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Abstract

Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the
characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-
based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their
interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-
predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal
distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS
forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with
different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined
the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions
affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological
traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted
abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade
tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance
were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study
may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species
distribution.

Citation: Liang Y, He HS, Fraser JS, Wu Z (2013) Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution. PLoS ONE 8(7):
e67889. doi:10.1371/journal.pone.0067889

Editor: Ben Bond-Lamberty, DOE Pacific Northwest National Laboratory, United States of America

Received February 27, 2013; Accepted May 23, 2013; Published July 4, 2013

Copyright: � 2013 Liang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this research was provided by ‘‘the 973 project’’ 2011CB403206, 2012BAD22B04, and the National Natural Science Foundation of China
41071120. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: heh@missouri.edu

Introduction

Concerns about global climate change, habitat fragmentation,

and biodiversity loss have increasingly stimulated researchers to

predict vegetation dynamics at broad spatial scales [1–3]. The

primary tools for predicting broad-scale forest vegetation dynamics

include niche models [4,5], process models [6,7], and forest

landscape models [8]. All of these models need to account for the

effects of physical environment or environmental heterogeneity in

the modelling framework. Thus, characterizing environmental

heterogeneity is fundamental for model-based predictions of

broad-scale vegetation dynamics.

Environmental heterogeneity is characterized by the complexity

in composition and configuration of a system property (e.g., land

type) [9–11]. Compositional heterogeneity is characterized by the

number of classes that describe environmental heterogeneity and

the proportional area of each class in the study landscape. These

classes are often known as land types or ecoregions depending on

study scales (hereafter called land type). A land type corresponds to

multiple spatial units (hereafter called land type unit) within which

physical environments are assumed to be uniform. Configurational

heterogeneity includes spatial arrangement of the land type units,

their geometric shapes, contrast between neighbouring units, and

connectivity among units of the same land type [12]. Landscapes

with more land types or more complex spatial patterns are

considered more heterogeneous [13,14].

Spatial input to a niche, process, or forest landscape model is

usually derived from classified remote sensing imagery and other

GIS datasets (e.g., soil and land cover). The thematic resolution

(e.g., the number of land types) and spatial resolution (grain size)

for these spatial inputs is often determined by the availability of the

datasets or subjectively. These subjective decisions may result in

different characterizations of environmental heterogeneity. Previ-

ous studies showed that changing spatial resolution may affect

characterizations of configurational heterogeneity [15–17], while

changing thematic resolution may result in different characteriza-

tions of both compositional and configurational heterogeneity [18–

20]. The general response of spatial patterns, directly related to

characterization of environmental heterogeneity, to changing

spatial resolution may resemble that of changing thematic

resolution. For example, decreasing spatial resolution results in a

decrease in the number of land type units, while decreasing

thematic resolution leads to a decrease in the number of land types

due to aggregation, which also results in reduction in the number

of land type units [15,19,21]. The details, however, may differ

significantly in spatial aggregation: decreasing spatial resolution

always leads to aggregating neighbouring grid cells (following the

majority rule in many cases), whereas decreasing thematic
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resolution results in combining cells of similar land types that may

be far apart [19].

While the effects of thematic and spatial resolutions on spatial

pattern are fairly well understood, effects of both resolutions on

model-based predictions of species distribution have received little

attention. Species establishment in a land type depends on the

presence of suitable habitat, as well as the ability of the species to

reach the land type (e.g., seed dispersal). Once established, the

development of a tree species depends on local system dynamics,

such as interspecies competition and variations in the environment

over time [22]. Therefore, the fate of the species is ultimately part

of the forest dynamic that is influenced by the number of habitats

present and by the rates of ecological processes such as seed

dispersal, competition, and migration or death. It has been shown

that derivation of habitat number as well as the simulation of

occurrence and rate of ecological processes are affected by

thematic and spatial resolutions in characterizing environmental

heterogeneity [17,23,24]. Therefore, both resolutions are expected

to affect model-based tree species distribution, with effects

magnified over time [13,25].

Since thematic and spatial resolutions are chosen separately, it is

necessary to investigate the effects of each accordingly. From an

ecological perspective, increasing thematic resolution, which

identifies more land types, may result in greater number of

suitable habitat types [26], allowing rare species to establish and

persist. Decreasing spatial resolution may impair the simulation of

seed dispersal since when a cell size is larger than the effective

seeding distance, as seed may fail to disperse outside the cell [25].

From a modelling perspective, increasing either thematic or spatial

resolution leads to detailed characterization of spatial patterns, and

consequently challenges in maintaining model accuracy [13,25];

decreasing both resolutions can average out some chaotic

behaviours at the expense of losing spatial details, and conse-

quently improve model predictability [13,27]. Therefore, it is

important to know which, if either, resolution has a dominant

effect on predictions for maximizing the effectiveness of the model

in balancing modelling accuracy and model predictability.

The objective of this study is to investigate the effects of

thematic and spatial resolutions in characterizing environmental

heterogeneity on predictions of tree species distribution at the

landscape scale (quantified by species abundance). Specifically, we

(a) investigated how species abundances change with varying

thematic and spatial resolutions, respectively, (b) analysed whether

tree species with different ecological/biological traits (e.g., seed

dispersal distance, competitive capacity) have different responses

to varying thematic and spatial resolutions, and (c) evaluated the

relative importance of thematic and spatial resolutions, and their

interaction in predictions of species distribution. We designed a

series of scenarios with different combinations of thematic

(different numbers of land types) and spatial resolutions, and then

statistically examined the differences of response variables (species

abundance) among these scenarios.

Approach and Methods

2.1 Study area
Our study area (4.16105 ha) consisted of the Changbai

Mountain National Natural Reserve (CMNNR) and the 8 km

surrounding area at 41u629–42u499 N, 127u599–128u389 E (Fig. 1).

CMNNR contains the highest mountain in northeastern China

and protects one of the largest natural temperate forests in the

world [28]. Main tree species include Korean pine (Pinus koraiensis

Siebold & Zucc.), jezo spruce (Picea jezoensis Siebold & Zucc.),

Manchurian fir (Abies nephrolepis [Trautv.] Maxim), Olga Bay larch

(Larix olgensis A. Henry), Asian white birch (Betula platyphylla Suk),

Mongolian oak (Quercus mongolica [Fisch] Ledeb.), and mountain

birch (Betula ermanii Cham.). Korean pine, fir and spruce are shade-

Figure 1. Geographic site of the study area.
doi:10.1371/journal.pone.0067889.g001

Table 1. Longevity, shade tolerance, effective and max seeding distance for each simulated species.

Species Longevity (years) Shade tolerance (class)a
Effective seeding distance
(m)b Max seeding distance (m)b

Fir 200 5 20 100

Korean pine 300 4 50 200

Spruce 300 4 50 150

Larch 300 2 100 400

Oak 300 2 20 200

Mountain birch 200 1 100 300

White birch 150 1 200 4000

a Shade tolerance value (1–5). 1 = least tolerant; 5 = most tolerant.
b The effective seeding distance is the distance at which seed has the highest probability (e.g., P . 0.95) of reaching a site. The maximum seeding distance is that
distance beyond which a seed has near zero probability (e.g., P,0.001) of reaching. Seed-dispersal probability (P) between the effective (ED) and maximum seeding
distance (MD) follows a negative exponential distribution [51].
doi:10.1371/journal.pone.0067889.t001
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tolerant species, while larch, white birch, oak and mountain birch

are relative shade-intolerant species. The seeds of Korean pine are

so large that they cannot disperse by wind, instead relying on

gravity and animals. Thus, Korean pine has much shorter

maximum dispersal distances. The dispersal modes of fir and

oak are similar to that of Korean pine. In contrast, white birch

have a wide seed dispersal range.

Elevation and aspect are the most important factors that cause

environmental heterogeneity in the Changbai Mountains [29].

Elevation governs broad-scale vegetation distribution patterns,

which are reflected by distinct forest types corresponding to

elevation gradients in our study area [30]. These forest types

compose four major vertical/elevation forest zones [31]. The

hardwood forest zone (lower than 750 m elevation) is mainly

composed of white birch, Korean aspen (Populus davidiana Dode),

maple (Acer mono Maxim), and elm (Ulmus propinqua Koidz.). The

mixed Korean pine hardwood forest zone (750–1100 m) includes

Korean pine, oak, basswood (Tilia amurensis Rupr.), Manchurian

ash (Fraxinus mandschurica Rupr.), maple, and elm. The spruce–fir

forest zone (1000–1700 m) is mainly composed of spruce and fir.

The subalpine forest zone (1700–2000 m) is dominated by

mountain birch and larch. Aspect governs fine-scale species

composition by redistributing humidity and temperature in the

environment [32]. Aspect can be divided into two classes (sunny

slope and shady slope) and four classes (north, south, west, and east

slope). Thus, land types of our study area can be characterized at

three levels: 4 (4 elevation zones), 8 (4 elevation zones62 classes of

aspects), or 16 (4 elevation zones64 classes of aspects) land types.

2.2 Landscape-scale predictions of tree species
distribution
LANDIS simulates forest succession and landscape processes

(e.g., seed dispersal) using spatially interactive cell-based land-

scapes [8], which predict landscape-scale tree species distribution

under climate warming (quantified by species abundance) in this

study. The parameters of LANDIS mainly included two spatial

data layers (raster maps for land type and forest composition), in

addition to other nonspatial parameters (e.g., species’ vital

attributes) (Fig. 2).

In LANDIS, a heterogeneous landscape can be delineated into

various land types based on characterizations of environmental

heterogeneity. These land types were derived from Digital

Elevation Model, downloaded from the website of the CGIAR

Consortium for Spatial Information (CGIAR-CSI, http://srtm.

csi.cgiar.org/SELECTI-ON/inputCoord.asp). Within each land

type, response of species to warming climate was quantified by

species establishment probability under climate warming [33].

This establishment probability can be derived from an ecosystem

process model, LINKAGES [34]. LINKAGES integrates envi-

ronmental variables such as warming climate (monthly temper-

ature and precipitation, downloaded from http://www.climate-

wizard.org/) and soil (C, N and water, derived from soil database

of China) with ecological processes (competition, succession, and

water and nutrient cycling) and outputs individual species

biomass. Because a larger biomass for species at the same age

represented greater species suitability to the land type, biomass

was used to quantify species suitability to the land type in the

form of species establishment probability (SEP). Biomass for each

land type under warming climate was converted to SEP for the

corresponding land type under warming climate using the

following equations [33].

SEPij~b’ij=max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j~1
bij

r
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j~1
b’ij

r� �
ð1Þ

Where bij and bij are the biomass of species i on land type j

Figure 2. The operational design of LANDIS. The LANDIS model can be represented conceptually as a repeating cycle of processes that operate
on the initial input map and subsequent time steps. Succession occurs within a cell based on species’ vital attributes such as shade tolerance and
longevity.
doi:10.1371/journal.pone.0067889.g002
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under current and warming climate, respectively. SEP for a given

species may be homogeneous within each land type but vary

from one land type to another [33,35].

The second spatial input needed to run LANDIS is a forest

composition map. The forest composition map sets the initial

conditions for LANDIS by describing individual species–age class

distribution in each raster cell for the study area and such

information was derived by integrating classified remote sensing

imagery and field inventory data [30,35]. The resolution of the

forest composition map in this study was 30 m largely because of

the Landsat Thematic Mapper’s resolution.

In LANDIS, succession and dispersal are driven by species’ vital

attributes. Seed dispersal probability is modeled using an

exponential distribution where each species has an effective and

maximum dispersal distance that controls seed distribution [36]. A

seed has a higher probability of reaching a site within the species

effective seeding distance than beyond this distance [36]. When a

seed successfully arrives at a given site, establishment is based on

the abundance of other species in the cell and the shade tolerance

rank of the seeding species relative to the species occupying the

cell. We compiled the vital attributes of each species (Table 1)

based on previous studies and forest inventory data in the study

area [29,37,38]. LANDIS records species age cohort presence/

absence. It tracks cells (sites) where mature age cohort present and

uses a decay function to simulate the probability of seed reaching

the surrounding cells. Seed source is considered abundant if high

proportions of cells in the landscape containing mature age

cohorts.

2.3 Design of simulation scenarios
To investigate the effects of thematic and spatial resolutions in

characterizing environmental heterogeneity on forest landscape

predictions, we designed a series of scenarios with different

combinations of thematic and spatial resolution for land type maps

Table 2. Species-specific establishment probabilities for three land type maps under warming climate.

Land type Species

Elevationa Aspectb Fir Korean pine Spruce Larch Oak Mountain birch White birch

4 land types

HWF - 0.000 0.459 0.000 0.000 0.791 0.000 0.622

MKH - 0.010 0.553 0.013 0.193 0.726 0.000 0.436

SFF - 0.684 0.141 0.729 0.382 0.016 0.164 0.081

SAF - 0.246 0.000 0.267 0.256 0.000 0.307 0.000

8 land types

HWF Sunny 0.000 0.459 0.000 0.000 0.870 0.000 0.684

Shady 0.000 0.556 0.000 0.000 0.870 0.000 0.684

MKH Sunny 0.009 0.498 0.012 0.191 0.718 0.000 0.431

Shady 0.012 0.669 0.016 0.212 0.798 0.000 0.479

SFF Sunny 0.616 0.127 0.656 0.378 0.015 0.148 0.072

Shady 0.828 0.171 0.882 0.420 0.017 0.181 0.089

SAF Sunny 0.234 0.000 0.254 0.255 0.000 0.291 0.000

Shady 0.298 0.000 0.294 0.282 0.000 0.338 0.000

16 land types

HWF North 0.000 0.556 0.000 0.000 0.870 0.000 0.684

South 0.000 0.459 0.000 0.000 0.870 0.000 0.684

East 0.000 0.436 0.000 0.000 0.789 0.000 0.620

West 0.000 0.506 0.000 0.000 0.830 0.000 0.653

MKH North 0.012 0.669 0.016 0.212 0.798 0.000 0.479

South 0.009 0.498 0.012 0.191 0.718 0.000 0.431

East 0.010 0.553 0.013 0.202 0.762 0.000 0.457

West 0.011 0.610 0.015 0.212 0.762 0.000 0.457

SFF North 0.828 0.171 0.882 0.420 0.017 0.181 0.089

South 0.616 0.127 0.656 0.378 0.015 0.148 0.072

East 0.650 0.134 0.693 0.381 0.015 0.156 0.077

West 0.791 0.163 0.842 0.441 0.017 0.181 0.089

SAF North 0.298 0.000 0.294 0.282 0.000 0.338 0.000

South 0.234 0.000 0.254 0.255 0.000 0.291 0.000

East 0.222 0.000 0.241 0.230 0.000 0.276 0.000

West 0.272 0.000 0.295 0.269 0.000 0.322 0.000

a HWF: the hardwood forest zone; MKH: the mixed Korean pine hardwood forest zone; SFF: the spruce–fir forest zone; SAF: the subalpine forest zone;
b: Sunny: the sunny slope; Shady: the shady slope; North: the north slope; South: the south slope; East: the east slope; West: the west slope.
doi:10.1371/journal.pone.0067889.t002
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that characterized the environmental heterogeneity of the study

area (Fig. 3). Each land type map has a set of SEPs for one species

(Table 2). Each scenario has the same forest composition map to

keep the initial species distribution consistent.

Thematic resolution of land type map included three levels (4, 8,

and 16 land types), which were characterized by environmental

variables (elevation and aspect) (see Section study area for

explanations of these three thematic resolutions). We used the

maximum number of land types to represent a high thematic

resolution, whereas fewer land types represented lower thematic

resolutions.

We included six spatial resolutions: 30 m, 90 m, 150 m, 210 m,

250 m and 500 m. This wide range of spatial resolutions is

sufficient for most studies involving common remotely sensed data

(e.g., Landsat TM/ETM+ and MODIS). As the grain size

increased, data was aggregated following the majority rule, which

is the most commonly used method for aggregating categorical

data in ecology and remote sensing [15,39]. In total there were 18

scenarios (three levels of thematic resolution6 six levels of spatial

resolution). In order to obtain the identical data input under

different spatial resolutions, we resampled 500 m, 250 m, 210 m,

150 m, and 90 m resolution forest composition map and land type

map to 30 m. This ensured that the simulated differences were not

due to different input data.

2.4 Model simulation
We used LANDIS 6.0 (landis.missouri.edu), an expanded

version of LANDIS 4.0, to simulate our study area from 1990 to

2190 (200 years) at 5-year time steps. We simulated seven of the

most common tree species within our study area: Korean pine,

spruce, fir, birch, larch, mountain birch, and oak. These species

cover near 90% of the forest in our study area. We completed

five replications starting with the same input parameters, with the

exception of a random seed number used to account for the

effects of stochastic components, such as seed dispersal and

seedling establishment. Disturbance such as forest harvesting,

fire, and wind were not simulated because our objective was to

examine the natural successional trajectories of the most

common tree species.

2.5 Data analysis
We used LandStat 6.0, an ancillary program of LANDIS 6.0, to

process the simulation results. These simulation results were

summarized as species abundance (the number of pixels in which a

species occurs divided by the total number of pixels).

Initially we compared the differences in mean abundance of the

entire simulated period among different levels of thematic

resolution and different levels of spatial resolution, respectively,

by one-way ANOVA (data satisfy the fundamental conditions of

Figure 3. Changes in spatial configuration of land type maps with thematic and spatial resolutions. Each large square is a part of study
area and different colours represent different land types within study area.
doi:10.1371/journal.pone.0067889.g003
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ANOVA: independent random samples, normality and homoge-

neity of variances in the residuals). Significant differences indicated

that the choice of thematic/spatial resolutions affected landscape-

scale predictions of tree species distribution. We then examined

whether the differences among different thematic resolutions

varied at different levels of spatial resolutions and whether the

differences among different spatial resolutions varied at different

levels of thematic resolutions. The variation revealed the

interaction of thematic and spatial resolutions.

To investigate the relative importance of thematic and spatial

resolutions on forest landscape predictions, we conducted a two-

factor univariate analysis using General Linear Model (SPSS 16.0).

The dependent variables (abundance of simulated species) were

tested for normality and homogeneity of variances in the residuals.

Two-factor independent variables (thematic and spatial resolution)

were both fixed factors. Type III sums of squares derived from the

univariate analysis were used to quantify the relative importance of

thematic resolution, spatial resolution, and their interaction with

forest landscape predictions [29,40]. Higher type III sums of

square values indicated larger contributions to the predicted

species abundance. The actual type III sums of square values of

thematic resolution, spatial resolution, and their interaction were

comparable within one statistical model but not necessarily

between two or more statistical models. Therefore, we transformed

the actual type III sums of square values into proportions for

comparing the differences of the relative importance of thematic

and spatial resolutions, and their interaction among simulated

species [40].

After the above analysis, we found that four species, Korean

pine, fir, birch and larch captured the response patterns of all

seven species. Thus, we only presented the results of these four

species.

Table 3. ANOVA results for species abundance.

Fir Korean pine Spruce Larch Oak Mountain birch White birch

Thematic resolution

4 land types % mean 22.91 8.44 15.43 7.51 6.44 4.74 16.65

SD 1.59 0.38 0.37 0.06 0.05 0.00 0.14

8 land types % mean 22.14 8.16 21.44 10.81 10.51 7.06 17.42

SD 1.58 0.11 0.66 0.41 0.94 0.07 1.07

16 land types % mean 9.74 7.62 13.20 16.08 7.80 6.36 8.46

SD 1.11 0.43 0.50 0.87 0.43 0.18 0.68

F-value 785.90 46.34 1993.38 1790.06 364.92 3313.26 1372.55

p ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001

Spatial resolution

30 m % mean 21.37 8.67 16.74 12.34 9.25 6.18 14.03

SD 6.74 0.43 2.61 4.28 2.55 1.06 3.51

90 m % mean 17.46 8.13 16.99 11.56 8.19 6.02 14.03

SD 6.15 0.27 3.78 3.79 1.74 0.97 3.68

150 m % mean 17.65 8.00 16.70 11.32 8.09 6.03 14.16

SD 6.17 0.34 3.82 3.57 1.62 1.01 4.20

210 m % mean 17.66 7.95 16.69 11.31 8.07 6.04 14.24

SD 6.16 0.32 3.77 3.57 1.62 1.00 4.31

250 m % mean 17.63 7.91 16.73 11.34 8.05 6.03 14.32

SD 6.13 0.33 3.77 3.58 1.59 0.99 4.30

500 m % mean 17.83 7.77 16.28 10.92 7.83 6.02 14.28

SD 6.16 0.59 3.89 3.13 1.40 1.04 5.33

F-value 0.89 9.77 0.06 0.25 1.19 0.06 0.01

p .0.05 ,0.001 .0.05 .0.05 .0.05 .0.05 .0.05

doi:10.1371/journal.pone.0067889.t003

Figure 4. The relative importance of thematic and spatial
resolution, and their interaction. Ratio of the type III sums of
square values of a fixed model (both thematic and spatial resolution are
fixed factors) corresponding with the relative importance of thematic
and spatial resolution, and their interaction to species distribution
prediction at the landscape scale.
doi:10.1371/journal.pone.0067889.g004
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Results

3.1 Relative importance of thematic and spatial
resolution
For most species (e.g., fir, larch and white birch), the

proportions of type III sums of square values for thematic

resolution were obviously larger than those for spatial resolution

and their interaction, indicating that the relative importance of

thematic resolution effects on predictions of species distribution

was far larger than spatial resolution. For example, for fir, the

proportion of type III sums of square values of thematic resolution

was near 95%, whereas the proportion of spatial resolution was

only 5% (Fig. 4). By contrast, for Korean pine, the proportion of

type III sums of square value for thematic resolution (52%) was

slightly larger than that for spatial resolution (37%) (Fig. 4),

indicating thematic resolution accounted for more than half of the

changes in predictions of species distribution, while spatial

resolution made up a nearly half contribution.

3.2 Changes of predicted species abundance with
varying thematic resolutions
Results of ANOVA showed significant that for all species

simulated, significant differences (p,0.001) in abundance occurred

among different levels of thematic resolution (Table 3). For

Korean pine and larch, mean abundance decreased as thematic

resolution decreased. For example, under 30 m spatial resolution,

mean abundance of larch from high to low thematic resolutions

were 17.68, 11.70 and 7.62%, respectively; under 500 m spatial

resolution, mean abundance from high to low thematic resolutions

were 14.81, 10.49 and 7.45%, respectively (Fig. 5c).

By contrast, mean abundances of fir and white birch under

high thematic resolution (16 land types) were less than those

Figure 5. Mean abundance at different thematic and spatial resolutions. Mean abundance of some simulated tree species at different
thematic resolutions (three levels: 4, 8 and 16 land types) and spatial resolutions (six levels: 30 m, 90 m, 150 m, 210 m, 250 m and 500 m).
doi:10.1371/journal.pone.0067889.g005

Figure 6. Landscape supplementation. A species could supplement its resource intake from land type A or similar resources from land type B.
High spatial resolution supports more landscape supplementation than low spatial resolution as long as these units of land type are within seeding
distance (dark oval).
doi:10.1371/journal.pone.0067889.g006
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under low thematic resolution (4 land types). Mean abundance of

fir at 30 m resolution under high thematic resolution was

12.18% lower than those under medium and low thematic

resolution (25.54% and 26.40%, respectively) (Fig. 5a). A similar

trend was also observed at 500 m spatial resolution for fir. Mean

abundance of white birch under high thematic resolution (9.28%)

was also lower than those under medium and low thematic

resolution (15.86% and 16.95%, respectively) at 30 m spatial

resolution (Fig. 5d). However, at 500 m resolution mean

abundance under medium thematic resolution (19.14%) was

higher than those under high and low thematic resolutions (16.54

and 7.16%, respectively).

For Korean pine, larch and fir, when spatial resolutions were

high, the differences of mean abundance among different thematic

resolutions were higher than the differences under low spatial

resolutions. For example, the differences of mean abundance of

larch among different thematic resolutions decreased (from

10.06% to 7.36%) as spatial resolutions decreased. By contrast,

for white birch, the differences of mean abundance among

different thematic resolutions increased (from 7.67% to 9.38%) as

spatial resolution decreased.

3.3 Changes of predicted species abundance with
varying spatial resolutions
Results of ANOVA showed that there were no significant

differences (P . 0.05) in abundance of the simulated species

except Korean pine (p,0.001) among different levels of spatial

resolution (Table 3). The mean abundance of most species

decreased with decreasing spatial resolution (Fig. 5). For example,

for larch, under high thematic resolution, mean abundances of

larch from high to low spatial resolutions were 17.68% (30 m),

16.40% (90 m), 15.85% (150 m), 15.83% (210 m), 15.88%

(250 m) and 14.81% (500 m), respectively; under low resolution,

mean abundances from high to low spatial resolutions were from

7.62 to 7.45% (Fig. 5c). White birch has a similar trend as larch

under high and low thematic resolution. However, mean

abundance of white birch increased as spatial resolutions

decreased under medium thematic resolution.

In addition, when thematic resolutions were high, the differ-

ences of mean abundance among different spatial resolutions were

generally larger than the differences under low thematic resolu-

tions.

Discussion

Our results showed that thematic and spatial resolutions used in

characterizing environmental heterogeneity have different effects

on model predictions of abundance for all simulated tree species.

The different responses to varying thematic and spatial resolutions

from individual tree species may be due to species’ ecological traits

and interspecies competition as implemented in the LANDIS.

4.1 The effects of thematic resolution
Under high thematic resolutions, land types are classified and

mapped in greater detail than those under low thematic

resolutions. Increasing land type diversity led to the simulated

diverse species responses to environments, which are characterized

as species establishment probabilities (SEPs) in this study. Under

low thematic resolutions, the detailed land types are combined into

fewer classes and larger patches, and consequently, diverse species

responses to environments (SEPs) are aggregated. Gain or loss of

abundance with varying thematic resolution depends on the

species’ ecological traits and interspecies competition.

Results showed that for species having moderate dispersal

distance (.50 m) and relatively abundant seed sources, abun-

dance decreased as thematic resolution decreased. This is because

the aggregation process reduces the SEPs for land types with

relatively high suitable establishment conditions to an average

value under which the species have low probabilities to establish.

Moreover, under high thematic resolutions, once seedlings

established, they begin to disperse more new seeds after the

seedling matures in a few decades, and thus, abundance increases

exponentially when seed sources and dispersal distance are not

limiting [36]. Such a process may not occur when few seeds can

established with the averaged SEPs under low thematic resolu-

tions, resulting in lower species abundance [25]. This phenome-

non was reflected by species simulated in our study, such as larch

with moderate effective seeding distance (100 m) and abundant

seed sources. The predicted abundance of larch increased

exponentially on land types with high SEPs under high thematic

resolution, which resulted in predicted abundance of larch under

high thematic resolutions significantly higher than those under low

thematic resolutions.

As thematic resolution decreased, the aggregation of SEPs

corresponds to changes in ‘source/sink relationship’ [41]. In a

source/sink landscape, relatively productive land types with high

suitable establishment conditions (with high SEPs) can serve as

sources, which disperse seeds to less productive land types (with

low SEPs) called sinks [42,43]. Species distribution is affected by

the relative ratio of source and sink [44,45]. As thematic resolution

decreases, land types with high SEPs are averaged resulting a

reduction of source. Consequently, species abundance decreases as

thematic resolution decreases.

It may seem obvious that higher thematic resolutions result in

higher species abundance. However, for a given landscape, an

increase in the number of land types leads to a decrease in the

amount and size of units for each land type [20]. This may

produce an inverse effect of thematic resolution on predicted

abundance for species with long seeding distances that need large

areas or nearly contiguous habitat, as they may disappear from

land types in which their required area is inadequate [26,46]. This

could lead to a decrease in abundance under high thematic

resolution, i.e. a peak in abundance under intermediate thematic

resolution. This phenomenon was reflected by species simulated in

our study, such as white birch with a long dispersal distance (e.g.,

200–4000 m). Predicted abundance of white birch under inter-

mediate thematic resolutions was larger than those under high and

low thematic resolutions.

Results also showed that for the most shade-tolerant species

(e.g., fir), which was more competitive than the other species,

abundance increased as thematic resolution decreased. This is

because high shade tolerance allows the species to compete with

shade intolerant species on land types with relatively low

establishment probabilities under low thematic resolutions. More-

over, when thematic resolution is high, seed dispersal between

units of the same land type is reduced, because of reduced cross-

unit synchrony in the landscape dynamic [47,48], whereas

decreasing thematic resolution increases seed dispersal between

units of the same land type. This could lead to an increase in

abundance under low thematic resolution.

4.2 The effects of spatial resolution
In contrast to thematic resolution, a decrease in spatial

resolution does not decrease compositional heterogeneity. Rather,

decreasing spatial resolution may decrease the number of land

type units and increase the area of individual unit and connectivity
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between units of the same land type, thus decreasing configura-

tional heterogeneity [15,22,39].

Results showed that abundance increased as spatial resolution

increased when seed sources and dispersal distance were not

limiting. This is because increases in configurational heterogeneity

may increase ‘landscape supplementation’, in which species could

supplement their resource intake (available habitats) from nearby

habitats (land types with high SEPs), or by using a substitutable

resource in nearby similar land types (habitats) [41]. High spatial

resolution results in more land type units than those under low

spatial resolution, which increases landscape supplementation

(Fig. 6). In addition, more complex shapes of units of land types

increase interspersion/juxtaposition and the length of boundaries

between potentially supplemental resources, and consequently

increase landscape supplementation [26,49]. This increase leads to

a high species relative abundance under high spatial resolutions.

This phenomenon was reflected by species simulated in our study,

such as Korean pine, spruce, fir, and larch, which have moderate

dispersal distance and relatively abundant seed sources. While

concepts such as landscape supplementation were developed by

survey of animal populations [50], it is not restricted to this

context. Our results suggest that it is also applied to corroborate

the effect of spatial configuration on predictions of species

distribution.

4.3 The relative contributions
We found that for all simulated species the effects of thematic

resolution on predictions of landscape-scale species distribution

were larger than the effects of spatial resolution. This is probably

at least partly because increasing thematic resolution alters the

relative ratios of source and sink by increasing compositional

heterogeneity. Meanwhile, thematic resolution may increase

landscape supplementation by increasing configurational hetero-

geneity, based on the same arguments for increasing configura-

tional heterogeneity as spatial resolution increases [26,41].

Our results also showed that spatial resolution had an influence

on the effects of thematic resolution on species distribution

prediction. When spatial resolution is low, increasing thematic

resolution will increase the unit number of neighbouring land

types very little and will have a small influence on landscape

supplementation, resulting in a small difference in species

abundance among different thematic resolutions. In contrast,

increasing the thematic resolution when spatial resolution is high

will increase the unit number of surrounding land types and thus

will increase landscape supplementation, resulting in a relative

large difference in predicted distribution among different thematic

resolutions.

Conclusion

Results showed that both thematic and spatial resolutions in

characterizing environmental heterogeneity affected model-based

predictions of species distribution, but thematic resolution had a

stronger effect on predictions than spatial resolution. Species

abundance increased as thematic resolution increased for species

having moderate dispersal distance under the precondition of

relatively abundant seed sources. However, an inverse effect of

thematic resolution on predicted abundance may be produced for

species with long seeding distance or shade-tolerant species. In

addition, species abundance increased as spatial resolution

increased, provided that seed sources and dispersal distance were

not limiting, due to increases in configurational heterogeneity

resulted from increasing spatial resolution, may increase ‘land-

scape supplementation’.
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