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Abstract

Background: The inability of endothelial cells of patients affected by the diffuse form of Systemic sclerosis (SSc) to perform
angiogenesis is a marker of the disease. We previously demonstrated that desmoglein-2 reduction is a major difference
between (SSc)-microvascular endothelial cells (MVECs) and normal (N)-MVECs. Here we investigated the role of desmoglein-
2 in human N-MVECs and SSc-MVECs angiogenesis.

Methodology/principal findings: Angiogenesis was studied by Matrigel invasion, capillary morphogenesis in vitro and
Matrigel plug assay in vivo. Gene profiling was studied by Affymetrix technology and signal transduction by Western
blotting. Colocalization was validated by immunoprecipitation and confocal microscopy. SiRNAs were used to validate the
roles of specific molecules. We observed that desmoglein-2 co-localizes with integrin-beta8 in N-MVECs. This complex is
required to signal through Rac, FAK, SMAD1/5 and MAP-kinases, promoting an angiogenic program. Inhibition of
desmoglein-2 by DSG2-siRNA impaired actin stress fibres formation, capillary morphogenesis in vitro and angiogenesis in
vivo. Transcriptome profiling after DSG2 inhibition revealed alterations of several genes involved in actin organization. siRNA
inhibition of integrin-beta8 and RAC2 also resulted into capillary morphogenesis impairment in N-MVECs, due to reduced
expression of the same actin-assembly genes that were down-regulated by DSG2 silencing. SSc-MVECs showed down-
regulation of the same genes in DSG2-siRNA treated N-MVECs, suggesting that impairment of desmoglein-2/integrin-beta8
complex contributes to angiogenesis derangement in SSc. Transfection of DSG2 in SSc-MVEC partially restored their
angiogenic properties in vitro.

Conclusions/significance: We have shown that impairment of actin assembly as a result of desmoglein-2/integrin-beta8
complex formation is a major factor contributing to angiogenesis deregulation in Systemic sclerosis.
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Introduction

We have previously studied Systemic sclerosis-microvascular

endothelial cells (SSc-MVECs) as a model system to identify

alterations accounting for anti-angiogenesis [1–4]. We observed

that SSc-MVECs, which over-express pro-angiogenic factors, also

over-produce anti-angiogenic molecules and lack operative

systems required to perform angiogenesis. Reduced expression of

desmoglein-2 (DSG2) in SSc-MVECs was one of the most striking

differences, as demonstrated by differential transcriptome profiling

and by immunohistochemistry of endothelial cells (EC) performed

in patients affected by the diffuse form of SSc [3]. Although

desmoglein-1/2 has been identified as a structural component of

EC [5,6], and has been described in many transcriptome-profiling

studies of EC [7–9], its function in EC and in particular in

angiogenesis has not yet been studied. Desmoglein-2 belongs to the

family of desmosomal cadherins, involved in many biological

processes including cell adhesion, morphogenesis, cytoskeletal

organization and cell sorting/migration, as well as in pathological

conditions such as cancer [10,11]. The most studied cadherin of

EC is vascular endothelial (VE)-cadherin (CDH5) which plays an

important role in vasculogenesis and vascular remodelling [12],

although its absence still allows EC to assemble to form vascular

networks, indicating that VE-cadherin is not essential in this
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process [13]. Small GTPases of the Rho family regulate cadherin-

based cell adhesion and linkage of cadherins to the actin

cytoskeleton, which is responsible for strong adhesion [10]. The

intracellular regions of desmosomal cadherins, such as desmoglein-

2, interact with plakoglobin and with plakophilin, which in turn

links to desmoplakin and consequently with the intermediate

filament network. Plakophilin induces filopodia, reduces cell

contacts and stimulates the formation of motility-associated

structures. The association of plakophilin at the crossroads of

adhesion and motility points to an important role of desmoglein in

migration, wound healing and tissue formation through its

possibility to regulate actin dynamics [14]. Since ECs contain a

large number of filopodia, which sense gradients of guidance cues

and consequently turn the cell towards chemoattractants and

angiogenic factors, we have studied by siRNA-dependent loss of

function the role of desmoglein-2 in actin filament assembly in N-

MVECs.

To identify the biological processes and pathways involved in

the anti-angiogenic phenotype due to the reduced expression of

desmoglein-2, we performed gene expression profiling of N-

MVECs before and after siRNA silencing of the DSG2 gene and

investigated the alterations at the mRNA, protein and functional

levels. Further, we have induced a desmoglein-2 gain-of-function

in SSc-MVECs, observing a substantial increase in their angio-

genic capabilities.

Materials and Methods

Ethics Statement
For animal studies the local Institutional Animal Care and Use

Committee of the Medicine Faculty of Florence (Ospedale di

Careggi) and the Italian Ministry of Health (Ministerial Decree n

21/2010, released on January 28, 2010) approved the experimen-

tal protocols described in the study. All surgery was performed

under sodium pentobarbital anesthesia, and all efforts were made

to minimize suffering. For human skin biopsies the local Ethical

Committee of the Medicine Faculty of Florence approved the

study protocols and participants provided their written informed

consent to participate in this study.

Subjects, tissue biopsies, endothelial cells
MVECs were isolated from 3 normal subjects (N-MVEC) and 3

SSc patients (SSc-MVEC) affected by the diffuse form of the

disease. For patient selection and EC isolation refer to references

1–3. Where present, cell colonies were detached with EDTA,

CD31-positive cells were subjected to immuno-magnetic isolation

with Dynabeads-CD31 (Dynal Biotech) and characterized as

described [1–3,15]. Cells were maintained in complete EC-growth

medium (ECGM) [1] and used between the 3rd and 7th passage in

culture. Both N-MVECs and SSc-MVECS were screened for

endothelial markers (CD31, KDR, CD105, vWF and ULEX

lectin) at regular intervals, showing that the EC markers profile did

not significantly change from the 3rd to the 10th passage.

si-RNA treatment of N-MVECs
Targeting and not-targeting siRNAs were obtained from

Dharmacon. Specific silencing of selected genes (DSG2, ITGB8,

RAC2) was performed by transfection of N-MVECs with small-

interfering-RNA (siRNA) (SMART-siRNA-pool, each pool tar-

geting a single gene: human DSG2, ITGB8, RAC2, respectively),

according to the manufactures’s instruction. Not-targeting si-RNA

pool constructs were used as negative control (siCONTROL). To

validate gene silencing, the relevant mRNA levels were deter-

mined by a quantitative real-time (RT)–PCR, as described in the

dedicated paragraph. To favour internalization into N-MVECs,

siRNAs were incorporated into cationic liposomes, utilizing

DharmaFECT transfection reagent. Cells were incubated with

transfection mix (24–48 h for mRNA analysis and 48 h for protein

and phenotypic analysis, respectively).

RNA extraction and Microarray Analysis
Total RNA was isolated from N-MVECs and SSc-MVECs

using RNeasy Kit (QIAGEN). Gene expression profiles of N-

MVECs and siDSG2-N-MVECs were obtained by Affymetrix

technology and Human Genome U133 Plus 2.0 GeneChip, that

contain 54,675 probe-sets allowing evaluation of the expression of

47,000 transcripts and variants. In order to prepare RNA target

for gene expression analysis, the GeneChipH 3’IVT Express Kit

was used (http://www.affymetrix.com). After scanning, data files

were checked for quality parameters. Microarray analysis was

performed according to Affymetrix suggestions (GeneChip

Expression Analysis: data analysis fundamentals in http://www.

affymetrix.com) and our previous experience [3,16–18].

Statistical analysis and functional classification of
microarray data

Data have been deposited in the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo) and are accessible

through GEO Series accession number GSE21547 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi? acc = GSE21547). Image

and expression data files were generated with Affymetrix MAS

5.0. Low level and statistical analysis was done using R 2.9.

Microarray data were first processed in R environment (http://

www.r-project.org) by Affy-package to identify present/absent

probe-set, and then subjected to a normalization step according to

the Micro Array Suite (MAS) method (www.affymetrix.com, www.

bioconductor.org) [19]. In order to identify differentially expressed

genes in siDSG2-N-MVECs with respect to N-MVECs, we applied

a t-statistic variant approach. We used the significance analysis of

microarrays (SAM) method [20] by Siggenes package (www.

bioconductor.org) [21].

Functional classification of the differentially expressed genes was

done using Database for Annotation, Visualization and Integrated

Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) [22]. DAVID

analysis was performed including the Gene Ontology databases,

three pathway databases (Biological Biochemical Image Database,

KEGG PATHWAY and BIOCARTA) and three functional

categories (SP_PIR_KEYWORDS, COG_ONTOLOGY and

UP_SEQ_FEATURE). The differentially expressed genes were

used for cluster analysis by a Ward hierarchical clustering

algorithm separately to samples and genes. To cluster samples

we used the matrix of the Pearson’s correlation coefficient, while

for genes we used the matrix of the Euclidean distance. The cluster

analysis and the heat-map were both performed using the R

statistical environment.

Real-Time PCR
To validate silencing experiments and microarray data, we tested

12 genes by quantitative RT-PCR using TaqMan ABI-PRISM

7900 (Applied Biosystems): DSG2 gene, 4 genes with increased

expression and 7 genes with decreased expression at microarray

experiments. We used 25 ng of cDNA for each sample. The ‘‘Delta-

delta method’’ was used for comparing relative gene expression

results (Applied Biosystems). Expression of target genes was

normalized to GAPDH and displayed as fold-change or log2 fold
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Figure 1. Effects of DSG2 silencing on in vitro parameters of angiogenesis of N-MVECs and in vivo Matrigel sponge assay. A) DSG2 RT-
PCR after DSG2 silencing. Data are expressed as fold change (siCONTROL-N-MVEC = 1). B) Representative desmoglein-2 Western blotting after DSG2
silencing. Results shown are representative of similar data obtained in 3 different experiments; molecular weights markers are to the right; beta-actin:
loading control. The blot on the right refers to desmoglein-2 expression in three different SSc-MVEC lines (5, 6, and 7) used in the present study. C)
Cell viability evaluated by WST-1 assay, D) proliferation and E) matrigel invasion in DSG2 silenced and control N-MVECs. Results are the mean 6 SD of
three different experiments performed in triplicate. *p,0.05, significantly different from control. F) Capillary morphogenesis at 6 h after seeding in
Matrigel of control and treated N-MVECs. Numbers: percent field occupancy, taking control as 100%. Insets: morphology 24 hours after seeding. Data
are from 3 experiments performed in triplicate. G) siDSG2-inhibition of angiogenesis in the Matrigel sponge model in mice. Upper part: angiogenesis
quantification by haemoglobin content of each sponge. Pictures: ZEISS SR stereomicroscope aspect of the sponges under conditions corresponding
to the histograms. Graphs are mean 6 SD; * p,0.05. Results are the mean of three experiments (one animal for each condition, four Matrigel sponges
in each animal).
doi:10.1371/journal.pone.0068117.g001
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Table 1. Differential expression of selected genes in siDSG2-N-MVECs, involved in cytoskeleton biogenesis and organization and
angiogenesis.

Gene name Gene Symbol Expression

Cytoskeleton biogenesis and organization

A kinase (PRKA) anchor protein 12 AKAP12* Q

actin related protein 2/3 complex, subunit 3, 21kDa ARPC3 Q

actin related protein 2/3 complex, subunit 5-like ARPC5L Q

capping protein (actin filament) muscle Z-line, beta CAPZB Q

catenin (cadherin-associated protein), beta 1, 88kDa CTNNB1* Q

catenin (cadherin-associated protein), delta 1 CTNND1* Q

CDC42 effector protein (Rho GTPase binding) 2 CDC42EP2 Q

CDC42 effector protein (Rho GTPase binding) 3 CDC42EP3* Q

cytoskeleton associated protein 5 CKAP5 Q

diaphanous homolog 1 (Drosophila) DIAPH1 Q

diaphanous homolog 2 (Drosophila) DIAPH2 Q

dynactin 6 DCTN6 Q

dynein, axonemal, heavy chain 5 DNAH5 Q

dynein, cytoplasmic 1, heavy chain 1 DYNC1H1 Q

dynein, cytoplasmic 1, intermediate chain 2 DYNC1I2 Q

dynein, cytoplasmic 1, light intermediate chain 2 DYNC1LI2 Q

integrin, beta 8 ITGB8 Q

microtubule-actin crosslinking factor 1 MACF1* Q

mitogen-activated protein kinase kinase kinase 11 MAP3K11 Q

myosin IB MYO1B* Q

myosin ID MYO1D Q

neuronal cell adhesion molecule NRCAM Q

platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) PDGFB* Q

ras homolog gene family, member T2 RHOT2 Q

ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) RAC2 Q

rho/rac guanine nucleotide exchange factor (GEF) 18 ARHGEF18 Q

SMAD family member 1 SMAD1* Q

syndecan 4 SDC4 Q

syndecan binding protein (syntenin) SDCBP Q

thrombospondin 1 THBS1* q

Vinculin VCL q

midline 1 (Opitz/BBB syndrome) MID1* q

Angiogenesis

Interleukin 1, beta IL1B Q

matrix metallopeptidase 14 (membrane-inserted) MMP14* Q

laminin, alpha 4 LAMA4* Q

Endothelin 1 EDN1 Q

cadherin 5, type 2 (vascular endothelium) CDH5 Q

kinase insert domain receptor (a type III receptor tyrosine kinase) KDR Q

jagged 1 (Alagille syndrome) JAG1* Q

placental growth factor PGF* Q

The table summarizes selected genes that had a log2 expression greater than X and P values less than Y, chosen for their biological relevance in cytoskeleton assembly
and angiogenesis.
Expression: up arrows = genes with increased expression in siDSG2-N-MVECs; down arrows = genes with decreased expression in siDSG2-N-MVECs. * = genes resulted
differentially expressed by more than 1 gene set. Genes chosen for real-time PCR validation or siRNA-dependent silencing are reported in bold characters.
doi:10.1371/journal.pone.0068117.t001
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change relative to control RNA used as the calibrator. In Table S1

the tested genes and their assay ID are reported.

Immunoprecipitation, Western blotting and
determination of RhoA and RAC-GTPase activity

For immunoprecipitation, 500 mg cell proteins from confluent

MVEC monolayers were transferred into an Eppendorf micro-

tube, the primary rabbit antibody (anti-ITGB8, Santa Cruz

Biotechnology) was added in 0.1% BSA and incubated overnight

at 4uC. To each lysate, protein A agarose beads (Sigma Aldrich)

were added for 3 h at 4uC. Beads were collected by centrifu-

gation and the supernatant was stocked for further Western

blotting. Aliquots of the pellets were processed, electrophoresed

and blotted as previously described [1,3]. After incubation with

Figure 2. Effects of siDSG2 silencing in N-MVECs on stress fibres assembly and Rho/Rac transduction. A) Actin stress fibers revealed by
labeled phalloidin with a Nikon Plan Apo X60-oil immersion objective. ImageJ 1.44 software was used for image acquisition. 9464% of siCONTROL-
treated N-MVECs showed actin-stress fibers organization, while 89611% siDSG2-treated N-MVECs and 100% SSc-MVECs exhibited a complete
absence of actin stress fibers. B) Rho/Rac activation. Lanes 1, 2 and 3: total Rac and Rho in N-MVECs treated with control non-targeting siRNA, anti-
DSG2 siRNA, and in SSc-MVECs, respectively; +GTP: positive control in N-MVECs lysate. Lanes 4, 5 and 6: constitutive Rho/Rac activation in control
siRNA-N-MVECs, anti-DSG2 siRNA-N-MVECs and in SSc-MVECs, respectively. Actin: loading control. Position of molecular weight markers in kDa is
shown on the right. A representative result of a single N-MVEC and SSc-MVEC line is shown. Similar results were obtained with all the N-MVEC and
SSc-MVEC lines used in this study. C) RT-PCR validation of selected genes following DSG2 silencing in the three N-MVEC lines. D) Expression of the
selected genes after ITGB8 and RAC2 silencing in N-MVECs. Results were normalized to GAPDH and fold changes of silenced-N-MVECs were calculated
relative to the N-MVECs treated with control not-targeting siRNA. Data are expressed as log2 of fold change.
doi:10.1371/journal.pone.0068117.g002
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blocking solution, membranes were probed with an anti-

desmoglein-2 mouse monoclonal antibody (Chemicon Interna-

tional). After incubation with horseradish peroxidase-conjugated

anti-mouse or anti-rabbit IgG (Amersham Biosciences), immune

complexes were detected with the Amersham Biosciences ECL

detection system. Membranes were exposed to autoradiographic

films (Hyperfilm MP; Amersham Biosciences). After incubation

with stripping solution, the membrane was washed, incubated

with blocking solution and re-probed with anti-integrin antibod-

ies. For other Western blotting, 40–100 mg of cell extract protein

were electrophoresed in 12% SDS polyacrylamide gel under

reducing conditions and blotted to a polyvinylidene difluoride

membrane (Hybond-C Extra; Amersham Biosciences). The

membrane was incubated with 5% skim milk in 20 mM Tris-

buffer to block non-specific binding and probed with primary

antibody to desmoflein-2 (1 mg/ml, 1:500) (Chemicon Interna-

tional), phospho-ERK1/2 (p42/p44) (200 mg/ml,1:500) (Cell

Signaling Technology), ERK-2 (200 mg/ml, 1:500), p38MAPK

(250 mg/ml,1:200) (Chemicon International), phospho-p38MAPK

(250 mg/ml, 1:500) (Biosource International), SMAD1/5

(100 mg/ml,1:500), phospho-SMAD1/5 (Ser463/465) (100 mg/

ml, 1:500), phospho-FAK (tyr576/577) (100 mg/ml, 1:500), FAK

(200 mg/ml,1:500) (Cell Signaling Technology). After incubation

with horseradish peroxidase-conjugated donkey anti-mouse or

anti-rabbit IgG (1:5,000) (Amersham Bioscience), membranes

were exposed to autoradiographic films (Hyperfilm MP). Protein-

antibody complexes were revealed by an Odyssey Infrared

Imaging System, using as fluorescent secondary antibodies

IRDye 800 CW goat anti-mouse IgG (1:12000) (LI-COR

Biosciences). N-MVECs from different experimental conditions

and SSc-MVECs were lysed in RIPA buffer, the lysates were

clarified by centrifugation, and RhoA-GTP or RacGTP were

quantified. Briefly, lysates were incubated with 10 mg Rhotekin-

glutathione S-transferase (GST) fusion protein (Upstate) or p21

activated kinase-GST fusion protein, both absorbed on glutathi-

one-Sepharose beads for 1 h at 4uC. Immunoreactive RhoA and

Rac were quantified by Western blot.

Invasion assay and proliferation
MVECs invasion through Matrigel-coated porous filters was

evaluated by the Boyden chamber [1]. 86103 MVECs were

placed in the upper chamber in culture medium containing 2%

Figure 3. Colocalization of desmoglein-2 and integrin-beta8 in N-MVECs. A) Immunostaining of N-MVECs with anti-desmoglein-2 and anti-
integrin-beta8 antibodies (nuclei stained with DAPI) in a single N-MVEC (upper row) and in a group of N-MVECs (lower row). The results shown are
indicative of experiments performed on 3 different N-MVEC cell lines. Original magnification: 660 (Bio-Rad MRC 1024 ES Confocal Laser Scanning
Microscope). B) Co-immunoprecipitation of integrin-beta8 and desmoglein-2. The lanes 1, 2 and 3 of each blot represent 1) input: total lysate, 2)
protein A beads alone, 3) protein A beads + anti-Desmoglein-2 or anti-Integrin-beta8 antibody, respectively. Left side: immuno-blotting with anti-
desmoglein-2 (upper part) and anti-integrin-beta8 (lower part) antibodies of the immuno-precipitates obtained with the same antibodies. Right side:
immuno-blotting with anti-integrin-beta8 antibodies of the immuno-precipitate obtained with anti-desmoglein-2 antibodies (upper part), and
immuno-blotting with anti-desmoglein-2 antibodies of the immuno-precipitate obtained with anti-integrin-beta8 antibodies (lower part). Numbers
on the left indicate molecular weight (kDa) of the revealed bands. IP: immuno-precipitate; IB: immuno-blotting. The data shown represent a typical
experiment out of three experiments on each N-MVEC line, all of which gave similar results.
doi:10.1371/journal.pone.0068117.g003
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FCS. After 6h filters were removed and fixed in methanol. Non-

migrated cells were mechanically removed from the upper surface

and the migrated cells on the lower filter surface were stained and

counted under a light microscope (40X) in 10 random fields per

each well. Each point was performed in triplicate. Mean values of

migrated cells for each point were calculated 6 SD. Cell

proliferation was evaluated by cell counting.

Cell Viability Assay
The viability N-MVECs under each relevant condition was

determined by a cell proliferation assay using WST-1 reagent

(Roche). WST-1 is a water-soluble sulfonated tetrazolium salt that

is cleaved by cellular succinate-dehydrogenases in living cells,

yielding dark blue formazan. Damaged or dead cells exhibit

reduced or no dehydrogenase activity. Briefly, N-MVECs were

plated onto a 96-multiwell plate in quadruple and treated with

siRNAs as described above. After 72 hours WST-1 solution/

culture medium (5 mmol/l, 1:9) was added to each well. Following

2-hours incubation at 37uC, absorbance at 450 nm (reference at

630 nm) was measured by a Multiskan JX microplate reader.

Percentage of cell viability was calculated based on the absorbance

measured relative to that of the untreated control cells maintained

in culture medium alone.

Matrigel-sponge-assay in mice
Aliquots of 50 ml of serum-free ECGM, containing 50 U/ml

heparin and 600 ng/ml VEGF, with or without DSG2-siRNA,

combined with DharmaFect, were added to un-polymerized

Matrigel at 4uC at a final volume of 0.6 ml. Matrigel suspension

was injected subcutaneously into flanks of C57/BL6 male mice

(Charles River) using a cold syringe. At body temperature Matrigel

polymerizes and becomes vascularized within 4 days in response

to angiogenic substances. Groups of 4 pellets were injected for

each treatment. Pellets were removed, photographed with a

stereo-microscope, minced and diluted in water to measure

hemoglobin content with a Drabkin reagent kit (Sigma Aldrich).

In vitro capillary morphogenesis assay
Matrigel (0.5 ml; 10–12 mg/ml) was pipetted into 13-mm tissue

culture wells and polymerised for 30 min to 1h at 37uC [4].

MVECs were plated (606103/ml), in complete MCDB medium,

supplemented with 30% FCS, and 20 mg/ml EC-growth-supple-

ment (ECGM). Morphogenesis was evaluated after 6 h with an

Figure 4. Integrin-dependent and integrin-independent transduction pathways in N-MVECs and their modulation by silencing of
DSG2 and ITGb8. Panel A: Western blotting. In each Western blot lane 1 indicates control conditions (1), lane 2 the effect of siDSG2 (2), and lane 3 the
effect of siITGb8 (3). Position of molecular weight markers in kDa is shown on the right. In each blot the non-phosphorylated form of the molecule is
used as a loading control. The results shown have been selected among three different series of experiments that gave similar results in three
different N-MVEC cell lines. For quantification, each electrophoresis pattern was subjected to densitometry. Histograms represent the average values
6 SD of three different experiments performed in three different N-MVECs cell lines. *p,0.05, significantly different from control. Panel B: TRITC-
labeled phalloidin immunofluorescence of stress fibers in control and in N-MVECs treated overnight with 5 mM FAK inhibitor 14, 30 mM MEK inhibitor
UO126, 300 nM p38 inhibitor SB 202190, 10vmM TGFbRI/II inhibitor LY2109761.
doi:10.1371/journal.pone.0068117.g004
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inverted microscope (Leitz DM-IRB) equipped with a digital

analysis system. Results were quantified at 6h by measuring the

percent field occupancy of capillary projections. Six to nine

photographic fields from three plates were scanned for each point.

Results were expressed as percent field occupancy 6 SD with

respect to control fixed at 100%.

Immunofluorescence and Confocal-Laser-Scanning-
Microscopy (CLSM)

N-MVECs and SSc-MVECs were grown on coverslips in

ECGM, fixed in paraformaldehyde and permeabilised according

to routine immuno-cytochemistry methods. Nuclei were stained

with DAPI (10 mg/ml) (Sigma) for 15 min at RT. The anti-human

primary antibodies used were: anti-integrin-beta8 (Santa Cruz

Biotechnology); anti-desmoglein-2 (Chemicon International). The

secondary antibodies were Alexa 488-conjugated goat anti-mouse

IgG (1:200) (Molecular Probes), Texas Red-conjugated goat anti-

mouse IgG (1:100) (Chemicon International) and Texas Red-

conjugated goat anti-rabbit IgG (1:200) (Molecular Probes).

TRITC-labeled phalloidin (Sigma) was applied to the cells to

visualize the arrangement of actin cytoskeleton. The coverslips

containing the immunolabeled cells were mounted with an anti-fade

mounting medium (Biomeda) and observed under a Bio-Rad MRC

1024 ES CLSM. The cells were examined with a Nikon Plan Apo

X60-oil immersion objective using an excitation wavelength

appropriate for Alexa 488 (495 nm) and Texas Red (595 nm). A

series of optical sections were then taken through the depth of the

cells with a thickness of 1mm at intervals of 0.8 mm. Quantitative

analysis and colocalization of antigens were performed on acquired

images analyzed as individual channel. The Manders overlap

coefficients (M1 and M2) were determined using JACoP plugin and

also calculated using the intensity correlation analysis plugin of the

open-source softwer WCIF- Image J 1.44 as previously described

[23]. We used the same operating mode of image analysis: Manders

overlap coefficients indicate an overlap of the signals and thus

represent the degree of colocalization between the red and green

pixels: their values range from 0 (no overlap) to 1 (complete overlap).

The background signal on each image was initially corrected using

the Image J background subtraction function and, whenever

possible, single cells on the images were selected using the Iasso

tool (which defines a so-called ‘‘region of interest’’). Colocalization

was then calculated, after choosing the threshold values for the green

and red channels, with the aforementioned plugin on the regions of

interest previously defined. Quantization of Desmoglein-2 fluores-

cence and Integrin-beta8 fluorescence was conducted on z stacks of

70 sections corresponding to a thickness of approximately 0.8 mm

passing through the middle of the cells. Regions of interest were

manually drawn around each cell, and their integrated intensity

after background correction was measured in Desmoglein-2 and

Integrin-beta 8 channels. Image J software was used for fluorescence

quantization, and Origin 6.1, Version 6.1052 (B232) was used for

statistical analysis. Results are expressed as mean 6 SD. Multiple

comparisons were performed by 1-way ANOVA with Bonferroni

correction. A P value ,0.05 was considered statistically significant.

Some immunofluorescence experiments with TRITC-labeled

phalloidin, aimed to show the involvement of specific signalling

pathways in actin polymerization, were performed in the presence of

the following signalling inhibitors: FAK inhibitor 14 (Santa Cruz

Biotech), MEK inhibitor UO126 (Promega), p38 inhibitor

SB202190 and TGFb receptor type I and type II inhibitor

LY2109761 (both from SelleckBio.com).

Transient transfection of SSc-MVECs with DSG2
For transient transfection of the human DSG2 gene, SSc-

MVECs (66106 cells) were incubated in 500 ml of serum-free

OPTI-MEM (Life Technologies) with the addition of recombinant

vector (CMV6-XL DSG2) or pCMV6-XL alone as empty vector

Figure 5. Effects of ITGB8 silencing in N-MVECs. Panel A. Capillary morphogenesis following ITGB8 silencing and relative controls. Pictures show
the results of a typical experiment out of 3 experiments performed in triplicate with each N-MVEC line. Panel B: organization of actin stress fibers
under the same conditions of A. Untreated N-MVECs showed actin stress fibers organization in 100% cells, siCONTROL-treated N-MVECs showed
9366% of actin stress fibers-positive cells, while in siITGB8-treated N-MVECs actin stress fibers organization was absent in 9168% cells.
doi:10.1371/journal.pone.0068117.g005
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control (15 mg each) (OriGene Technologies) and then were

electrophorated using a Bio-Rad Gene Pulser apparatus.

Statistical analysis
Results are expressed as mean 6 SD. Comparisons were

performed by the Student test, differences were considered

statistically significant at p,0.05.

Results

DSG2 silencing in N-MVECs and its effects on in-vitro
parameters of angiogenesis and in vivo Matrigel sponge
assay

After silencing of DSG2 in N-MECs (siDSG2-N-MVECs), DSG2

expression levels were reduced about 14-fold with respect to

control cells (figure 1A). This correlated with a decrease in

Figure 6. Real time PCR in SSc-MVECs of MACF, DIAPH1, DIAPH2, ARPC3, RAC2, CDH5, and ITGB8. Rescue of the angiogenic phenotype in
SSc-MVECs by transient transfection. Panel A: RT-PCR of the relevant transcripts in SSc-MVECs, relative to N-MVECs. Data are expressed as log2 of fold
change. Negative values indicate decreased expression levels. Panel B: Immunostaining of SSc-MVECs with anti-desmoglein-2 and anti-integrin-beta8
antibodies (nuclei stained with DAPI) after transient transfection with control vector (upper pictures) or DSG2 transfection (lower pictures). The results
shown are indicative of experiments performed on 3 SSc-MVEC cell lines. Original magnification: X60 (Bio-Rad MRC 1024 ES Confocal Laser Scanning
Microscope). Panel C: Capillary morphogenesis in control and DSG2-transfected SSc-MVECs. Pictures show the results of a typical experiment out of 3
experiments performed in triplicate in each one of the different SSc-MVEC lines (SSc-MVEC 1, 2 and 3).
doi:10.1371/journal.pone.0068117.g006
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desmoglein-2 protein expression, as determined by Western

blotting (figure 1B), following DSG2-siRNA treatment, showing

DSG2 down-regulation similar to levels expressed by SSc-MVECs

(shown in lanes 1, 2 and 3 on the right). While cell viability

(figure 1C) and cell proliferation (figure 1D) of N-MVECs resulted

unaffected by siRNA treatment, Matrigel invasion (figure 1E) and

capillary morphogenesis (figure 1F) were impaired. These results

are similar to those previously reported for SS-MVECs [1].

Vascularization was evaluated in injected Matrigel sponges.

Matrigel, containing serum-free ECGM with heparin and VEGF,

with or without DSG2-siRNA, combined with DharmaFECT, was

injected subcutaneously into the flanks of C57/BL6 male mice.

DSG2-siRNA inhibited Matrigel vascularization after 4 days

(figure 1G), in agreement with the effects observed in vitro.

Affymetrix Gene Expression Profiling
To investigate the biological processes and pathways altered by

reduced expression of DSG2, Affymetrix gene expression profiling

of N-MVECs before and after siRNA silencing of DSG2 was

performed. Throughout all gene expression profiling experiments

N-MVECs 1, 2 and 3 were used at passages 4, 4 and 5,

respectively in order to minimize changes of gene expression

related to cell passaging.

After data processing and application of the filtering criteria, the

average of analyzable probe sets numbered 20,007 (37% of the

54,675 probe-sets represented in the GeneChip). By using the

significance analysis of microarrays (SAM), we observed 2,945

transcripts differentially expressed in siDSG2-N-MVECs with respect

to N-MVECs (GEO Series accession number GSE21547: supple-

mentary file GSE21547_TableDE.xls.gz: http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?token = hbwpnommaskiexe&acc =

GSE21547) Two hundred and twenty were expressed sequence tags

(ESTs) not associated with a known gene (GEO Series accession

number GSE21547: supplementary file GSE21547_TableDE.xls.gz:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token = hbwpnom

maskiexe&acc = GSE21547)One thousand and seven hundred and

two genes showed an increased expression and 1,243 genes had a

reduced expression in the siDSG2-N-MVECs compared with N-

MVECs (GEO Series accession number GSE21547: supplementary

file GSE21547_Table DE.xls.gz: http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token = hbwpnommaskiexe&acc = GSE21547)

Classification of differentially expressed genes and
cluster analysis

We performed the functional classification of the 2,945

differentially expressed genes using DAVID analysis and including

in the analysis information from the Gene Ontology database

(Molecular Function, Biological Process and Cellular Component),

three pathway databases (Biological Biochemical Image Database,

KEGG PATHWAY and BIOCARTA) and three functional

categories (SP_PIR_KEYWORDS, COG_ONTOLOGY and

UP_SEQ_FEATURE). Several classes were significantly associat-

ed with siDSG2-N-MVECs. Among the over-represented annota-

tion terms, we observed a high number of functional terms and

pathways implied in cytoskeleton organization and biogenesis,

angiogenesis, blood vessel development. These data, together with

those of figure 1, suggested that cytoskeleton deregulation could be

a crucial mechanism of the altered phenotype of siDSG2-N-

MVECs. Table 1 shows a selection of differentially expressed

genes involved in cytoskeleton biogenesis/organization and

angiogenesis.

The 2,945 differentially expressed genes were then used for

cluster analysis (figure S1, dendrogram). The gene expression

profiles clearly distinguished between siDSG2-N-MVECs and N-

MVECs and the cluster analysis identified six groups of genes by

similar expression levels (identified as box A-F in figure S1).

Interestingly, in the cluster E, one of the gene cluster with the

higher expression levels, we found many genes significantly

associated with classification terms involved in cytoskeleton, cell

motility and migration, and angiogenesis (table S2).

Altered actin cytoskeleton assembly and Rho/Rac-GTPase
activity in silenced N-MVECs

To verify whether DSG2 silencing altered actin assembly, thus

accounting for inhibition of angiogenesis in vitro and in vivo, we

visualized actin organization in control and siDSG2-N-MVECs, as

related to SSc-MVECs. Actin stress fiber disassembly was found in

siDSG2-N-MVECs (figure 2A) and a similarly altered actin

organization like that of SSc-MVECs. Since small GTPases of

the Rho/Rac family mediate cadherin-dependent cytoskeletal

rearrangements and cell motility [10], as well as integrin-mediated

outside-in signals to actin cytoskeleton, we studied Rho/Rac

activation by Western blotting. N-MVECs and SSc-MVECs both

express Rac (figure 2B), whose activated form, evident in N-

MVECs, resulted barely detectable in both siDSG2-N-MVECs and

in SSc-MVECs. Interestingly, DSG2-silenced N-MVECs ex-

pressed lower amounts of Rac, in line with data obtained by

microarray in siDSG2-N-MVECs, while no modification of Rho

was observed (figure 2B).

Real Time-PCR validation of microarray data
By real time-PCR, we assessed the expression of 12 selected

differentially expressed genes: seven genes with a decreased

expression (MACF1, which stabilizes actin at sites where microtu-

bules and microfilaments meet; DIAPH1, DIAPH2 and ARPC3,

involved in regulation of actin polymerization; CDH5, whose

intracellular partners a-catenin, b-catenin and vinculin interact

with the actin network; the integrin ITGB8, which mediates cell-cell,

cell-ECM interactions and cytoskeleton assembly in ECs; RAC2,

involved in endothelial integrin signalling, and DSG2. Four genes

with an increased expression (VCL, a cytoskeletal protein involved in

anchoring F-actin to the membrane; THBD, a marker of endothelial

injury; THBS1, an angiogenesis inhibitor; MID1, a microtubule-

associated protein) were assessed in parallel (Figure 2C).

Table 2. Confocal microscopy analysis of SSc-MVECs transfected with DSG2.

Mean desmoglein-2 relative
intensity

Mean integrin-beta8 relative
intensity

Colocalization (desmoglein-2
overlapping integrin- beta8)

Empty vector 142742635997 242672642488 0.629

DSG2 +182%* +210%* 0.793*

*p,0.05, statistically significant.
doi:10.1371/journal.pone.0068117.t002
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Down regulation of the actin-cytoskeleton regulating
genes by silencing of ITGB8 and of RAC2 in N-MVECs

We examined by real time-PCR the expression of MACF1,

DIAPH1, DIAPH2, ARPC3, RAC2, CDH5, ITGB8 and DSG2

following siRNA-dependent silencing of either ITGB8 or RAC2

(Figure 2D). The data show that silencing of either gene provided a

gene expression pattern similar to that obtained upon silencing of

DSG2 (shown in figure 2C). These results, coupled with those

shown in figure 2B, were strongly suggestive of a possible

functional and spatial relationship of the protein products of

DSG2, ITGB8 and RAC2 genes.

Colocalization of integrin-beta8 and desmoglein-2 in N-
MVECs and related transduction pathways

Because in contrast to integrins and classical cadherins,

desmogleins are not known to elicit intracellular signalling [24],

and because our results indicated that DSG2 and ITGB8 silencing

produced angiogenesis inhibition and a similar pattern of

expression in genes regulating actin in N-MVECs, we evaluated

whether integrin-beta8 and desmoglein-2 colocalize in MVECs, in

order to verify whether integrin-beta8 was present as a transduc-

tion partner in a putative desmoglein-2/integrin-beta8 complex in

MVECs. Confocal Laser Scanning Microscopy was used to co-

localize integrin-beta8 and desmoglein-2 by specific antibodies.

Both antibodies provided a diffuse micro and macro-dotted

distribution, together with a slight membrane localization that,

upon merging, revealed an almost complete co-localization

(figure 3A). Co-localization was validated by immuno-precipita-

tion experiments (figure 3B). Previous data had suggested that the

integrin-beta8 cytoplasmic domain did not interact with the

cytoskeleton and with cytoplasmic signalling pathways in an

adhesion-promoting fashion [25]. However, it still appeared to be

involved in late events in shaping cell morphology, such as process

extension, indicating integrin-beta8 as a ‘‘divergent’’ signalling

integrin [25]. Integrin-beta8 can signal through at least two

different pathways: a classical FAK-mediated pathway and a

TGFb-mediated one. The latter pathway relies on the property of

integrin-beta8 to release ECM-entrapped TGFb in an activated

form [26]. We therefore examined a series of transduction

pathways related to classical integrin-mediated signalling and to

TGFb-mediated signalling. Both FAK phosphorylation and

TGFb-dependent SMAD1/5 phosphorylation decrease upon

silencing of DSG2 or ITGB8 (figure 4A). The main components

of down-stream transduction MAPK signalling pathway, ERK1/2

and p38a, which control gene expression, also show decreased

phosphorylation upon DSG2 or ITGB8 silencing. The functional

role of these signalling pathways in the regulation of actin assembly

in MVECs was confirmed by the use of specific inhibitors of FAK,

MEK, p38 and TGFbRI/II (figure 4).

Biological consequences of the silencing of the 7
selected genes with reduced expression in siDSG2-N-
MVECs

In order to verify the role of the genes with reduced expression

in siDSG2-N-MVECs, we performed the silencing of 7 selected

genes: MACF1, DIAPH1, DIAPH2, ARPC3, RAC2, CDH5, and

ITGB8, and evaluated the biological consequences of silencing in

terms of capillary morphogenesis on Matrigel and stress fiber

organization. ITGB8 silencing produced the inhibition of vessel-

like structures and disrupted the actin cytoskeleton assembly, as

shown by stress fiber disorganization with respect to untreated and

control siRNA-treated MVECs (figures 5A and B). Silencing of the

other genes gave similar results (data not shown).

Evaluation in actin cytoskeleton regulating genes in SSc-
MVECs and forced expression of DSG2 in SSc-MVECs

Our previous studies on transcriptome profiling of SSc-MVECs

[3] tested 14,000 transcripts, as compared to the 47,000 transcripts

of this study. The previous profiles included DSG2 but did not

assay the other genes involved in actin-cytoskeleton organization

investigated and validated here. To investigate whether siDSG2-N-

MVECs and SSc-MVECs shared alterations of the actin-

cytoskeleton genes down-regulated by siDSG2, we assessed by

RT-PCR the expression of MACF1, DIAPH1, DIAPH2, ARPC3,

RAC2, CDH5 and ITGB8 genes in three SSc-MVEC lines

(figure 6A). Our results showed that these genes had reduced

expression in all the SSc-MVEC lines as compared with N-

MVECs. To test the hypothesis that desmoglein-2 is required for

efficient angiogenesis of N-MVECS that is lacing in SSc, we

transiently transfected the three SSc-MVEC lines with DSG2.

Immunofluorescence analysis of DSG2-transfected SSc-MVECs

showed significantly increased levels of desmoglein-2 and integrin-

beta 8 expression along with significantly increased desmoglein-2/

integrin-beta 8 colocalization (figure 6B and table 2). Further, the

DSG2 transfected SSc-MVECs partially recovered the capability to

undergo capillary morphogenesis in vitro (figure 6C).

Discussion

We have demonstrated here that desmoglein-2 and integrin-

beta8 are colocalized in N-MVECs and that the complex is

required to deliver signals, mediated by the small GTPase Rac, by

FAK and SMAD 1/5 phosphorylation, and by phosphorylation of

the MAP-Kinase ERK 1/2 and p38a, which promote angiogen-

esis in N-MVECs. Inhibition of DSG2 and/or ITGB8 expression

by siRNA impaired N-MVECs angiogenesis, inducing actin stress

fibres disassembly. The effect depended on down-regulation of

genes involved in actin assembly, such as ARPC3, CDH5, DIAPH1,

DIAPH2 and MACF1. Inhibition of each one of such genes

produced actin disassembly and capillary morphogenesis impair-

ment. The same molecules were also down-regulated in SSc-

MVECs, suggesting that impairment of the desmoglein-2/

integrin-beta8 complex contributes to angiogenesis derangement

in the diffuse form of Systemic sclerosis.

Although desmoglein-1/2 has been identified as a structural

component of EC intercellular junctions [5], and has been

reported in transcriptome-profiling studies of ECs [3,7-9], its role

in the context of EC function has never been experimentally

addressed. Our data identify unexpected properties of DSG2 in

regulation of actin dynamics in ECs.

Reducing DSG2 expression with siRNA in N-MVECs to levels

comparable with SSc-MVECs [3] produced a similar inhibition of

angiogenesis in vivo and in vitro. The transcriptome-profiling of

DSG2-silenced N-MVECs identified a number of differentially

expressed genes associated with cytoskeleton organization, cell

motility and migration, and angiogenesis, suggesting that cyto-

skeleton deregulation could be a crucial mechanism of the altered

angiogenic phenotype of siDSG2-N-MVECs. In particular, in

siDSG2-N-MVECs ARPC3, which promotes actin polymerization

[27], had decreased expression suggesting a possible role in

cytoskeleton disorganization. The protein encoded by the MACF1

gene belongs to the plakin family of cytoskeletal linker proteins

[28] and appears to stabilize actin at sites where microtubules and

microfilaments meet. Actin polymerization also requires proteins

known to interact with diaphanous protein DIAPH1 and DIAPH2,

that work through RAC activation [29]. Functioning as a classic

cadherin, the protein encoded by CDH5 gene plays an important

role in EC biology through organization of the intercellular
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junctions and induction of actin assembly [10–13]. The ITGB8

gene is a member of the integrin-beta family and encodes a single-

pass type I membrane protein [30]. In general, integrin complexes

mediate cell-cell and cell-extracellular-matrix interactions, as well

as cytoskeleton organization [25]. The GTPase RAC2 is involved

in endothelial integrin signaling and in the postnatal neovascular-

ization response in vivo [31]. Moreover, it has been shown that the

small GTPase RAC2 regulates actin structures in a variety of cells

[32]. Down-regulation of this same set of genes was obtained by

siRNA-dependent inhibition of DSG2, ITGB8 or RAC2, suggesting

that an outside-in informational flux dependent on their expres-

sion could be inhibited regardless of the silenced gene.

Because desmogleins are not known to elicit intracellular

signalling [24], and ITGB8 silencing resulted into angiogenesis

inhibition and down-regulation of actin-regulating genes in a

pattern similar to that elicited by DSG2 silencing in N-MVECs, we

hypothesized that integrin-beta8 was present as a transduction

partner in a putative integrin-beta8/desmoglein-2 complex. This

hypothesis was confirmed by co-localization of integrin-beta8 and

desmoglein-2 in N-MVECs by Confocal Microscopy and immu-

noprecipitation. In particular, by confocal microscopy we have

identified a non-conventional distribution of desmoglein-2, char-

acterized by a diffuse micro and macro-dotted pattern over the cell

surface in N-MVECs. This is not surprising, considering that

desmosomes are not present in endothelial cells and that

desmoglein-2 has been described as a novel solitary surface

glycoprotein that is present in non-junction-restricted forms in

cutaneous cells devoid of desmosomes, upon malignant transfor-

mation [33].

We also observed a complex array of signaling pathways that

are likely to cooperate in integrin-beta8/desmoglein-2-dependent

angiogenesis. Since integrin-beta8 is the signalling molecule of the

integrin-beta8/desmoglein-2 complex, inhibition of signalling

dependent on DSG2 silencing is likely to be ascribable to a

possible function of desmoglein-2 as an ‘‘adjuvant’’ molecule

required for integrin-beta8 to exert its signalling function. The

pathways involved range from FAK to the small GTPase RAC,

the MAP-Kinase system, considered immediately upstream of

gene expression, and, surprisingly, the TGFb-dependent EC-

restricted SMAD1/5 transduction pathway. An intimate relation-

ship between some integrins and the activation of latent TGFb1

has recently been described [26]. Integrin-dependent activation of

latent TGFb may disclose the full range of TGFb activities,

including angiogenesis promotion [34–36]. It is interesting to note

that upon DSG2 silencing in N-MVECs, down-regulation of Rac

and of its activation is not counterbalanced by Rho activation.

From a general point of view, motile cells assume several

phenotypes, including a mesenchymal mode, in which the cells

are elongated and fibroblast-like, and a distinct amoeboid mode,

with less adherent properties and extensive membrane deforma-

tion. The so-called ‘‘mesenchymal-type movement’’, which heavily

depends on cell surface-associated proteases, has been shown to

depend on activation of Rac and inhibition of Rho GTPases. In

contrast the cell movement referred to as ‘‘amoeboid-like’’ has

been associated with the loss of cell proteases activity and is

characterized by an opposite phenotype of small GTPases [37,38].

Therefore, a high Rho/Rac ratio identifies an amoeboid motility,

while a low Rho/Rac ratio connotes a mesenchymal motility.

However, the Rho/Rac balance always requires a proper

functioning of the actin cytoskeleton, which is the most important

pre-requisite in order to shift from a mesenchymal to an amoeboid

movement style. Since the actin assembly genes are deregulated in

the absence of desmoglein2/integrin-beta8 complex, si-DSG2-

treated N-MVECs are unable to shift to an amoeboid movement,

which may account for the absence of Rho activation.

Our results contribute to add new insights into the mechanisms

of angiogenesis deregulation in Systemic sclerosis. In addition to

DSG2, also MACF1, DIAPH1, DIAPH2, ARPC3, RAC2, CDH5, and

ITGB8 genes showed a reduced expression in SSc-MVECs,

suggesting that the very poor expression of DSG2 previously

observed in our study of the differential gene expression profiling

of N-MVECs and SSc-MVECs [3] may play a critical role in the

pathogenesis of Systemic sclerosis angiogenesis impairment.

Conclusions

Our data support a key role of the integrin-beta8/desmoglein-2

complex in the regulation of the angiogenic process. In agreement

with the observations of this study, transient transfection of SSc-

MVECs with DSG2 restored the loss of co-localization between

desmoglein-2 and integrin-beta8, allowing at the same time a

partial rescue of their capillary morphogenesis ability in vitro. These

data show that DSG2, a recently emerged component of ECs, is

particularly important in the regulation of a correct angiogenesis

process and that its loss plays a relevant role in the complex

scenario of angiogenesis deregulation in Systemic sclerosis.
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