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Abstract

Objective: Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to
quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores
(‘‘Shift’’) is proposed as superior to dichotomization because of greater information transfer. The influence of known
uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be
quantified by applying information theory. Using Shannon’s model, we quantified errors of the ‘‘Shift’’ compared to
dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials.

Methods: We identified 35 randomized stroke trials that met inclusion criteria. Each trial’s mRS distribution was multiplied
with the noise distribution from published mRS inter-rater variability to generate an error percentage for ‘‘shift’’ and
dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by ‘‘shift’’ mRS while the larger follow-up
SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account.

Results: Considering the full mRS range, error rate was 26.1%65.31 (Mean6SD). Error rates were lower for all
dichotomizations tested using cut-points (e.g. mRS 1; 6.8%62.89; overall p,0.001). Taking errors into account, SAINT I
would have required 24% more subjects than were randomized.

Conclusion: We show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While
using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability.
The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have
outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We
provide the user with programs to calculate and incorporate errors into sample size estimation.

Citation: Mandava P, Krumpelman CS, Shah JN, White DL, Kent TA (2013) Quantification of Errors in Ordinal Outcome Scales Using Shannon Entropy: Effect on
Sample Size Calculations. PLoS ONE 8(7): e67754. doi:10.1371/journal.pone.0067754

Editor: Robert K. Hills, Cardiff University, United Kingdom

Received January 28, 2013; Accepted May 22, 2013; Published July 5, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work was funded in part by the Baylor College of Medicine Institutional Clinical and Translational Research Grant Program (TAK) and Department
of Veterans Affairs (VISN 16 PRG; PM). The Stroke Outcomes Laboratory was established through a grant from the pilot grant program of the Institute for Clinical
and Translational Research at the Baylor College of Medicine to TAK. Dr. White’s effort was supported in part by National Institutes of Health (NIH)/National
Institute of Diabetes and Digestive and Kidney Diseases (K01 DK078154-05) and the Houston VA HSR&D Center of Excellence (HFP90-020). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist. Regarding the issue of a patent: The authors applied for a patent in 2008 for
an idea that has no relevance to the manuscript under consideration. The patent application was denied.

* E-mail: pmandava@bcm.tmc.edu

Introduction

In the analysis of new therapeutic approaches to disease, it is

essential that the effects of treatment be captured in a reliable

manner. Measures for many conditions include scales that involve

subjective assessment of a subject’s well-being comparing two

different treatments. In the case of stroke, the modified Rankin

Score (mRS) is the most widely adopted measure of recovery of

function in stroke trials [1]. As an ordinal scale, this instrument

provides an ordering of possible outcomes, ranging from near

complete recovery (e.g., 0 in mRS) to death (e.g., 6 in mRS).

Analysis of outcome results can be performed by two methods: 1)

Full-scale analysis where results for each group (treatment and

placebo) are depicted as a proportion of patients in some or all

ascending grade, and, 2) ‘‘Dichotomization’’ where results for each

group are depicted as proportion of patients into two collapsed or

binned grade categories (e.g. mRS 0–1 indicating excellent

recovery, mRS 2–5, a dependant state), with an added ‘‘safety’’

category of mortality (mRS 6).

Dichotomization of outcome scales including dichotomization

of mRS at cut-point of 1 (e.g, mRS 0–1 vs. 2–6) was used

successfully in the NINDS trial of intravenous alteplase for

ischemic stroke [2]. Of note alteplase is the first and only

medication approved by FDA for use in ischemic stroke. More

recently dichotomization at higher cut-points of mRS 3 and 4 have

been employed in three randomized stroke trials of hemicraniect-

omy (DECIMAL, DESTINY, and HAMLET), which had patients

with high baseline stroke severity, all of which were positive with

relatively low number of subjects [3–5].
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There remains discussion as to which method of analysis is the

most appropriate approach for outcome measures in stroke trials.

For example, the European Medical Agency issued guidance that

when ordinal scales are used for testing the efficacy of novel

medicines or devices, the full-scale be analyzed [6]. The impetus

for this guidance came from the work of Whitehead [7], and

Campbell et al [8], which showed that when number of categories

is increased from two to six, sample size requirements are reduced

by 23% because of a gain in the amount of information available

[9]. Along these lines, several authors have suggested abandoning

dichotomization in favor of ordinal scale analysis [10–13].

Proponents of full-scale analysis (also known as ‘‘shift’’-analysis

or ‘‘sliding dichotomization’’) support its use by invoking

Shannon’s seminal work on information systems and Altman’s

and Royston’s work on the advantage of ordinal scale analysis vis-

à-vis dichotomization [14–18]. Their central argument is that the

loss of information inherent in switching from full-scale analysis to

dichotomization may obscure important treatment effects [13,19].

The ‘Shift’ approach as suggested by Saver and Gornbein [12]

and used in SAINT I [20], SAINT II [21], and IST-3 [22] was

conceived as the difference in distributions between treatment and

control groups as an ordinal/categorical analysis of outcome

classification across all ranks, grades or a major part of the ordinal

scale. This ordinal scale analysis is similar to that suggested by

Whitehead [7] and Campbell et al [8]. It assumes a common

proportional odds ratio applied to mRS 0, mRS 0–1, mRS 0–2,

mRS 0–3, etc. Note that this ‘‘shift’ differs from a change in

modified Rankin score from baseline for each patient, as suggested

by Lai and Duncan [23].

On both sides of this discussion (i.e., use of dichotomization vs.

‘shift’ analysis), there has not been explicit consideration of

uncertainties regarding how well the recorded mRS scores reflect

each patient’s true recovery state. However, from the work of van

Sweiten et al and others we know that inter-rater reliability of

mRS is relatively low [24–27], particularly for mid-range (mRS

scores of 2–4) values. Quinn et al have also shown that

uncertainties in mRS assessment persist in spite of certification

and re-education of assessors and do not depend on the assessors’

field of specialization, educational background, country of origin,

native language or length of patient interview [27–29]. These

findings indicate that uncertainty or ‘‘noise’’ in the Rankin scoring

may not be negligible, and indicate a need for closer examination

of the patient-observer-score model that is the foundation of stroke

outcome measurement.

In information processing terminology, dichotomization with an

efficacy measure (mRS 0–1) and a safety measure (mRS 6) can be

considered as an implementation of a band-stop filter. A central

concept in information theory is the communication system which

consists of a transmitter, a channel, and a receiver [15]. The

transmitter produces a signal/symbol which is then passed on

through the channel to the receiver for interpretation. In real-

world situations, the channel is susceptible to noise which may

corrupt the transmitted signal/symbol such that the receiver sees a

different signal than was originally sent. This model is applicable

to the situation of an observer evaluating a stroke patient, where

the patient (transmitter) has a true Rankin score (signal) which is

transmitted through the noisy channel of human assessment

(observer) and is ultimately recorded as the outcome score for that

patient (receiver).

In this paper, we hypothesized that uncertainties in assessment

of this subjective outcome scale could be modeled and that errors

will be higher if the entire scale is used compared to dichotomous

measures. We calculate the error introduced by the channel (i.e.,

observer) during the transmission of the ordinal scale and

dichotomized outcomes to an observer. Van Swieten’s inter-rater

variability matrix in mRS classification by different observers is

used as a characterization of the noise introduced by the

observation channel [24]. The inter-rater variability matrix has

been termed the ‘confusion matrix’ in various sub-fields of

information theory [30]. Using the confusion matrix, the error

rate for each approach was calculated. We then demonstrate the

effect of the noise/error on sample size calculations using the

SAINT I trial as our working example [20]. SAINT I is a

particularly interesting test case because this earlier phase trial

reported positive results with the ‘‘Shift’’ approach as the primary

outcome measure, with unspecified positive dichotomizations. The

SAINT trials tested a putative neuroprotectant, NXY-059, in

acute ischemic stroke with hopes that it would improve outcome or

reduce the hemorrhage rate after thrombolysis. While SAINT I

was considered positive using a ‘shift’ analysis to compare the

range of ordinal mRS scale 0 to 4 and collapsing scale 5 and 6 in

treated patients vs. the placebo control group, the subsequent

larger SAINT II trial did not demonstrate benefit with respect

either to the ‘‘shift’’ or the commonly used mRS 0–2 dichotomous

score [21]. We investigated whether increased error due to noise in

the mRS indicated that the sample size targeted in SAINT I was

smaller than calculated in the absence of noise. If true, then the

likelihood for a spurious result is increased given an inadequate

sample size.

Methods

Literature Search to Identify Stroke Randomized Clinical
Trials

Two investigators (PM and JNS) independently performed

structured searches in Medline to identify potentially eligible

clinical stroke trials using keywords ‘acute’, ‘ischemic’, ‘stroke’ and

‘Rankin Scale (or Score)’ and reviewed all abstracts and retrieved

articles for study inclusion. Studies were eligible for inclusion if

they: 1) were randomized controlled stroke trials with at least 10

subjects in each study arm, 2) reported full range of mRS (0–6)

outcome data in both the intervention and control group(s) at least

3 months or beyond, and 3) were published as original research

manuscripts in English in a peer-reviewed journal. Two hundred

and ninety-six articles were retrieved by this keyword search and

subsequently reviewed, from which we identified 35 RCTs that

met our inclusion criteria. Thirty-eight control arms from these 35

RCTs were then evaluated using our model to estimate

misclassification error rates. For this study, we selected the control

arms of these RCTs because sample size estimates for testing a

novel treatment are calculated using the control arm ordinal scale

outcome such as mRS along with treatment effect size [7].

Misclassification Rates with Ordinal, Collapsed Ordinal
and at Various Dichotomization and Trichotomization
Cut-points

To calculate the misclassification or error rates in different

scenarios a custom MATLABH program was created. Error rates

are computed in three sequential steps.

Step 1: For each of the 38 placebo/control arm distributions,

simulated patient populations were generated and each patient’s

mRS was stored as ‘mRS-Observed’. Due to wide variability in

number of patients from 15 to .1500 in the trials, an arbitrarily

large number (n = 10000) of patients were simulated as previously

used in similar studies [31,32]. A single one-step command

‘repmat’ is able to accomplish this task in MatlabH. This step

essentially creates 10000 patients and reflects the mRS distribution

Ordinal Scale Errors and Effect on Sample Sizes
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reported for each trial. Each of these 10000 patients is then

assigned a Rankin score, termed mRS-Observed(j) (see File S1).
Step 2. Results of this step were passed through the Shannon’s

noisy channel model with van Swieten’s confusion matrix serving

the role of noise (Figure 1). For example a patient may have been

assigned a mRS grade of 2 in step 1 but due to the effect of noise in

the system may be assigned an mRS grade other than 2. The

output of this step for each patient is termed the ‘‘mRS-true’’. At

the end of this step, each of the 10000 patients will be assigned a

‘‘mRS-true(j)’’.

Step 3. Misclassifications are counted for each patient when

there is a mismatch between the input (mRS-Observed(j) by step 1)

and output (mRS-true(j) after passing through Shannon’s noisy

channel by step 2; Figure 1). The equation below summarizes this

step for each subject ‘A(j)’.

A(j) is assigned a 1 if mRSobserved(j) = mRStrue(j) otherwise it is a

0.

Step . Total misclassification is then computed by summing

across all subjects and dividing by the number of patients. This

step is summarized in the form of an equation given below.

1{(
Xn

i~1

A(i))=n

Misclassification/error percentages were calculated for all 38

control arms for different scenarios that have been used in various

stroke trials: full range of mRS (i.e., a full shift analysis); collapsing

the higher grades of mRS 4–6 into one grade and considering

mRS 0,1,2,3 as independent grades; ‘dichotomizing’ at four

different cut-point of mRS 1,2,3,4 and for two different

trichotomizations (mRS 0–1, 2–4, 5–6 and mRS 0–2, 3–4, 5–6

[33]).

A user-driven MATLABH program is provided in File S1 that

takes the mRS 0–6 distribution of a control/standard treatment

arm along with a user selected confusion matrix (default of van

Swieten or user-entered) and provides error percentages for the

full range of ordinal scale, collapsed scale, and various dichoto-

mizations and trichotomizations. The equation is flexible and can

accommodate scales with different number of categories.

Note that van Swieten’s inter-rater variability matrix was

tabulated for the Rankin scale ranging from 0–5, while recent

trials use the modified Rankin scale ranging from 0–6 with 6

representing death. Since there is likely low inter-rater variability

in the diagnosis of death, a corresponding noise-free element was

added to the van Swieten matrix.

Sample Sizes for SAINT I Based on Consideration of mRS
Errors

Sample sizes for full ordinal scale analysis is based on an

assumption of a common proportional odds across the whole

range [7,8,14,32,34]. Lees et al reported that they used a common

proportional odds ratio (OR) of 1.3 to derive the sample size for

SAINT I [20]. Whitehead [7] and Campbell et al [8] provided

equations to calculate sample sizes when a common proportional

odds ratio model is used with the full ordinal scale analysis [14].

Here, the common proportional odds model is applied to the

placebo/control arm to derive the sample size [7,8,14].The

equation provided by Campbell et al [8] and the initial equation

of Whitehead [7] does not incorporate an error term for

assessment of categories.

In the presence of an error in classification in ordinal scale

analysis, Whitehead [7] provides an additional subsequent

example to calculate sample sizes. This example requires that

the complete distribution for the reference/control arm be

available. Given that the distribution of subjects in the control

arm of SAINT I for different grades of mRS is available, sample

size was calculated using example worked out in Section 4 of

Whitehead [7] but collapsing grades mRS 5 and 6 as was done in

SAINT I [20]. Since the example provided by Whitehead is quite

detailed, a custom MATLABH implementation is provided in File

S1.

Other Statistical Tests
Tests of means were done by ANOVA routine supplied by

MatlabH. Results of the ANOVA testing were used in post-hoc

tests with a MatlabH routine ‘multcompare’. This routine

implements Tukeys ‘honestly significant difference’ criterion [35].

Results

Error Rates
The placebo/control arms of the 35 trials were processed by

steps described in the Methods section and error rates for different

scenarios calculated. The median NIH stroke scale, a measure of

baseline stroke severity from 0 (no deficit) to 38 (coma/dead), of

the 35 trials with 38 control arms ranged from 3 to 24.

If the full range of mRS is used, the misclassification error rates

ranged from 7.8% to 44.4% (Table 1 and Figure 2; Mean6SD:

26.1%65.31). Collapsing mRS grades 4 to 6 into one grade, as

employed in the recently completed IST-3 trial [22] and

considering the other grades as independent grades produced

misclassification errors ranging from 5.9% to 44.0%

(22.5%65.66). If mRS 1 was chosen as the cut-off point, then

the error rates ranged from 0% to 13.2% (6.8%62.89). Error rates

when using mRS 2 as a cut-off point were 1.7% to 24.8%

(9.0%63.33); for mRS 3 as a cut-off point the error rates ranged

from 4.3% to 14.1% (7.8%61.81); and for cut-off point of 4 the

error rates ranged from 0.4% to 8.7% (3.5%61.70). Comparison

of means of error rates by ANOVA and post-hoc testing shows

that the error rates were significantly different (p,0.0001) and all

dichotomous errors lower than full range, with mRS 0–4

dichotomization error the lowest.

Error rates for dichotomization mRS 0–1 and mRS 0–2 and

two trichotomizations (mRS 0–1, 2–4, 5–6:10.3%62.75 and mRS

0–2, 3–4, 5–6:12.6%63.13) are shown in Figure 3. Post-hoc

testing showed that the trichotomizations error rate was higher

when compared to the corresponding dichotomization error

(p,0.05).

There was a wide range of calculated error rates among the

different trials, from 7.8%-44.4%. Error rate in DECIMAL trial

Figure 1. Shannon’s information transmission model adapted
to scoring of a patient on the 7 point modified Rankin Scale. A
noise or error source is assumed to be in the channel between the
sender represented by the ‘True Rankin’ score and the receiver
represented by the ‘Observed Rankin’ score.
doi:10.1371/journal.pone.0067754.g001

Ordinal Scale Errors and Effect on Sample Sizes
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[3] using the full scale mRS 0–6 was the lowest (7.8%). This is

likely due to lower proportion of patients (22%) in the most

uncertain grades (mRS 2–4) and the remaining (78%) being in a

non-uncertainty- prone state of mRS 6 (i.e., deceased). Error rate

in the Minocycline trial [58], for the full scale, was the highest

(44.4%), possibly since only 14% were in the low uncertainty-

prone grades (mRS 0–1), while, 81% were in the higher uncertain

grades (mRS 2–4).

In place of van Swieten’s confusion matrix, the Wilson et al [26]

matrix was applied and the above steps repeated resulting in

higher error rates (Figure 4).

Post-hoc testing shows that each error rate with this matrix is

higher than the corresponding error using van Swieten’s confusion

matrix except that the error rates for mRS 4 dichotomizations

have overlapping confidence intervals. Wilson et al proposed a

modification of the mRS called the mRS-Structured Interview

(mRS-SI) and also provided a confusion matrix [26]. The errors

Table 1. Error percentages for 38 studies for the full ordinal scale (mRS 0.6), partially collapsed ordinal scale (mRS 0.3, 4–6) and
dichotomization (mRS 0–1, 2–6; mRS 0–2, 3–6; mRS 0–3, 4–6; mRS 0–4, 5–6) and trichotomization (mRS 0–1, 2–4, 5–6; mRS 0–2, 3–4,
5–6) cut-points.

Study [Reference Number] mRS 0.6
mRS
0.3, 4–6

mRS
0–1, 2–6

mRS
0–2, 3–6

mRS
0–3, 4–6

mRS
0–4, 5–6

mRS
0–1, 2–4, 5–6

mRS
0–2, 3–4, 5–6

ABESTT [36] 25.64 23.37 9.41 8.62 6.24 2.27 11.68 10.89

ABESTTII [37] 23.19 20.8 8.04 7.6 6.18 2.39 10.43 9.99

ABESTTIICo [37] 27.26 24.8 9.29 9.77 6.99 2.46 11.75 12.23

ABESTTIIW [37] 31.48 29.73 9.39 14.64 7.68 1.75 11.14 16.39

ARTIS [38] 31.92 30.07 11.07 12.88 8.2 1.85 12.92 14.73

CAIST [39] 26.7 25.22 11.71 8.73 5.84 1.48 13.19 10.21

CASTA-Cereb [40] 30.4 27.44 9.39 11.49 8.24 2.96 12.35 14.45

Camerlingo [41] 24.71 18.09 5.54 7.26 6.2 6.62 12.16 13.88

Cereb-rt-pa [42] 23.45 21.94 9.73 7.3 6.07 1.51 11.24 8.81

DECIMAL [3] 7.76 5.93 0 1.68 4.25 1.83 1.83 3.51

DESTINY [4] 18.98 15.19 0 8.17 7.02 3.79 3.79 11.96

DP-b99 [43] 25.84 20.41 4.87 7.75 9.07 5.43 10.3 13.18

DP-b99-MACSI [44] 27.15 23.23 7.67 8.9 7.52 3.92 11.59 12.82

ECASSII [45] 25.4 22.53 6.48 8.59 8.2 2.87 9.35 11.46

ECASSIII [46] 22.09 19.37 8.93 6.56 4.96 2.72 11.65 9.28

EPITHET [47] 27.83 23.9 7.85 9.1 8.16 3.93 11.78 13.03

EPO [48] 26.13 20.76 7.08 7.1 7.42 5.37 12.45 12.47

Edaravone [49] 29.37 26.69 13.2 9.22 6.16 2.68 15.88 11.9

Enlimomab [50] 24.61 21.55 7.02 8.75 6.91 3.06 10.08 11.81

FIST [51] 24.14 20.39 5.15 9.33 7.03 3.75 8.9 13.08

GAIN [52] 26.19 21.55 5.61 8.02 8.93 4.64 10.25 12.66

HAMLET [5] 16.99 15.62 1.79 7.43 7.18 1.37 3.16 8.8

ICTUS [53] 25.14 21.24 4.85 8.53 8.93 3.9 8.75 12.43

IMS-III [54] 25.54 22.49 7.35 9.26 6.9 3.05 10.4 12.31

INSULINFARCT [55] 29.59 27.27 8.66 11.46 9.11 2.32 10.98 13.78

IST-3 [22] 23.05 18.38 6.31 7.56 5.52 4.67 10.98 12.23

MELT [56] 32.31 25.52 7.45 10.83 8.58 6.79 14.24 17.62

MR-RESCUE-Pen [57] 32.33 26.17 4.45 11.1 11.22 6.16 10.61 17.26

MR-RES-Non-Pen [57] 25.97 17.26 1.89 6.44 9.28 8.71 10.6 15.15

Minocycline [58] 44.37 43.99 6.99 24.82 14.12 0.38 7.37 25.2

NEST-1 [59] 27.22 22.53 7.2 8.53 7.43 4.69 11.89 13.22

NEST-2 [60] 29.17 25.13 5.69 10.94 9.84 4.04 9.73 14.98

NINDS [61] 23.96 20.57 6.19 7.88 7.45 3.39 9.58 11.27

PROACTII [62] 24.09 20.31 2.85 8.89 9.16 3.78 6.63 12.67

SAINTI [20] 25.08 21.71 7.6 7.13 7.96 3.37 10.97 10.5

SAINTII [21] 26.24 22.5 7.3 9.02 7.26 3.74 11.04 12.76

Synthesis [63] 25.16 22.32 5.02 7.32 10.25 2.84 7.86 10.16

Synthesis Exp [64] 26.51 22.88 7.12 8.18 8.35 3.63 10.75 11.81

doi:10.1371/journal.pone.0067754.t001

Ordinal Scale Errors and Effect on Sample Sizes
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calculated with this confusion matrix were lower than with the

original mRS, however, the errors for the full range and collapsed

ranges are still significantly higher than the errors with dichoto-

mization (p,0.001; data shown as Figure S2 in File S2).

Calculation of Sample Size Incorporating mRS
Measurement Errors

SAINT I [20] trial reported that, by applying ordinal analysis,

the treatment arm showed efficacy vis-à-vis the placebo arm. A

total of 1722 subjects were enrolled into two arms (861 in each

arm) of SAINT I. However, applying the transformation matrix

from van Swieten to account for misclassification and utilizing the

available SAINT I placebo arm distribution,1070 subjects would

be required in each arm to reliably estimate effects -nearly 24%

more subjects than actually randomized (compare blue star to red

star in Figure S3 in File S2). These calculations were repeated for

SAINT II [21] employing their assumptions of a proportional odds

ratio of 1.2 and power of 80%. SAINT II randomized 1621

patients to the placebo arm. If mRS misclassification was taken

into account and using their mRS distribution, 1665 subjects

would be needed, a difference of only 2.7%.

Discussion

Clinical trials with subjective functional assessments have

presented a variety of challenges. In the case of stroke, many

clinical trial difficulties stem from issues such as heterogeneity of

baseline factors, spontaneous recovery and subjective nature of

assessing stroke severity and outcomes particularly given uncer-

tainties in classification of outcomes [65,66]. We show here that

one such uncertainty, an asymmetrical distribution of misclassifi-

cation in the mRS, introduces the need for more subjects to

accommodate the potential biases in inferences about study effects

that may occur if these uncertainties are not equally distributed.
We include a set of Matlab programs (in File S1) that can be used

in the future to estimate error rates and sample sizes using

outcome scales. These programs are flexible in terms of categories

and can be used with other outcome scales as long as the confusion

matrix or equivalent is known. Note that while error estimates are

important in estimating sample size, the lowest error configuration

is not necessarily the best one if it does not capture the necessary

range of expected outcomes. So for example, in a study of mild

stroke, mRS 0–4, 5, 6 might be the lowest error, but miss

important changes at the excellent outcome (mRS 0–1) range.

We performed an analysis of the influence of mRS misclassi-

fication on the expected error rates and applied this model to the

empirical data derived from actual stroke clinical trials. We

determined the influence of variability in mRS assessments on the

overall misclassification error rates calculated for 38 individual

control arms and showed that the error rates were highest when

either the full-scale or collapsed full-scale (as in IST-3 [22], SAINT

I [20], and SAINT II [21]) of mRS was considered as compared to

dichotomization at cut-off points of mRS 1 and mRS 2. Using the

SAINT I trial as an example, we demonstrated that when mRS

misclassification uncertainties are taken into account, a higher

sample size is required using the ‘‘shift’’ approach. Hence, SAINT

I may have randomized 24% too few patients taking errors into

consideration, thus, possibly accounting for the discrepant results

between SAINT I and the larger SAINT II trial. There are other

possible explanations for discrepant results between the two trials

Figure 2. Box plots of error rates for the full ordinal scale of mRS (mRS 0.6), considering mRS 0 to 3 as individual grades and
collapsing mRS grades 4 to 6 (mRS 0.3,4–6), dichotomizing at various cut-points of mRS 1 (mRS 0–1, 2–6), mRS 2 (mRS 0–2, 3–6),
mRS 3 (mRS 0–3, 4–6) and mRS 4 (mRS 0–4, 5–6). van Swieten’s inter-rater reliability matrix used as confusion matrix. (p,.001 ANOVA; post-hoc
testing shows that all dichotomization errors are lower than either full scale errors with mRS 0–4 dichotomization the lowest; p,.05).
doi:10.1371/journal.pone.0067754.g002

Ordinal Scale Errors and Effect on Sample Sizes
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and we cannot prove that inadequate sample size was the primary

factor. However, the larger SAINT II employed a lower

proportional odds ratio of 1.2 with a lower power (80%) and

there was a marginal difference of 2.7% between actual sample

size and that required by taking into account misclassification in

mRS.

The actual error rates found depend on the range of the mRS in

each trial because the uncertainty in misclassification is not evenly

distributed across the entire range. While there is considerable

evidence that there is loss of information when a scale is

dichotomized at the median [14], it is not clear that the advantage

of use of the wider range will always overcome the noise that it

appears to generate.

Our results echo the concept put forward by Whitehead [7],

that the advantage of decreased sample size with ordinal scale is

lost if there are errors even modest in classification. He calculated

that a uniform error of 20% in a hypothetical four-category scale

increased the sample size requirements by more than 60%.

Whitehead’s projection was qualitatively confirmed here with real

world mRS uncertainties and data derived from clinical trials.

Misclassification of ordinal scale data leading to loss of power in

statistical tests has been known for several decades [67].

It can be argued, from a strict information theory perspective,

that misclassification error rates obtained by analyzing with the

full-scale are not directly comparable with error rates obtained

with the dichotomized approaches, since, there are different

numbers of variables or ‘‘bits’’. To address this potential criticism,

a normalized error per bit of information transmitted (or entropy)

was calculated [see details in File S2]. After normalization with

entropy, rates, while overall lower, were still higher with full-scale

analysis approach. Note, however, that entropy normalization

reflects the error per bit of information transmitted, but does not

influence the error factor that needs to be considered for sample

size determination, that is the much higher value shown here.

The inter-rater reliability matrix proposed by van Swieten et al

[24] was derived from an assessment of 100 patients by pairs of

physicians selected from a pool of 34. These 34 physician raters

were either senior neurologists or resident physicians. This

situation may not reflect the actual clinical trial environment

where typically there are 100 s of patient subjects and raters with

various educational backgrounds spread across several continents

[27–29]. Wilson et al [26] study used two neurologists, one stroke

physician, seven nurses and four physiotherapists. The inter-rater

reliability in the Wilson et al study was lower than van Swieten’s

and resulted in higher error rates (Figure 4) when analyzed with

the Shannon Entropy model compared to the van Swieten

confusion matrix (Figure 2).

Other alternatives to van Swieten’s inter-rater reliability table

are not without limitations. Some of these publications did not

report evaluations at the lower and higher ends of mRS [25,28],

while others had fewer clinical assessors [25–27,68,69], and fewer

patients [27,68,69] or, lacked face-to-face interviews. More

attention needs to be given to the reliability of different

implementation methods for rating outcomes, including central-

ized rating methods and incorporation of their errors into sample

size estimation. Ideally, a comparison between a ‘typical’ assessor

and a gold-standard ‘expert’ could be used. However, it is unclear

if two ‘experts’ would agree on the assignment of a mRS grade to a

patient given that studies on inter-rater reliability have reported

kappa values ranging from 0.25 to 0.95 [27]. Additionally,

Figure 3. Box plots of error rates for dichotomizing at cut-point of mRS 1 (mRS 0–1, 2–6), trichotomizing at cut-points 1 and 4 (mRS
0–1, 2–4, 5–6), dichotomizing at mRS 2 (mRS 0–2, 3–6), and trichotomizing at cut-points 2 and 4 (mRS 0–2, 3–4, 5–6). van Swieten’s
inter-rater reliability matrix used as confusion matrix. Post-hoc testing shows that both trichotomization errors are higher than dichotomization
(p,.05).
doi:10.1371/journal.pone.0067754.g003
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evidence suggests that disagreement can still persist after training

the typical assessor, and then, comparing his/her score against

that of an expert [28]. Over the last decade there have been

attempts at improving the reliability of mRS assessment with the

aid of a structured interview [26], questionnaire [68], and a

focused assessment [69], although replication of these improve-

ments have been inconsistent [26,29].

While our focus in this study has been the mRS, this same

analysis can be extended to other ordinal scales employed in

clinical trials. For example, Glasgow Outcome Scale (GOS), used

in traumatic brain injury trials and infrequently in stroke trials,

also demonstrate comparable error rates in the mid-range of the

scale [70–72].

In conclusion, using stroke trials as an example, we demon-

strated that misclassification error rates are overall higher with

variations on the ‘shift’ analysis compared to dichotomization

approach. We also demonstrated that the ‘shift’ analysis can lead

to the need for higher sample size in the setting of misclassification.

Selecting an appropriate sample size, while important, is difficult

in the setting of uncertainties in measurement [73]. We found that

in the case of mRS as the outcome measure, dichotomous

outcomes are more reliable. Therefore, if ordinal analysis is

employed, errors should be explicitly considered in sample size

determination. In principle, we have outlined an approach to error

estimation for any condition in which there are uncertainties in

outcome assessment and provided the user with a set of Matlab

programs to incorporate errors into sample size estimation. The

relative advantage of dichotomizing vs. ordinal analysis will

depend on the distribution of these uncertainties and the

frequency of their occurrence under the specific conditions of

the trial.
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