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Abstract

A major goal of cancer genome sequencing is to identify mutations or other somatic alterations that can be targeted by
selective and specific drugs. dGene is an annotation tool designed to rapidly identify genes belonging to one of ten
druggable classes that are frequently targeted in cancer drug development. These classes were comprehensively populated
by combining and manually curating data from multiple specialized and general databases. dGene was used by The Cancer
Genome Atlas squamous cell lung cancer project, and here we further demonstrate its utility using recently released breast
cancer genome sequencing data. dGene is designed to be usable by any cancer researcher without the need for support
from a bioinformatics specialist. A full description of dGene and options for its implementation are provided here.
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Introduction

Cancer genome sequencing studies are now analyzing 50 to 500

patients per study and are documenting thousands of somatic

mutations [1,2]. New tools for annotation and analysis are needed

to predict the functional relevance of these genetic alterations and

guide subsequent investigations. Here, we introduce a tool based

on druggable genes which, in combination with other annotation

and filtering steps, can rapidly prioritize a large set of mutations

into a more focused set that can be tested in functional studies.

This tool, which we call dGene (collection of Druggable Genes),

is based on the concept of the druggable genome introduced by

Hopkins and Groom in 2002 [3]. They identified protein classes

that can potentially bind small molecule drugs and proposed that

disease-modifying genes belonging to a druggable class should be

prioritized for drug development [3,4]. This set of druggable genes

was based on the observation that FDA approved drugs and

compounds in development do not target the human genome

uniformly, with some gene classes, such as G-protein coupled

receptors (GPCR) and protein kinases, being more frequently

targeted by small molecules.

dGene adds to their work by expanding and updating the set of

druggable classes based on current drug development efforts,

populating classes comprehensively and maintaining quality

through manual curation. In this article, we describe the rationale

and construction of dGene, demonstrate its utility in a recently

released set of breast cancer whole-genome and whole-exome

sequence data [2] and provide instructions for using dGene.

Results

dGene is designed as an annotation and filtering tool for

prioritizing mutations for functional assessment (Fig. 1a). The

initial step in its design was selecting a set of gene classes that are

both highly druggable and relevant to cancer biology. Classes were

selected based on previous outlines of the druggable genome [3,4]

and additional probing of the primarily literature, with a particular

emphasis on cancer biology. For instance, while transporters and

ion channels are widely druggable, they have been excluded from

dGene due to a lack of established relevance in tumorigenesis. The

current version of dGene is built around ten gene classes (Table 1).

We demonstrate the validity of this approach by examining a

group of 299 drugs undergoing clinical trials for lung cancer [5].

We observed that over 60% of these drugs targeted proteins that

are within the 10 classes in dGene (Fig. 1b).

Each of the 10 dGene classes was comprehensively populated

using tailored sources including specialized databases and review

articles. For a given class, results from several sources were

reconciled through the NCBI Gene List and entries unique to a

single source were confirmed against databases like UniProt or the

primary literature. Nuclear hormone receptors (NHR) illustrate a

straightforward case with well curated sources [6] requiring little

additional scrutiny (Fig. 1c). For comparison, proteases required

an elaborated workflow involving additional specialized sources

[7] and a greater degree of manual curation including primary

literature searches (Fig. 1d). The final dGene list includes 2257

genes from the ten classes (Table 1 and Table S1), and draws from

a variety of specialized and general sources [6–14]. dGene is
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Figure 1. Rationale and process for construction of the dGene list. A, Druggability serves as a rational screen in a hypothetical pipeline for
reducing a raw gene list to an experimentally workable number. B, Lung cancer drugs in the pipeline classified by target type, with some target types
considered broadly druggable and included in dGene. C, NHRs required a simple workflow. Russ et al, 2005 and NucleaRDB [6] provided input. One
gene mapped to neither the NCBI gene nor synonyms list. Six genes were identified in only one source and were manually checked against UniProt

dGene, The Druggable Gene Database
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entirely modular and expandable: future information or gene

classes of interest can be easily added.

The dGene filter has recently been used by The Cancer

Genome Atlas (TCGA) Squamous Cell Lung Cancer project to

analyze somatic mutations found in 178 squamous cell lung cancer

cases; details can be found in that publication [1]. To further

illustrate the utility of dGene, we chose a recent genomic study of

77 estrogen receptor positive breast cancers as a test case [2]. The

dataset consists of 46 breast cancers that underwent whole genome

sequencing, plus 31 cancers that underwent exome sequencing,

denoted by ‘‘BRC’’ and ‘‘CSB’’ patient codes, respectively. dGene

identified 368 single nucleotide variants (SNV) out of 2622 total as

occurring in 255 druggable genes (Fig. 2a–b). Requiring recur-

rence in multiple patients reduces the gene set even further

(Fig. 2c). The 37 genes which are both druggable and present in at

least 2 patients are listed in Figure 2d. The input file and the

dGene output file from this analysis are provided (Tables S2 and

S3).

The dGene results provide new information about this cancer

genome dataset. PIK3CA is mutated in 37/77 samples, but an

additional patient (BRC44) had a KPDL567 in-frame deletion in

PIK3R1, a regulatory subunit that binds PIK3CA. This deletion

occurs at the PIK3R1-PIK3CA binding interface and may alter

PI3-kinase signaling [15]. dGene suggests the importance of this

mutation through both its relationship to PIK3CA and potential

druggability. Additional mutations were similarly highlighted; for

instance, the TEX14 (names: testis-expressed protein 14 or sugen

kinase 307) and INSRR (insulin receptor-related receptor) tyrosine

kinases are two relatively novel drug targets. TEX14 has been

implicated in multiple myeloma and breast cancer [16,17], and

INSRR has been implicated in ovarian epithelial cancers and

neuroblastomas [18,19]. Both are likely druggable, but neither

occurred at high frequency and were not highlighted in a global

analysis of the dataset. In order to demonstrate the value of the

dGene results, comparison was made to search results from an

existing drug database, the PharmGKB (The Pharmacogenomics

Knowledgebase). dGene identified more genes than PharmGKB

from this breast cancer dataset (Figure S1, Table S4), including

identifying 4 tyrosine kinases and 13 S/T kinases that were

recurrently mutated in these breast cancer genomes (Fig. 2D).

Figure 2d also illustrates two caveats in using dGene. Mutations

in MAP3K1 are found in 9/77 patients, and most of these events

are loss of function mutations [2]. MAP3K1’s presence in the

dGene output analysis demonstrates that dGene provides no

information as to whether a mutation is gain-of-function, loss-of-

function, or functionally silent. Given a list of gene symbols, dGene

only acts as a filter. The presence of Titin and two collagen genes

(COL28A1 and COL6A3) illustrate how very large genes, which

frequently contain druggable components and tend to be

frequently mutated, will continue to filter through dGene. The

presence of a gene in the dGene output does not guarantee a given

mutation’s biological relevance.

dGene can be applied to any dataset containing a list of gene

symbols. To illustrate this we analyzed gene copy number (CN)

data from the 46 estrogen receptor positive breast cancers that

underwent whole genome sequencing (coded ‘‘BRC’’) [2]. The

raw CN data implicated 19,528 genes through nearly 150,000

events, including both focal and broad CN changes. As an initial

screen, only events below the 20th or above the 80th percentile

were considered (0.76 and 1.56 changes, respectively), leaving

54,301 events in 16,924 genes (Table S5). Filtering against dGene

further reduced the set to 5421 CN changes in 1752 druggable

genes (Figure 3a–c and Table S6). The CN losses in the PTEN

family revealed a novel observation (Figure 3d). TPTE2 (names:

transmembrane phosphoinositide 3-phosphatase and tensin ho-

molog 2 or TPIP) is the most commonly lost PTEN family

and Gene Ontology (GO) [9,10]. None could be confirmed as NHRs, leaving the final class with 48 members. D, The elaborated workflow for proteases
is analogous to that of the NHRs and other classes. Because UniProt served as input, curation involved searching the primary literature in addition to
querying GO.
doi:10.1371/journal.pone.0067980.g001

Table 1. Summary of the dGene list.

Class Description Entries Source(s)

GPCR G-protein coupled receptors 857 Russ (2005); GPCRDB; UniProt

PROTEASES Proteases 572 Russ (2005); MEROPS; UniProt; Gene
Ontology

ST_KINASE Serine/Threonine kinases 417 Russ (2005); Kinase.com; UniProt

PROT_INHIB Protease inhibitors 153 Russ (2005); MEROPS; UniProt; Gene
Ontology

Y_KINASE Tyrosine kinases 91 Russ (2005); Human Kinsome; UniProt

PTP Phosphotyrosine phosphatases 82 Russ (2005); Tonks (2006); Alonso (2003);
UniProt

NHR Nuclear hormone receptors 48 Russ (2005); NucleaRDB

PTP_MTMR Myotubularin related phosphotyrosine
phosphatases

16 Tonks (2006); Alonso (2003)

PI3K Phosphatidylinositol 3 kinases 14 Engelman (2006); Gene Ontology

PTEN Phosphatase and tensin homologues 7 Tonks (2006); UniProt; Gene Ontology

Total: 2257

The following references outline primary database construction: GPCRDB (Ref. 8; url: http://www.gpcr.org/7tm/); MEROPS (Ref. 7; url: http://merops.sanger.ac.uk/);
KinBase (Ref. 11; url: kinase.com); NucleaRDB (Ref. 6; url: http://www.receptors.org/nucleardb/); Uniprot (Ref. 9; url: www.uniprot.org); Gene Ontology (Ref. 10; url: www.
geneontology.org). All URLs valid as of 2/26/2013.
doi:10.1371/journal.pone.0067980.t001
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member, with CN losses observed in 14/46 patients, which is a

frequency 3.5-fold higher than the PTEN CN losses (4/46). The

literature on TPTE2 is limited and it indicates that TPTE2 can

inhibit cell growth and initiate apoptosis, similar to the PTEN

tumor suppressor [20,21,22]. This novel finding of TPTE2 CN

loss was identified because dGene highlights the association among

PTEN family members from a large candidate CN alteration set.

Discussion

We have developed an updated version of the druggable

genome by identifying highly druggable gene classes, populating

the classes using up-to-date and specific resources, and manually

confirming the results. Our collection of druggable genes, dGene,

is specifically tailored for use against mutation lists generated by

cancer genome sequencing, though it can be used to analyze any

human gene list. We have also shown that, in combination with

additional filtering criteria, dGene can rapidly highlight mutations

in biologically and clinically plausible therapeutic targets.

Limitations of dGene are that it is biased towards the ‘‘oncogene

addiction’’ model of cancer and towards targets of well-described,

small molecule drugs. While dGene does not currently contain

genes involved in DNA repair, cell surface proteins, or other

potential drug targets, additional classes are easily accommodated

due to dGene’s modularity. dGene also makes no attempt to

identify mutations as being either loss or gain of function; however,

dGene can be combined with functional impact scores (such as Sift

Figure 2. Applying the dGene list to SNVs in 77 breast cancer tumours. A, 368 SNVs occurred in genes considered to be druggable out of
2622 events total. B, 2199 genes had at least one SNV, of which 255 are considered druggable. C, Screening for commonly altered genes further
reduces target list. D, 37 dGene entries present in at least 2 out of 77 samples, organized by class and patients affected.
doi:10.1371/journal.pone.0067980.g002
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or Mutation Assessor) to identify mutations that are both likely

druggable and likely functional [23,24]. dGene is intended as a

discovery phase tool to steer experiments towards genes against

which small molecule inhibitors might quickly be developed.

As with all data-based resources, updating dGene will be of the

utmost importance. dGene classes tend to be well studied, as

illustrated by the fact that 2108 out of 2257 entries can be found in

SwissProt, a manually reviewed collection of protein annotations

[9]. Therefore, we anticipate dGene being quite stable, and are

committed to providing annual updates. Moreover, because

dGene is easily expandable, we can easily integrate new gene

classes as knowledge of cancer biology advances and additional

gene classes are targeted.

dGene is designed to be used by cancer researchers and not

require support from a bioinformatics specialist. dGene is

currently hosted as a web-based tool through the Genome

Institute at Washington University (dgidb.genome.wustl.edu).

There, users can filter gene lists against dGene (via the ‘‘Search

Categories’’ page, or download the full dGene tab-delimited text

file (via the ‘‘Downloads’’ page), which can be imported into

various statistical packages and used or customized as needed.

Additional functionality of the website includes annotating dGene

entries with specific drug information where available (M. Griffith

and O.L. Griffith, manuscript in preparation). In summary, dGene

provides a rapid filter to identify druggable genes across ten classes

Figure 3. Applying the dGene list to CNVs in 46 breast cancer tumours. A, 5421 CNVs were detected in 1752 druggable genes across the
sample. The 20th (0.76) and 80th (1.56) percentiles served as cutoffs. B, Gains only (.1.56). C, Losses only (,0.76). D, Displaying PTEN family CNV
values. TPTE2 is the most frequently altered. Cutoffs are relaxed to ,0.856 and .1.156 for display purposes.
doi:10.1371/journal.pone.0067980.g003

dGene, The Druggable Gene Database
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from cancer genomic studies, and is currently available for use

through a professionally constructed website.

Methods

Populating Gene Classes
Classes were populated with human genes through a process of

inclusion from specialized databases and reviews, standardization

to the NCBI gene list, and manual curation of genes occurring in a

single source. Figure 1c and 1d portray the process fully for

nuclear hormone receptors (a simple case) and proteases (a

complex case), while Table 1 outlines the set of specialized sources

used for each class. Reviews and databases were identified by

literature search and may not be exhaustive. Manual curation of

genes suggested by only one source ensured genes were properly

classified. For classes where UniProt/Gene Ontology was not

required as input sources, a simple check against the UniProt/GO

classification was performed. In the cases where UniProt/GO

were provided as input to the class (as was the case for proteases),

inspection of the referenced literature and sequence alignment was

performed.

During manual curation, bias was towards inclusion. Genes

were left in their respective class if they either showed sequence

homology to a known member, or if experimental evidence

suggested they had the appropriate functionality. Pseudogenes and

genes encoding nonfunctional products were included if they

showed homology to an included class member.

A frequent challenge in consolidating disparate sources was the

mixing of incompatible gene and protein identifiers. Mapping to

the NCBI human Gene List (url: ftp://ftp.ncbi.nih.gov/gene/

DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz,

accessed on July 3, 2012) facilitated comparisons between sources.

The NCBI human gene list represents the total collection of

human genes recognized in the NCBI data base as well as current

annotations, and is updated on a daily basis. The NCBI gene list

provides a standard format for all dGene entries –15 columns,

including the NCBI geneID, official symbol, and crucially, a list of

synonyms used in the literature. To each entry a 16th column,

class, has been appended. Mapping was accomplished by

converting protein names to gene names with the David Gene

ID Conversion Tool [25], and by searching the list of synonyms

provided in the NCBI file for terms that do not appear as an

official symbol.

Application of dGene to 77 Breast Cancer Samples
The raw mutation annotations analyzed in this work utilized up-

to-date gene ID numbers. Mutations within genes which also

appear in dGene were filtered to a separate table, and the class

term from dGene was appended as a new column. Aggregation to

patient and class allowed for the production of Figure 2a.

Aggregation to patient and gene was required for the production

of Figure 2b–d. The raw CN data were analyzed in the same

manner, with the results portrayed in Figure 3.

Software
Analysis was performed in R 2.15.1 for Windows. Heatmaps

were produced in R using the base package, while additional

figures and tables were produced with Microsoft Excel and

PowerPoint.
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