered flow

is shown in Fig. 1. The conservation of mass, momentum and

energy for steady flow in presence of magnetic field and heat

source/sink can be expressed as

divV~0, ð1Þ

r
dV

dt
~divTzJ|B, ð2Þ

rcp
dT

dt
~T:+Vzk+2TzQ(T{T?), ð3Þ

in which r depicts the density, J the current density, B the

magnetic field in the z{ direction, cp the specific heat, k the

thermal conductivity and Q the heat generation/absorption

parameter with Qw0 (heat generation) and Qv0 (heat absorp-

tion). B~B0k̂k (k̂k is a unit vector parallel to the z{ axis). The

definition of J for present flow consideration is

J~s V|B0ð Þ, ð4Þ

where V denotes the fluid velocity and s the electrical

conductivity. The Lorentz force thus reduces to

J|B~{sB2
0V: ð5Þ

Expressions of Cauchy (T) and extra stress (S) tensors in

Maxwell fluid are [11]:

T~{pIzS, ð6Þ

Szl1
DS

Dt
~mA1, ð7Þ

where D=Dt is the Covariant differentiation and l1 is the

relaxation time. The first Rivilin Ericksen tensor A1 is defined as

A1~gradVz gradVð Þ�,

where * indicates the matrix transpose and the velocity field V
here is taken as

V~½u(x, y, z), v(x, y, z), w(x, y, z)�: ð8Þ

The definition of D=Dt is [11]

Dai

Dt
~

Lai

Lt
zurai, r{ui, rar: ð9Þ

Following the procedure of ref. [11] at pages 221–223 and using

above equations, we have the following scalar expressions

Lu

Lx
z

Lv

Ly
z

Lw

Lz
~0, ð10ÞFigure 1. Physical model.

doi:10.1371/journal.pone.0068139.g001

Hydromagnetic Flow over a Bidirectional Surface

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e68139



u
Lu

Lx
zv

Lu

Ly
zw

Lu

Lz
zl1

u2L
2u

Lx2
zv2L

2u

Ly2
zw2L

2u

Lz2
z2uv

L2u

LxLy

z2vw
L2u

LyLz
z2uw

L2u

LxLz

0
BBB@

1
CCCA~

{
Lp

Lx
zn

L2u

Lx2
z

L2u

Ly2
z

L2u

Lz2

 !
{

sB2
0

r
u{

sB2
0

r
l1 u

Lu

Lx
zv

Lu

Ly
zw

Lu

Lz
{u

Lu

Lx

� �
,

ð11Þ

u
Lv

Lx
zv

Lv

Ly
zw

Lv

Lz
zl1

u2L2v

Lx2
zv2L

2v

Ly2
zw2L

2v

Lz2
z2uv

L2v

LxLy

z2vw
L2v

LyLz
z2uw

L2v

LxLz

0
BBB@

1
CCCA

~{
Lp

Ly
zn

L2v

Lx2
z

L2v

Ly2
z

L2v

Lz2

 !
{

sB2
0

r
v

{
sB2

0

r
l1 u

Lv

Lx
zv

Lv

Ly
zw

Lv

Lz
{v

Lv

Ly

� �
,

ð12Þ

u
Lw

Lx
zv

Lw

Ly
zw

Lw

Lz
zl1

u2L
2w

Lx2
zv2L

2w

Ly2
zw2L

2w

Lz2
z2uv

L2w

LxLy

z2vw
L2w

LyLz
z2uw

L2w

LxLz

0
BBB@

1
CCCA

~{
Lp

Lz
zn

L2w

Lx2
z

L2w

Ly2
z

L2w

Lz2

 !
,

ð13Þ

u
LT
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Lz
~k1

L2T
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z

L2T

Ly2
z

L2T

Lz2

 !

z
Q

rcp

(T{T?):

ð14Þ

After employing the boundary layer assumptions [35], the

above equations in the absence of pressure gradient yield

Lu

Lx
z

Lv

Ly
z

Lw

Lz
~0, ð15Þ

u
Lu

Lx
zv
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{
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{
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� �
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ð17Þ

u
LT

Lx
zv

LT

Ly
zw

LT

Lz
~k1

L2T

Lz2
z

Q

rcp

(T{T?): ð18Þ

The associated boundary conditions are defined as follows.

u~uw(x)~ax, v~vw(y)~by, w~0atz~0,

u?0, v?0asz??:
ð19Þ

For temperature, the boundary conditions are specified as

[23,24]:

Type i. Prescribed surface temperature (PST)

T~Tw(x, y)~T?zCxrysatz~0,

T?T?asy??:
ð20Þ

Type ii. Prescribed surface heat flux (PHF)

{k
LT

Lz
~Dxrysatz~0,

T?T?asy??:

ð21Þ

Here k is the thermal conductivity of the fluid, T? the constant

temperature outside the thermal boundary layer, C and D the

positive constants. The power indices r and s determine how the

temperature or the heat flux varies in the xy{ plane.

Following [23,24] similarity variables for the velocity field are

introduced as

u~axf 0(g), v~ayg0(g), w~{
ffiffiffiffiffi
an
p

(f (g)zg(g)), g~z

ffiffiffi
a

n

r
, ð22Þ

and the temperature similarity variables take different forms

depending on the boundary conditions being considered. These

are

PST : h gð Þ~ T x,y,zð Þ{T?

Tw x,yð Þ{T?
,PHF : T x,y,zð Þ{T?

~
B

k

ffiffiffi
v

a

r
xrysw gð Þ

ð23Þ

equation (15) is automatically satisfied and Eqs. (16)–(21) take the

following forms:
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f 000z(M2bz1)(f zg)f 00{f ’2z

b 2(f zg)f 0f 00{(f zg)2f 000
� �

{M2f 0~0,
ð24Þ

g000z(M2bz1)(f zg)g00{g’2z

b 2(f zg)g0g00{(f zg)2g000
� �

{M2g0~0,
ð25Þ

h00z Pr (f zg)h0z Pr (B{rf 0{sg0)h~0, ð26Þ

w00z Pr (f zg)w0z Pr (B{rf 0{sg0)w~0, ð27Þ

f ~0, g~0, f 0~1, g0~a, h~1, w0~{1atg~0,

f 0?0, g0?0, h?0, w?0asg??,
ð28Þ

where b1~l1a is the Deborah number, M~
sB2

0

ar
the magnetic

parameter, a~
b

a
the ratio of stretching rates, Pr ~

n

k1
the Prandtl

number, k1 the thermal diffusivity and B~
Q

racp

the internal heat

parameter.

Homotopy Analysis Solutions

In this section, we solve the problem consisting of Eqs. (24)–(27)

with boundary conditions in Eq. (28) by HAM. For that the initial

guesses and auxiliary linear operators are taken as follows:

f0(g)~ 1{e{gð Þ, g0(g)~a 1{e{gð Þ,

h0(g)~ exp ({g), w0(g)~ exp ({g),
ð29Þ

Lf ~f 000{f 0, Lg~g000{g0, Lh~h00{h, Lw~w00{w, ð30Þ

subject to the properties

Lf (C1zC2egzC3e{g)~0, Lg(C4zC5egzC6e{g)~0,

Lh(C7egzC8e{g)~0, Lw(C9egzC10e{g)~0,
ð31Þ

where Ci (i~1{10) are the arbitrary constants.

At zeroth order, the problems satisfy

1{pð ÞLf f̂f (g; p){f0(g)
� �

~ph�f Nf f̂f (g; p), ĝg(g; p)
� �

, ð32Þ

1{pð ÞLg ĝg(g; p){g0(g)ð Þ~ph�gNg f̂f (g; p), ĝg(g; p)
� �

, ð33Þ

1{pð ÞLh ĥh(g; p){h0(g)
� �

~

ph�hNh f̂f (g; p), ĝg(g; p), ĥh(g; p)
� �

,

ð34Þ

1{pð ÞLw ŵw(g; p){w0(g)
� �

~

ph�wNw f̂f (g; p), ĝg(g; p), ŵw(g; p)
� �

,

ð35Þ

f̂f (0; p)~ 0, f̂f ’(0; p)~1, f̂f ’(?; p)~0, ĝg(0; p)~0, ĝg’(0; p)~a,

ĝg’(?; p)~0, ĥh(0; p)~ 1, ĥh(?, p)~0, ŵw’(0, p)~0, ŵw(?, p)~0,
ð36Þ

Nf ½f̂f (g, p), ĝg(g, p)�~ L3 f̂f (g, p)

Lg3
{

Lf̂f (g, p)

Lg

 !2

z(M2bz1)(f̂f (g, p)zĝg(g, p))
L2 f̂f (g, p)

Lg2

zb

2(f̂f (g, p)zĝg(g, p))
Lf̂f (g, p)

Lg

L2 f̂f (g, p)

Lg2

{(f̂f (g, p)zĝg(g, p))2L
3 f̂f (g, p)

Lg2

0
BBBB@

1
CCCCA

{M2 Lf̂f (g, p)

Lg
,

ð37Þ

Ng½ĝg(g, p), f̂f (g, p)�~ L3ĝg(g, p)

Lg3
{

Lĝg(g, p)

Lg

� �2

z(M2bz1)(f̂f (g, p)zĝg(g, p))
L2ĝg(g, p)

Lg2

zb

2(f̂f (g, p)zĝg(g, p))
Lĝg(g, p)

Lg

L2ĝg(g, p)

Lg2

{(f̂f (g, p)zĝg(g, p))2L
3ĝg(g, p)

Lg2

0
BBB@

1
CCCA

{M2 Lĝg(g, p)

Lg
,

ð38Þ

Nh½ĥh(g, p), f̂f (g, p), ĝg(g, p)�~ L2ĥh(g, p)

Lg2

z Pr (f̂f (g, p)zĝg(g, p))
Lĥh(g, p)

Lg

z Pr b{c
Lf̂f (g, p)

Lg
{s

Lĝg(g, p)

Lg

 !
ĥh(g, p),

ð39Þ

Nw½ŵw(g, p), f̂f (g, p), ĝg(g, p)�~ L2ŵw(g, p)

Lg2

z Pr (f̂f (g, p)zĝg(g, p))
Lŵw(g, p)

Lg

z Pr b{c
Lf̂f (g, p)

Lg
{s

Lĝg(g, p)

Lg

 !
ŵw(g, p):

ð40Þ
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In above expressions, p shows the embedding parameter, h�f , h�g,

h�h and h�w the non-zero auxiliary parameters and Nf , Ng, Nh and

Nw the nonlinear operators. When p~0 and p~1 then we obtain

f̂f (g; 0)~f0(g), ĝg(g, 0)~g0(g), ĥh(g, 0)~h0(g), ŵw(g, 0)~w0(g),

f̂f (g; 1)~f (g), ĝg(g, 1)~g(g), ĥh(g, 1)~h(g), ŵw(g, 1)~w(g):
ð41Þ

It should be pointed out that when p increases from 0 to 1 then

f (g, p), g(g, p), h(g, p) and w(g, p) vary from f0(g), g0(g), h0(g),
w0(g) to f (g), g(g), h(g) and w(g): Using Taylors’ expansion we

write

f (g, p)~f0(g)z
X?
m~1

fm(g)pm, ð42Þ

g(g, p)~g0(g)z
X?
m~1

gm(g)pm, ð43Þ

h(g, p)~h0(g)z
X?
m~1

hm(g)pm, ð44Þ

w(g, p)~w0(g)z
X?
m~1

wm(g)pm, ð45Þ

fm(g)~
1

m!

Lmf (g; p)

Lgm

				
p~0

, gm(g)~
1

m!

Lmg(g; p)

Lgm

				
p~0

,

hm(g)~
1

m!

Lmh(g; p)

Lgm

				
p~0

, wm(g)~
1

m!

Lmw(g; p)

Lgm

				
p~0

,

ð46Þ

where the parameters h�f , h�g, h�h and h�w have a key role in the

convergence of series solutions. The values of parameters are

chosen in such a manner that Eqs. (42){(45) converge at p~1:
Hence Eqs. (42){(45) give

f (g)~f0(g)z
X?
m~1

fm(g), ð47Þ

g(g)~g0(g)z
X?
m~1

gm(g), ð48Þ

h(g)~h0(g)z
X?
m~1

hm(g), ð49Þ

w(g)~w0(g)z
X?
m~1

wm(g): ð50Þ

The general solutions are arranged as follows

fm(g)~f �m(g)zC1zC2egzC3e{g ð51Þ

gm(g)~g�m(g)zC4zC5egzC6e{g ð52Þ

hm(g)~h�m(g)zC7egzC8e{g ð53Þ

wm(g)~w�m(g)zC9egzC10e{g ð54Þ

in which the special solutions are denoted by f �m, g�m, h�m and w�m:

Convergence of Series Solutions and Discussion

It is well known fact that the homotopy analysis method has a

great freedom to choose the auxiliary parameters h�f , h�g, h�h and h�w

for adjusting and controlling the convergence of series solutions.

To determine the appropriate convergence interval of the

constructed series solutions, the h�{ curves at 17th -order of

approximations are sketched. Figs. 2 and 3 clearly show that the

range of admissible values of h�f , h�g, h�h and h�w are

{1:30ƒh�f ƒ{0:2, {1:40ƒh�gƒ{0:15, {1:40ƒh�hƒ{0:4
and {1:35ƒh�wƒ{0:25:

The results are displayed graphically to see the effects of b, M,
a, s, r, B and Pr on the prescribed surface temperature and

prescribed surface heat flux. We denote temperature variation for

PST case by h(g) and for PHF situation by w(g) in the Figs. 4–17.

Figs. 4 and 5 illustrate the variations of Deborah number on h(g)
and w(g): From these Figs., we have seen that both h(g) and w(g)
are increased with an increase in b: Deborah number is based on

the relaxation time. When Deborah number increases, the

relaxation time increases. This increase in relaxation time causes

an increase in h(g) and w(g): Comparison of Figs. 4 and 5 shows

that b has similar effects on h(g) and w(g): Figs. 6 and 7 are plotted

to see the effects of magnetic parameter M on h(g) and w(g):
Clearly the thermal boundary layer thicknesses are increased for

larger values of magnetic parameter. In fact the magnetic

parameter involves the Lorentz force. Larger values of magnetic

parameter correspond to the stronger Lorentz force. This stronger

Lorentz force give rise to the thermal boundary layer thicknesses.

Figure 2. h�{ curves for the functions f (g), g(g) and h(g) when
b~0:1, M~0:7, a~0:5, Pr~1:4, r~s~0:4 and B~0:3:
doi:10.1371/journal.pone.0068139.g002

Hydromagnetic Flow over a Bidirectional Surface
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Figure 3. h�{ curve for the function w(g) when b~0:1, M~0:7,
a~0:5, Pr~1:4, r~s~0:4 and B~0:3:
doi:10.1371/journal.pone.0068139.g003

Figure 4. Influence of b on h(g) when M~0:7, a~0:5, Pr~1:5,
r~0:3, s~0:4 and B~0:4:
doi:10.1371/journal.pone.0068139.g004

Figure 5. Influence of b on w(g) when M~0:7, a~0:5, Pr~1:5,
r~0:3, s~0:4 and B~0:4:
doi:10.1371/journal.pone.0068139.g005

Figure 6. Influence of M on h(g) when b~0:2, a~0:5, Pr~1:5,
r~0:3, s~0:4 and B~0:4:
doi:10.1371/journal.pone.0068139.g006

Figure 7. Influence of M on w(g) when b~0:2, a~0:5, Pr~1:5,
r~0:3, s~0:4 and B~0:4:
doi:10.1371/journal.pone.0068139.g007

Figure 8. Influence of a on h(g) when b~0:2, M~0:7, Pr~1:5,
r~0:3, s~0:4 and B~0:4:
doi:10.1371/journal.pone.0068139.g008
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Figure 9. Influence of a on w(g) when b~0:2, M~0:7, Pr~1:5,
r~0:3, s~0:4 and B~0:4:
doi:10.1371/journal.pone.0068139.g009

Figure 10. Influence of s on h(g) when b~0:2, M~0:7, Pr~1:5,
r~0:3, a~0:5 and B~0:4:
doi:10.1371/journal.pone.0068139.g010

Figure 11. Influence of s on w(g) when b~0:2, M~0:7, Pr~1:5,
r~0:3, a~0:5 and B~0:4:
doi:10.1371/journal.pone.0068139.g011

Figure 12. Influence of r on h(g) when b~0:2, M~0:7, Pr~1:5,
s~0:4, a~0:5 and B~0:4:
doi:10.1371/journal.pone.0068139.g012

Figure 13. Influence of r on w(g) when b~0:2, M~0:7, Pr~1:5,
s~0:4, a~0:5 and B~0:4:
doi:10.1371/journal.pone.0068139.g013

Figure 14. Influence of B on h(g) when b~0:2, M~0:7, Pr~1:5,
s~0:4, a~0:5 and r~0:3:
doi:10.1371/journal.pone.0068139.g014
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Figs. 8 and 9 illustrate the variations of a on h(g) and w(g): From

these Figs. it is noticed that both h(g) and w(g) are reduced when

we increased the values of a: Also the thermal boundary layer

becomes thinner for higher values of a: This reduction in thermal

boundary layer for larger values of a is due to the entertainment of

cooler to ambient fluid. The power indices r and s control the non-

uniformity of the surface temperature in the prescribed surface

temperature situation. Figs. 10 and 11 depict that h(g) and w(g)
are decreasing functions of s: Also we noted that w(g) reduces

rapidly as comparison to h(g): Effect of r on h(g) and w(g) are seen

in the Figs. 12 and 13. The values of h(g) and w(g) are reduced

when values of r are increased. It is concluded that the non-

uniformity of the sheet temperature has prominent effect on the

temperature fields for the reduction in temperature and thinner

thermal boundary layer. Comparison of Figs. 12 and 13 illustrates

that the variations in w(g) are more pronounced when compared

to the variations in h(g): Also we examined that w(g) at the wall

reduced rapidly when the values of r are larger. Figs. 14 and 15

depict the variations of heat generation/absorption parameter B

on h(g) and w(g): Both h(g) and w(g) are increased by increasing

values of heat generation/absorption parameter. Physically an

increase in heat generation/absorption parameter produced more

heat due to which the temperature of fluid increases. This increase

in temperature gives rise to h(g) and w(g): The effects of Prandtl

number on h(g) and w(g) are analyzed in the Figs. 16 and 17.

Figure 15. Influence of B on w(g) when b~0:2, M~0:7, Pr~1:5,
s~0:4, a~0:5 and r~0:3:
doi:10.1371/journal.pone.0068139.g015

Figure 16. Influence of Pr on h(g) when b~0:2, M~0:7, B~0:4, r~0:3, a~0:5 and s~0:4,
doi:10.1371/journal.pone.0068139.g016

Figure 17. Influence of Pr on w(g) when b~0:2, M~0:7, B~0:4,
r~0:3, a~0:5 and s~0:4:
doi:10.1371/journal.pone.0068139.g017
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These Figs. clearly show that h(g), w(g) and their related thermal

boundary layer thicknesses are reduced for the larger values of

Prandtl number Pr : Obviously the Prandtl number depends upon

the thermal diffusivity. Larger values of Prandtl number give

smaller thermal diffusivity and consequently the values of h(g) and

w(g) decrease.

Table 1 has been prepared to analyze the convergent values of

the velocities, h(g) and w(g): We have seen that our solutions for

velocities converge from 16th order of approximations whereas

one needs 25th order of deformations for h(g) and w(g): Hence we

need less deformations for the velocities in comparison to

temperatures for a convergent solution. Table 2 provides the

values of temperature gradient h0(0) for different values of a, r and

s when b~M~0 and Pr ~1:0: One can see that our solutions

has an excellent agreement with the previous results in a limiting

case [20,21]. Further, it is observed that the temperature gradient

at surface h0(0) becomes positive and reduces for r~{2:0 and

s~0 and negative for r~0 and s~{2:0: Table 3 presents the

numerical values of h0(0) and w(0) for different values of Pr and B

when b~M~0, r~s~1:0 and a~0:25: From this Table we

noted that our series solutions have very good agreement with the

previous results available in the literature.

Concluding Remarks

In this study, the three-dimensional MHD flow of Maxwell fluid

generated by bidirectional stretching surface is investigated for two

cases of prescribed surface temperature (PST) and prescribed

surface heat flux (PHF). The effects of applied magnetic field B0

are also taken into account. Interesting observations of this study

can be mentioned below:

N Effects of Deborah number b1 on h(g) and w(g) are similar in a

qualitative manner.

N Both h(g) and w(g) are increasing functions of magnetic

parameter M:

N Increase in ratio parameter a reduces the temperatures and

their boundary layer thicknesses.

N Temperature for w(g) case decreases rapidly in comparison to

h(g) case when larger values of r and s are employed.

N An increase in heat generation/absorption parameter enhanc-

es the temperatures h(g) and w(g):

N Our series solutions have an excellent agreement with the

previous results in limiting cases.

Table 3. Temperature gradient at surface h0(0) and w(0) for different values of Pr and B when M~b~0, r~s~1:0 and a~0:5:

2h9(0) for PST w(0) for PHF

B = 20.2 B = 0.0 B = 0.2 B = 20.2 B = 0.0 B = 0.2

[23] Pr = 1.0 1.348064 1.255781 1.148932 0.741805 0.796317 0.870355

[24] 1.348064 1.255780 1.148934 0.741808 0.796318 0.870372

Present 1.34806 1.25578 1.14893 0.74180 0.79632 0.87037

[23] Pr = 5.0 3.330392 3.170979 3.002380 0.300265 0.315360 0.333069

[24] 3.330394 3.170981 3.002384 0.300265 0.315363 0.333071

Present 3.33039 3.17098 3.00238 0.30028 0.31537 0.33308

[23] Pr = 10.0 4.812149 4.597141 4.371512 0.207807 0.217527 0.228754

[24] 4.812151 4.597143 4.371516 0.207809 0.217529 0.228756

Present 4.81215 4.59714 4.37152 0.20781 0.21753 0.22876

doi:10.1371/journal.pone.0068139.t003

Table 1. Convergence analysis of series solutions by
numerical data for different order of deformations when
b~0:1, M~0:7, a~0:5, Pr ~1:4, r~s~0:4, B~0:3 and
h�f ~h�g~h�h~h�w~{0:9:

Order of
deformations f99(0) g99(0) h9(0) w9(0)

1 21.345900 20.592325 20.92800 0.55000

10 21.341759 20.600119 20.84012 0.50038

16 21.341761 20.600122 20.83823 0.50111

25 21.341761 20.600122 20.83775 0.50128

30 21.341761 20.600122 20.83775 0.50128

35 21.341761 20.600122 20.83775 0.50128

40 21.341761 20.600122 20.83775 0.50128

doi:10.1371/journal.pone.0068139.t001

Table 2. Temperature gradient at surface h0(0) for different
values of a, rand s with b1~b2~b~0:0 and Pr ~1:0:

r = s = 0
r = 22,
s = 0 r = 2, s = 0

r = 0,
s = 22 r = 0, s = 2

[23] a= 0.25 20.665933 0.554512 21.364890 20.413111 20.883125

[24] 20.665927 0.554573 21.364890 20.413101 20.883123

Present 20.66593 0.55457 21.36489 20.41310 20.88312

[23] a= 0.50 20.735334 0.308578 21.395356 20.263381 21.106491

[24] 20.735333 0.308590 21.395357 20.263376 21.106500

Present 20.73533 0.30858 21.39536 20.26338 21.10649

[23] a= 0.75 20.796472 0.135471 21.425038 20.126679 21.292003

[24] 20.796470 0.135470 21.425037 20.126679 21.292010

Present 20.79472 0.13547 21.42504 20.12667 21.29200

doi:10.1371/journal.pone.0068139.t002
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