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Abstract

DNA methylation plays an important role in development of disease and the process of aging. In this study we examine
DNA methylation at 476,366 sites throughout the genome of white blood cells from a population cohort (N = 421) ranging
in age from 14 to 94 years old. Age affects DNA methylation at almost one third (29%) of the sites (Bonferroni adjusted P-
value ,0.05), of which 60.5% becomes hypomethylated and 39.5% hypermethylated with increasing age. DNA methylation
sites that are located within CpG islands (CGIs) more often become hypermethylated compared to sites outside an island.
CpG sites in promoters are more unaffected by age, whereas sites in enhancers more often becomes hypo- or
hypermethylated. Hypermethylated sites are overrepresented among genes that are involved in DNA binding, transcription
regulation, processes of anatomical structure and developmental process and cortex neuron differentiation (P-value down
to P = 9.14*10267). By contrast, hypomethylated sites are not strongly overrepresented among any biological function or
process. Our results indicate that the 23% of the variation in DNA methylation is attributed chronological age, and that
hypermethylation is more site-specific than hypomethylation. It appears that the change in DNA methylation partly overlap
with regions that change histone modifications with age, indicating an interaction between the two major epigenetic
mechanisms. Epigenetic modifications and change in gene expression over time most likely reflects the natural process of
aging and variation between individuals might contribute to the development of age-related phenotypes and diseases such
as type II diabetes, autoimmune and cardiovascular disease.
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Introduction

Epigenetics is used to denote the regulation of gene transcrip-

tion that cannot be attributed to sequence variation in the DNA.

Although the term epigenetics includes a number of different

mechanisms, DNA methylation and histone modification are most

commonly discussed. DNA methylation in mammals appears to be

specific to cytosine, predominantly to CpG (cytosine-phosphate-

guanine) dinucleotides. In promoter regions, CpG sites are often

clustered in CpG islands (CGIs) were methylation is believed to

repress gene expression [1]. Even small changes in the methylation

of a promoter region can introduce stable changes in gene

expression, leading to silencing of a gene [2,3]. Recently, different

array- and sequence-based techniques for measuring of the

genome-wide DNA methylation pattern have been developed,

and the different techniques have yielded concordant results [4,5].

A number of environmental factors, such nutrition status,

exposure to drugs, pesticides and other compounds, have been

found to alter the epigenome [6]. A number of genomic regions

have been proposed to be differentially methylated between MZ

twins discordant for disorders such as schizophrenia [7], caudal

duplication anomalies [8], bipolar disorder [9], and systemic lupus

erythematosus [10]. More comprehensive genome-wide studies of

methylation using larger sample sizes have shown that changes in

DNA methylation pattern in the human brain and in blood

leukocytes [11–13] and in cord blood from newborn compared to

peripheral blood mononuclear in elderly [14], is highly correlated

with the chronological age.

Although most studies performed are based on a small number

of individuals or methylation sites, they point to the importance of

epigenetic modifications in the process of aging. The use of novel

methylation assays with a higher genomic resolution and larger

sample sizes spanning a wider age-range will greatly increase our

understanding of the relationship between the DNA methylation

level and chronological age. In this study we evaluate the effect of

chronological age on DNA methylation in 421 individuals aged 14

to 94 years, in which DNA methylation status in white blood cells

has been determined at more than 475,000 sites distributed

throughout the genome [15].

Materials and Methods

Study Population
The Northern Sweden Population Health Study (NSPHS) was

initiated in 2006 to provide a health survey of the population in

the Parishes of Karesuando and Soppero, County of Norrbotten,

and to study the medical consequences of lifestyle and genetics.

This parish has about 3000 inhabitants who meet the eligibility
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criteria in terms of age (.15 years) of which 1069 individuals

participated in the study. Studies of populations such as NSPHS

can be of great value for studying health effects of lifestyle and

genetic factors. In addition, rural individuals usually live in the

same environment over an extended time period, which increases

the health effects of their lifestyle but also make them optimal for

studying the long-term lifestyle and environmental effect on DNA

methylation. For each participant in the NSPHS, blood samples

were taken and immediately frozen and stored at 270 C.

Genomic DNA for methylation analyses was extracted from

previously frozen peripheral blood leukocytes using a phenol:-

chloroform protocol. More information about the NSPHS has

been published previously [16]. The NSPHS study was approved

by the local ethics committee at the University of Uppsala

(Regionala Etik prövnings nämnden, Uppsala, Dnr 2005:325) in

compliance with the Declaration of Helsinki. All participants gave

their written informed consent to the study including the

examination of environmental and genetic causes of disease. In

case the participant was not full age, a legal guardian signed

additionally. The procedure which was used to obtain informed

consent and the respective informed consent form has been

recently discussed in the light of present ethical guidelines [17].

Since we are working with a study cohort from a limited area,

deposition of the raw data might allow for person identification.

Due to concerns regarding patient privacy and protection, we are

therefor unable to deposit the raw data to a central repository.

However, data will be made available to researchers upon request.

[17].

Determination of DNA Methylation Status
Genomic DNA was bisulfite-converted using an EZ DNA

methylation Kit (ZYMO research) according to the manufactur-

er’s recommendations. The methylation status of the genomic

DNA was then assessed using he Human Methylation450

BeadChip, (Illumina, San Diego, USA) according to the standard

protocol. Analysis of the raw data was performed using Illumina

GenomeStudio 2009, using the recommended settings from

Illumina and the HumanMethylation450_15017482_v.1.2.bpm

manifest file. The quality control (QC) parameters recommended

by Illumina were used (Individual Probe Call rate .0.98, marker

detection P-value , = 0.01).

Transcription Profiling Data
Transcription profiling data from whole blood for 99 healthy

US controls individuals from the PREDICT trial (http://www.

clinicaltrials.gov, accession number: NCT00500617) together with

information of gender and birth date were downloaded from the

ArrayExpress database (www.ebi.ac.uk/arrayexpress, accessed 14

October, 2012) under accession number E-GEOD-20686. This

data were produced using Agilent Whole Human Genome

Microarray 4644K 014850 G4112F, (Agilent Technologies Inc,

Americas). Description on sample preparation and processing of

transcription data has been published previously [18]. Gene

annotations for the probes were obtained using the Ensembl

database (http://www.ensembl.org, accessed –14, October 2012).

Statistic Analyses of DNA Methylation Data
All statistic analyses were performed using the stats library of R

version 2.15.0 [19]. Methylation values were reported as average

beta values, which represent the ratio of array intensity signal

obtained from the methylated beads over the sum of methylated

and unmethylated beads (or the fraction of DNA fragments that

are methylated at a specific site for an individual). Beta values for

each marker were fitted to a linear model using chronological age,

sex and bmi as covariables. We also tested for interaction between

age and sex by using the same model and including the sex*age

interaction term. No plate/batch effect were seen and conse-

quently not included in the model. Wilcox-rank sum test were used

to compare median values for not normally distributed traits. The

terminology: hypomethylated is used for sites that decrease in

methylation by age and hypermethylated for sites that increase in

methylation by age. Bonferroni adjustment for multiple testing was

used when determining if a site was hypo- or hypermethylated.

Modal clustering was performed for each site separately using the

Modalclust library [20], without any assumptions of the underly-

ing number of modes and memberships and using a smoothing

factor of 0.05. To compare the number of modes with the

presence of genetic polymorphisms, SNP information were

downloaded from the 1000 Genomes reference panels represent-

ing the 23 Nov 2010 (low-coverage genomes) and 21 May 2011

(high-coverage exomes) accessed from the IMPUTE-web resource

(http://mathgen.stats.ox.ac.uk/impute/

data_download_1000G_phase1_integrated.html) March21, 2013.

Only 1000 Genomes SNPs with a minor allele frequency of 0.01 in

European populations were included in the analyses.

Statistic Analyses of Transcription Data
Linear regression was performed for transcription data using

chronological age and sex as covariables. For the transcription

data, a cut-off of P = 0.05 were used to determine if the gene

expression increased/decreased by age. Chi-square test were used

to test for enrichment of genes that increase or decrease in

expression by age among the most hyper- and hypomethylated

genes relative other genes.

Functional Analyses of DNA Methylation Sites
Annotation of DNA methylation sites were provided by

Illumina (www.illumina.com, HumanMethyla-

tion450_15017482_v.1.1.csv, accessed: 1st September, 2012) as

described previously [15] or downloaded from the UCSC genome

bioinformatics site (http://genome.ucsc.edu, Feb. 2009

(GRCh37/hg19) release, accessed: 1st September, 2012). The

definition of a CGI used were: length .200 bp, GC content

. = 50% or greater observed to expected number of CG

dinucleotide .0.6. CpG sites located in Island shores are located

0–2 kb and shelves 2–4 kb from an island. N shore and shelves are

located upstream and S shores and shelves are located downstream

of an island. Chromatin states in blood cells [21] were downloaded

from the UCSC genome bioinformatics site (http://genome.ucsc.

edu, Feb. 2009 (GRCh37/hg19) release, accessed: 1st September,

2012).

Selection of the most Hyper- and Hypomethylated CGIs
Each autosomal CGI with more than three measured CpG sites

(N = 25045) were analyzed for fraction of sites were the

methylation level was positively (correlation coefficient .0 and

Bonferroni adjusted P-value ,0.05) or negatively (correlation

coefficient ,0 and Bonferroni adjusted P-value ,0.05) correlated

with age. The CGIs were ranked according to the fraction of sites

in each category (hypo- or hypermethylated). The top 500 were

included in the gene ontology analyses. Gene annotations for the

CGIs were provided by Illumina (www.illumina.com, Human-

Methylation450_15017482_v.1.1.csv, accessed: 1st September,

2012).

Aging of the Human DNA Methylome
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Biological Function and Gene Ontology Analyses
Gene ontology analyses were performed using GORILLA

(Gene Ontology enRIchment anaLysis and visuaLizAtion tool)

[22] for autosomal markers only. A CGI might not be linked to

any known gene or be linked to a number of different genes with

similar functions. To avoid introducing a bias from genes of similar

function tending to cluster to the same chromosomal location, only

one gene for each CGI was randomly included in the final gene

lists of 500 candidates.

Results

A total of 476,366 markers (98.10%) and all individuals

(N = 421, Probe Call rate ranging from 99.72% to 99.99%) passed

the QC. The median age among individuals was 44 years, ranging

from 14 to 94 (Figure 1A). The distribution of DNA methylation

levels shows, that among autosomal markers, as many sites are

unmethylated (methylation level ,0.25) as are methylated

(methylation level .0.75) (Figure 1B and C). The distribution of

DNA methylation levels differs somewhat between males and

females for the autosomes (Figure 1B), with a slightly lower median

autosomal methylation level for males (p-value = 0.031). No

difference in quantile or mean autosomal methylation levels is

seen between sexes. By contrast, the pattern for the X-

chromosome differs dramatically between sexes (Figure 1D). This

is in agreement with imprinting of a large fraction of the X

chromosome in females giving rise to a large fraction of hemi-

methylated sites in females (methylation level .0.3 and ,0.7) in

combination with the pseudo autosomal region of the X-

chromosome with unmethylated (methylation,0.25) or methylat-

ed (methylation .0.75) sites also in females. The methylation

pattern of autosomes differs between the youngest and oldest

participants in our study (Figure 1C). The mean autosomal

methylation level decreases with age (R = 20.191, p-value = 8.05e-

05), but the most significant difference is the increase of the 1st

quantile (R = 0.406, p-value ,2.2E-16) and decrease in median

(R = 20.439, p-value ,2.2E-16) and the 3rd quantile (R = 20.429,

p-value ,2.2E-16), similar to that seen in Figure 1A.

Modal Clustering
A number of factors might influence if the distribution of

methylation levels will be unimodal, bimodal or polymodal

(including multiple distributions with different mean/median).

The most obviously pattern is the imprinted part of the X

chromosome, were most males will appear to be unmethylated

compared to female who are hemimethylated at most sites

(Figure 1D). In this case we expect a bimodal distributions for

most X chromosomal sites, with the mean of the first mode (males)

being close to 0 (unmethylated) and the second mode (females)

being close to 0.5 (hemimethylated). Another scenario is the case

of having an SNP in the CpG site. A polymorphism in one of these

positions might lead to poor or no methylation. Also SNPs located

within the sequence of the DNA probe used for genotyping might

affect the specificity of a probe and differences in intensities

between different alleles. Most of the autosomal sites (94.7%) in

our data are monomodal (Table 1). However, a number of sites

are bimodal (4.6%), whereas only few sites were trimodal (0.74%),

or had more than three modes (0.023%). Unfortunately, we do not

have complete SNP information for the regions surrounding the

DNA methylation sits. However, we can determine that a

significantly (P-value = 3.3e-246) higher fraction (28.1%) of the

trimodal sites overlap with a known 1000 Genomes SNP located at

the DNA methylation site, compared to only 6.5% for the bimodal

sites and 0.5% of the unimodal. Similarly, a significantly (P-

value = 7.8e-148) higher fraction of bimodal trimodal sites (45.4%)

overlap with a 1000 Genomes SNP located within 1 bp from the

DNA methylation site measured, as compared to 7.5% for the

bimodal and 0.75% for the unimodal. However the frequency of

sites with an SNP located 2 bp from the DNA methylation site

measured is more similar between trimodal, bimodal and

unimodal sites (0.75%, 0.72% and 0.45% respectively). This

suggests that underlying SNPs might account for a large fraction of

the variation in the bi- and especially tri- modal DNA methylation

sites.

Principal Component Analyses
Principal component analyses of all autosomal markers show

that only the first four principal components (PCs) each explains

more than 1% of the variance among the beta values (61,1%,

20.3%, 4.2%, and 1.4% for PC 1–4 respectively). All other PCs

explain less than 1% of the variation each. Together the first four

PCs account for 87.1% of the total variance in DNA methylation

(Table 2). All the first four PCs are strongly correlated (p,2.65E-

06) with chronological age, with a Rhô2 ranging from 0.051 to

0.278. To estimate the fraction of variation in DNA methylation

that can be attributed age, we extrapolated these numbers. Since

age explains Rhô2 = 20.528̂2 = 27.9% of the variation in PC #1

and PC #1 explains 61,1% of the variation in the DNA

methylation, we can estimate that age explains 27.9%

*61.1% = 17% of the variation in DNA methylation based on

only looking at PC #1. If calculating the sum of these variances for

PC1–4, we can estimate that age account for more than 23% of

the variation in methylation level among the autosomal sites.

DNA Methylation and Correlation with Chronological
Age

For as many as 29.0% of the sites (137993), the methylation

level is significantly (P-value ,1.049613e-07, Bonferroni adjusted

P-value ,0.05) correlated with age (Supporting information Table

S1). For the majority of these sites (60.5%) methylation decrease

(hypomethylation) with age and for remaining (39.5%) methyla-

tion increase (hypermethylation). For 37.8% of all sites, the

methylation level was not correlated (Nominal P-value .0.05)

with age. For most sites influenced by age, DNA methylation

increase/decrease approximately linear with age. The strongest

positive correlation of methylation with age is seen for cg16867657

(R = 0.957, P-value = 1.20e-228), which is located in a CGI in the

promoter of ELOVL2 (Figure 2), were the methylation level

ranges from 0.352 in the youngest to 0.891 in the oldest individual.

It is interesting to note that the distribution of methylation levels

for the cg16867657 site were estimated to be bimodal with means

u = 0. 491 and u = 0.625, as a consequence of the uneven

distribution in age among individuals and an increased number

of individuals with an age around 17, 45 or 67 years of age

(Figure 1A). In addition to being age-dependent, significant

interactions between sex and age was observed (Bonferroni

adjusted P-value ,0.05) for 163 sites, of which 152 were located

on the X chromosome. This low number of significant interactions

indicates that the effect of age on DNA methylation is similar in

males and females for most sites.

Functional Analyses of Marker Locations
The Human Methylation450 BeadChip is designed to target

more or less all well-defined CGIs in the human genome. In total,

27110 CGIs are targeted with at least one of the markers that

passed the QC in our analyses. In total, 304217 (63.9%) of the

markers overlap with a CGI, with an average of 17.5 markers

Aging of the Human DNA Methylome
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(median = 10) per island, ranging from 1 to 166 markers. As many

as 21153 genes are targeted by at least one CpG site, 15930 by a

CGI and 10128 genes have at least one CpG site in the promoter.

Among the sites that become hypermethylated with age, 81.4%

are located in a CGI, compared to only 2.8% for the

hypomethylated sites (Figure 3A). On the other hand, CpGs

located in S shelf or N shelf, very rarely become hypermethylated

by age, whereas the frequency of S shore and N shore sites is more

evenly distributed over the spectra of correlation coefficients. This

agrees with previous studies using another chip (Infinium

HumanMethylation27 BeadChip) with larger fractions of CGIs,

showing that a larger fraction of sites become hypermethylated by

age [13]. While the fraction of sites located within CGIs increase

with increasing correlation coefficient, there is also a peak

representing a large fraction of sites in CGIs with a correlation

coefficient close to zero (Figure 3A). This peak is mainly due to

promoter sites (Figure 3B), which appear to be more conserved in

the DNA methylation level throughout the years compared to e.g.

enhancer sites. The same peak is also found for sites located

200 bp upstream of the transcription starting site, 59 UTR and the

first exon, whereas a larger fraction of the sites are located in gene

bodies and 39UTRs appear to become hypomethylated over time

(Figure 3C). It is also seen that longer CGIs more often become

hypermethylated by age (Figure 4A), and that the fraction of

observed CpG sites compared to the content of C and G

nucleotides is highest for sites that are not correlated with age and

sites where the methylation level is positively correlated with age

(Figure 4 B and C).

Figure 1. Distribution of A) Ages in the study cohort, B) DNA methylation levels for autosomal markers in males and females, C)
DNA methylation level for autosomal markers in the youngest (age ,18, N = 51) and oldest (age.71, N = 52) individuals of the
study, and D) DNA methylation levels for X chromosomal markers in males and females.
doi:10.1371/journal.pone.0067378.g001

Table 1. Number of modes in the distribution of DNA methylation for each site.

Number of modes 1 2 3 .3

Number of Sites (N) 451002 21707 3546 111

Markers with a known SNP within 10 bp from the site 0.067 0.113 0.325 0.360

Markers with a known SNP more than 10 bp away from the site 0.123 0.115 0.120 0.189

Markers with a known SNP within or more than 10 bp away 0.178 0.205 0.368 0.432

Markers without any known SNP within or more than 10 bp away 0.822 0.795 0.632 0.568

doi:10.1371/journal.pone.0067378.t001
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Ernst and Kheradpour [21] define, in blood cells, two types of

strong enhancers; chromatin state 4, which is defined by locations

having H3K4me1/2/3 and acetylated H3K27 and H3K9, and

chromatin state 5, which is defined as having H3K4me1/2,

acetylated H3K27 and to some degree acetylated H3K9. While

DNA methylation in chromatin that has been annotated as being

active promoters (state 1), appears to be less affected by age in our

data, we find that strong enhancers of state 4 is predominately

found among hypermethylated sites and enhancers of state 5

among hypomethylated sites (Figure 5).

Gene Ontology Analyses
The genes with hypermethylated CGIs are overrepresented in

some molecular functions and cellular processes. The most

enriched molecular functions involve DNA binding and transcrip-

tion regulation, which are enriched almost eight times (P-value

down to P = 9.14E-67) for hypermethylated genes (Supporting

information Figure S1 and Table S2). Similarly, a large number of

biological processes are enriched for hypermethylated genes (P-

values down to 3.19E-49), including processes of anatomical

structure and developmental process, pattern specification process,

and regionalization and neurological functions. For example,

Table 2. Principal components for the DNA methylation levels among autosomal markers and corresponding correlation with age
and variance.

Principal
component

Proportion of variance
explained by each PC

Cumulative proportion of
the variance

Spearman’s rank
correlation with age

Total variance attributed
by age*

Cumulative variance
attributed to age

Rho P-value

PC1 0.611 0.611 20.528 1.84E-31 0.170 0.170

PC2 0.203 0.814 0.534 2.68E-32 0.058 0.228

PC3 0.042 0.856 20.387 1.94E-16 0.006 0.234

PC4 0.014 0.871 20.227 2.65E-06 0.001 0.235

PC5 0.009 0.879 0.305 1.84E-10 0.001 0.236

PC6 0.004 0.884 0.153 1.64E-03 0.000 0.236

PC7 0.004 0.887 20.049 3.16E-01 0.000 0.236

PC8 0.003 0.890 0.108 2.67E-02 0.000 0.236

PC9 0.002 0.892 20.287 2.13E-09 0.000 0.236

PC10 0.002 0.894 20.163 7.82E-04 0.000 0.236

*Total variance attributed by age is calculated as Rhô2 * the proportion of variance explained by the PCs.
doi:10.1371/journal.pone.0067378.t002

Figure 2. Increase in DNA methylation level with age of one CpG site (cg16867657) in the promoter of the ELOVL2 gene and
corresponding regression line.
doi:10.1371/journal.pone.0067378.g002
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cerebral cortex neuron differentiation is over 30 times enriched for

hypermethylated genes (Supporting information Table S3, and

Figure S2). The genes that become hypomethylated with age do

not show any strong enrichment for specific functions or processes

(Supporting information Table S4, Table S5, Figure S3 and

Figure S4).

Gene Expression and Chronological Age
We wanted to investigate if genes that become hyper- of

hypomethylated also show a more distinct change expression with

chronological age. A total of 28984 out of 41049 expression probes

mapped to a gene with an official gene name provided by Ensembl

and could be mapped to our most hypo- or hyper-methylated gene

associated CGIs. Among the 500 most hypermethylated CGIs,

412 are associated with a gene that is also targeted by at least one

expression probe. Similarly, among the 500 most hypomethylated

CGI, 407 are associated with a gene that is also targeted by at least

one of the expression probes. Among the 28984 probes that are

mapped to a gene name, a slightly higher fraction (16.0%)

decrease compared to increase (13.3%) expression with age

(p = 2.29e-21). For the genes that become hypermethylated by

age, a much larger fraction (26.94%) decrease in expression with

age and a much smaller fraction increase in expression by age

(2.91%) compared to the average (Chi2 test P-value = 2.49e-09

and 6.55e-10 respectively). Interestingly, also for genes that

become hypomethylated by age, a much larger fraction (24.8%)

decrease in expression with age and a much smaller fraction

increase in expression by age (6.88%) compared to the average

(Chi2 test P-value = 1.807e-06 and 0.000158 respectively). These

results suggest that both hyper- and hypo methylation by age can

result in a decrease of expression, probably by different regulatory

mechanisms.

Discussion

In this study we have shown that chronological age plays an

important role in the pattern of DNA methylation in white blood

cells. More than 23% of the total variation in autosomal DNA

methylation, or over 90% of the variation at individual sites, can

be attributed to chronological age. As many as 29% of the sites

surveyed were influenced by age using a stringent cut-off for

significance (Bonferroni adjusted P-value ,0.05). Our estimate is

higher compared to previously studies [11,12], mainly due to the

larger number of sites investigated, the larger sample size, and the

wide range in age between subjects. The distribution of mean

methylation level per site also differs between age-stratified groups.

It appears that in younger individuals a larger fraction of sites are

either hypo- or hypermethylated, whereas for older individuals

sites that were initially hypomethylated increase in methylation

level, and sites that were initially hypermethylated decrease in

methylation level. This indicates that there is a change in

methylation level with age, from an initial hyper- or hypomethy-

lated state and towards hemimethylation. Interestingly, a lower

number of sites appear to become hyper- as compared to

hypomethylated by age.

For a large fraction of the sites (38%), the methylation level did

not correlate with age (nominal p.0.05). Many factors might

result in lack of a correlation, including methodological issues

(typing quality), strong influences on the methylation level by other

(as yet unidentified) factors (e.g. diet and lifestyle), and bi- or

polymodal distributions (e.g. due to SNPs). In addition, we do

observe a higher fraction of sites in repetitive regions (chromatin

state 15) that are not affected by age (Figure 5) suggesting that

many of theses sites might not be related to gene regulation.

However, it is reasonable to believe that some sites might be

subjected to strict conservation of the methylation pattern

throughout the lifetime. Interestingly, we observe a peak of sites

Figure 3. Location of CpG site depending on correlation
between DNA methylation level and chronological age.
Observations are ordered by the correlation coefficients and combined
into 100 bins. The illustrations show the fraction of markers within each
bin with a location in relation to, A) CGIs, island shores and islands
shelves, B) Known promoter and enhancer regions, and C) Gene and
transcription starting site.
doi:10.1371/journal.pone.0067378.g003
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with correlation coefficient close to zero to be enriched for sites

located in CGIs (Figure 3A) and in active promoters (Figure 3B

and Figure 5). This might suggest that the DNA methylation

pattern of promoters is more conserved through life and that

changes in the methylation pattern of promoters are more likely to

be associated with a phenotype in humans.

There is a clear overrepresentation of specific biological

functions among hypermethylated genes compared to almost no

overrepresented functions of processes among hypomethylated

genes. Together these results indicate that hypermethylation with

age is more site- and gene-specific, and that hypomethylation is

likely to occur more sporadically at sites with a less central role in

regulating gene transcription. This agrees well with previous

studies showing that the methylation level correlates with

chromatin accessibility, and that the most variably methylated

CpGs are often found in gene bodies and intragenic regions rather

than in promoters and upstream regulatory regions. While DNA

methylation of promoters is generally regarded as repressing gene

expression, methylation of genic regions has been correlated to

increased transcriptional activity [1]. This might explain our

observation that the pattern of more stable methylation or

hypermethylation by age in regions close to the transcription start

site, as compared to the hypomethylation seen at sites in gene

bodies (Figure 3). This pattern suggests that transcription at many

genes is reduced with increased chronological age, which agrees

with our observation from transcription profiling data, where both

hyper- and hypermethylated genes are enriched for lower

transcription levels by age.

The change in methylation pattern is dependent on the balance

between modifying and demodifying enzymes. Most of the enzyme

activity in the process of copying the methylation pattern during

replication is attributed to the DNMT1 methyltransferase. Other

known components in DNA methylation pattern are de novo

methyltransferases, DNMT3A and DNMT3B [23]. The mecha-

nisms of DNA methylation also agree with hypomethylation being

a failure (which might be more pronounced at some sites) to copy

the methylation pattern, while de novo methylation acts in a site-

specific manner. The fact that the average gene expression level

decrease by age and that decreased levels of DNMT1 and other

enzymes has been shown to result in genome-wide loss of CpG

methylation [24], support our results of the larger number and less

site specificity of hypomethylation.

Another functional difference between sites that become hypo-

or hypermethylated by age is that hypermethylated sites more

often map to regions that have been suggested to represent strong

enhancer of chromatin state 4, as compared to hypomethylated

sites that mainly map to strong enhancers of chromatin state 5 in

blood cells (Figure 5). State 4 and state 5 strong enhancers mainly

differ by state 4 having trimethylated lysine 4 of histone H3

(H3K4me3) and acetylated lysine 9 of histone H3 at (H3K9ac)

[21]. Our results of a positive correlation between hypermethyla-

tion by age and H3K4me3 in blood cells agree with other studies

[12]. However it has previously been shown that H3K4me3

inhibits the binding and activity of the de novo methylation enzymes

DNMT3A/B [25]. This does not agree with our results of state 4

enhancers (being H3K4me3) being more prone to hypermethyla-

tion. However, it has also been shown that both H3K4me3 and

H3K9ac decrease with age, at least in brain tissue [26,27], which

could result in higher activation of DNMT3A/B followed by

hypermethylation of state 4 enhancers, which does agree with our

results. It is of interest to note that the gene ontologies that were

enriched for H3K4me3 methylation specific to newborns [27]

overlap with the ontologies that we find to become hypermethy-

lated by age. Also, out of 557 genes that were H3K4me3 specific

to the newborn, a significantly larger fraction (5.9% compared to

2.7%) overlap with the genes becoming hyper- as compared to

hypomethylated by age in our study (Fisher Exact Test one tailed

P-value = 0.0045). Similarly, out of 92 genes that are H3K4me3

specific at higher age [27] five overlapped with our hypo- and

none with our hypermethylated genes (Fisher Exact Test one

tailed P-value = 0.030). The age-related changes in histone

modification and the association between age-dependent histone

Figure 4. Summary statistics for the CGIs depending on the correlation between DNA methylation level and chronological age.
Observations are ordered by the correlation coefficients and combined into 100 bins. The features of the CGIs within each bin is summarized as, A)
Mean length of the CGIs, B) Mean percentage of CpGs in the islands, and C) Mean of observed to expected ration of CpGs in the islands.
doi:10.1371/journal.pone.0067378.g004

Figure 5. Distribution of DNA methylation sites mapped to regions with different chromatin states as defined by Ernst et al [21].
DNA methylation marks are ordered by the correlation coefficient with age and combined into 100 bins.
doi:10.1371/journal.pone.0067378.g005
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modifications and age-dependent DNA methylation are poorly

understood [28]. Our results indicate that the epigenetic

mechanisms that reduce gene expression throughout our lifespan

are shared between different tissues. In addition, our results

suggest that the changes in the epigenetic pattern by chronological

age is to some extent correlated between DNA methylation and

histone modifications. One explanation could be that for some

genes that become less active with age, H3K4me3 decrease

followed by enhanced de novo DNA methylation.

Compared to most studies on DNA methylation, which are

performed in vitro on specific cell types, our study was performed

on white blood cells (WBC) from peripheral blood samples from a

population-based cohort. WBC represent a mixture of cell types

and we cannot exclude that some of our findings are due to age-

dependent change in the composition of different cell-types rather

than average change in DNA methylation over all cell-types. It has

been shown that DNA methylation vary depending on cell

composition, an effect that is pronounced in immune system-

related diseases [29,30]. In previous studies, the white blood cell

counts (WBC) for the most common cell types (neutrophils,

eosinophils, monocytes, and lymphocytes) have been compared to

DNA methylation levels [12]. These results indicate that only a

small fraction (3.9%) of the sites are influenced by lymphocyte

counts, and no sites are correlated with the counts of the other cell

types. Since we are using samples from a healthy population based

cohort in combination with the fact that age-dependent differential

methylation is shared between cell types cells [31], the variability

in WBC sub-types is not likely to exert a major effect on our results

on the effect of chronological age on DNA methylation.

Many age-related diseases, such as coronary artery disease,

atherosclerosis, and chronic inflammation are tightly linked to

inflammatory processes, were white blood cells play an important

role. Variability in hundreds of genes contributes to the

susceptibility of these diseases. Altered DNA methylation pattern

in blood cells might result in variation in gene transcription and

subsequent increased or decrease of the amount of gene product.

This regulation might play an important role in the inflammatory

process, when the immune cells release a large number of

inflammatory markers. It is reasonable to believe that signal

molecules that are released as an indication of inflammation might

be up- or down- regulated due to variation in the DNA

methylation pattern, resulting in an accelerated (or decelerated)

immune response to a pathogen, or even a response without being

triggered by a pathogen. A large fraction of hypermethylated CpG

sites in elderly might result in repression of genes that are

important for maintaining health. A better understanding of the

changes in DNA methylation through a person’s lifespan might

lead to better prevention and treatment of age-related diseases.

The strong effect of age on DNA methylation could also introduce

a bias in studies of the DNA methylation pattern in diseases, when

cases and controls are not carefully age-matched, a factor that

needs to be considered in early study design.
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