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Abstract

Aims: With ageing extracellular material is deposited in Bruch’s membrane, as drusen. Lipofuscin is deposited in retinal
pigment epithelial cells. Both of these changes are associated with age related macular degeneration, a disease now
believed to involve chronic inflammation at the retinal-choroidal interface. We hypothesise that these molecules may act as
danger signals, causing the production of inflammatory chemokines and cytokines by the retinal pigment epithelium, via
activation of pattern recognition receptors.

Methods: ARPE-19 cells were stimulated in vitro with the following reported components of drusen: amyloid-ß (1-42),
Carboxyethylpyrrole (CEP) modified proteins (CEP-HSA), Ne-(Carboxymethyl)lysine (CML) modified proteins and aggregated
vitronectin. The cells were also stimulated with the major fluorophore of lipofuscin: N-retinylidene-N-retinylethanolamine
(A2E). Inflammatory chemokine and cytokine production was assessed using Multiplex assays and ELISA. The mechanistic
evaluation of the NLRP3 inflammasome pathway was assessed in a stepwise fashion.

Results: Of all the molecules tested only A2E induced inflammatory chemokine and cytokine production. 25 mM A2E
induced the production of significantly increased levels of the chemokines IL-8, MCP-1, MCG and MIP-1a, the cytokines IL-
1ß, IL-2, IL-6, and TNF-a, and the protein VEGF-A. The release of IL-1ß was studied further, and was determined to be due to
NLRP3 inflammasome activation. The pathway of activation involved endocytosis of A2E, and the three inflammasome
components NLRP3, ASC and activated caspase-1. Immunohistochemical staining of ABCA4 knockout mice, which show
progressive accumulation of A2E levels with age, showed increased amounts of IL-1ß proximal to the retinal pigment
epithelium.

Conclusions: A2E has the ability to stimulate inflammatory chemokine and cytokine production by RPE cells. The pattern
recognition receptor NLRP3 is involved in this process. This provides further evidence for the link between A2E,
inflammation, and the pathogenesis of AMD. It also supports the recent discovery of NLRP3 inflammasome activation in
AMD.
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Introduction

In the western world age related macular degeneration (AMD)

is the leading cause of blindness in the elderly population. [1,2]

AMD can be classified into two groups: ‘dry’ (atrophic) and ‘wet’

(neovascular) AMD. Dry AMD accounts for approximately 90%

of cases of AMD, [3] and is characterized by primary loss of the

retinal pigment epithelium (RPE) with secondary atrophy of the

overlying photoreceptors and underlying choriocapillaris. Vascu-

lar endothelial growth factor (VEGF) inhibitors have provided a

breakthrough in the treatment of wet AMD. [4] However there is

currently no effective treatment for dry AMD. Greater under-

standing of the pathogenesis of AMD may provide new treatment

strategies for this blinding disease.

One hallmark of AMD is the presence of drusen. The

deposition of extracellular material as drusen, at the level of

Bruch’s membrane, precedes both forms of the disease. Drusen

have been shown to contain a wide variety of substances, including

amyloid-ß, advanced glycation end products (AGEs), complement

components, peroxidised lipids, and vitronectin. In addition to

extracellular material being deposited as drusen in Bruch’s

membrane, increased amounts of insoluble lipofuscin build up

within RPE cells, with increasing age. Lipofuscin has been shown

to occupy 1% of the RPE’s cytoplasmic volume during the first

decade of life, increasing to 19% by the age of 80 years. [5]

Lipofuscin is made up of undegradable products of photoreceptor

outer segment metabolism, and is the main fluorophore of the

RPE. [6] A linear relationship between RPE autofluorescence and

Bruch’s membrane thickness exists. [7] This implies that the

ageing changes in the RPE and Bruch’s membrane are related.
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Many of the molecules found in drusen are derived from the

inflammatory cascade, implicating inflammation in the pathogen-

esis of AMD. [8] This idea was further supported following the

association between complement factor H polymorphisms and

AMD, [9–12] and histological evidence has shown the presence of

macrophages near many AMD lesions (areas of Bruch’s mem-

brane degeneration, RPE atrophy and choroidal neovascularisa-

tion (CNV)). [13–18] In addition aqueous humour cytokine and

chemokine concentrations are elevated in patients with AMD.

[19,20].

Uncertainty exists as to whether the material, deposited in both

Bruch’s membrane and the RPE, is a byproduct of disease, or

actually has a pathogenic role in causing disease. Drusen and

increased lipofuscin levels are found in normal ageing eyes, in the

absence of disease. However components of drusen and lipofuscin

have also been implicated in the pathogenesis of AMD. One

theory is that molecules found in drusen and lipofuscin may act as

danger signals, stimulating a range of pattern recognition receptors

(PRRs) in the RPE, which in turn lead to the secretion of

inflammatory chemokines and cytokines. These inflammatory

chemokines and cytokines are then responsible for the recruitment

and activation of immune cells (microglia, macrophages) at the

retinal-choroidal interface, which leads to the chronic inflamma-

tory process associated with AMD.

Hageman et al proposed that ‘‘the injured RPE serves as the

most likely source of soluble cytokines or other stimulatory factors’’

that would lead to choroidal immune cell activation associated

with AMD. [8] The RPE, being resident at the retinal-choroidal

interface, would appear a plausible key initiator of inflammation,

in response to stimulation by danger signals.

PRRs form part of the innate immune system, and their

activation leads to a variety of downstream signaling effects,

including cytokine secretion. They include Toll-like receptors

(TLRs) and NOD-like receptors (NLRs). TLRs are membrane

associated and located on both cell surface and within the cell,

while NLRs are intracellular. They can be activated by exogenous

pathogen-associated molecular patterns (PAMPs) as well as

endogenous danger-associated molecular patterns (DAMPs),

otherwise known as danger signals. Oxidative stress, lipid

peroxidation and lipofuscin formation are known danger signals

to RPE cells. [21] Carboxyethylpyrrole (CEP) modified proteins,

found in drusen, are one such example of a danger signal. They

are present in increased amounts in eyes with AMD and have been

shown to be able to prime certain PRRs, known as NLRP3 (part of

the intracellular NOD-like receptor family). [22] NLRP3 has also

been linked to the formation of geographic atrophy, one of the

hallmarks of dry AMD. [23].

Our aim was to assess whether a range of danger signals,

associated with AMD, were able to induce inflammatory

chemokine and cytokine production by RPE cells, and whether

this occurred via the activation of PRRs. In order to achieve this

aim we stimulated RPE cells in vitro and recorded chemokine and

cytokine production via Multiplex assay and enzyme linked

immunosorbant assay (ELISA). We then investigated the cellular

pathways involved. We found that of all the molecules tested, A2E

consistently and robustly stimulated chemokine and cytokine

production by RPE cells. Furthermore, we found that the PRR

NLRP3 was involved in this process.

Below is a brief introduction to the molecules tested:

Amyloid-ß (1-42)
Amyloid-ß is poorly soluble peptide, prone to extracellular fibril

formation. Amyloid-ß is found in drusen and has been shown to

activate the complement system through blocking the function of

factor I, leading to low grade chronic inflammation in sub-retinal

tissues. [24] Amyloid-ß has also been shown to activate the

NLRP3 inflammasome in a mouse model of Alzheimer’s disease.

[25] Targeting amyloid appears to protect against RPE damage

and vision loss in a model of age-related macular degeneration.

[26].

N-retinylidene-N-retinylethanolamine (A2E)
A2E, a major fluorophore in lipofuscin, is deposited in the RPE

with age. It has been shown to be toxic to RPE cells in vitro,

[27,28] and is capable of oxidative damage and complement

system activation. [29–32] Both oxidative damage and comple-

ment activation have been implicated in the pathogenesis of AMD.

[9–12,33,34] Whether A2E has a direct role in causing AMD is yet

unproven.

Carboxyethylpyrrole Modified Human Serum Albumin
(CEP-HSA) and CEP-Lysine

CEP protein modifications occur following oxidative damage of

docosahexanoic acid (DHA), a rod outer segment lipid. CEP

modified proteins, found in drusen, have been shown to stimulate

neovascularisation, as well as induce a retinal changes similar to

dry AMD in a mouse model. [35,36] CEP modified proteins have

been recently linked with the NLRP3 inflammasome, a multi-

protein intracellular complex which is part of the innate immune

response and is responsible for the production of the cytokines IL-

1ß and IL-18. [37] CEP modified proteins were shown to be

capable of priming the NLRP3 inflammasome, in peripheral blood

derived monocytes (PBDM), further supporting involvement in the

pathogenesis of AMD [22].

Ne-(Carboxymethyl)lysine Modified Human Serum
Albumin (CML-HSA)

CML modified proteins are also found in drusen. CML is an

advanced glycation end product. Serum CML levels are higher in

patients with AMD, as compared to age matched controls. [38] In

addition CML modified proteins have been shown to promote

angiogenesis in choroidal explants, as well as stimulate the

production of vascular endothelial growth factor (VEGF), tumor

necrosis factor alpha (TNF-a) and platelet-derived growth factor B

(PDGF-B). [39].

Vitronectin
Vitronectin is a 75 kDa glycoprotein, deposited in drusen. It is

produced by RPE cells following stimulation with complement.

[40] Vitronectin also forms spherical oligomers and typical

amyloid fibrils. These oligomers have been shown to be toxic to

RPE cells in vitro. [41].

Materials and Methods

Materials
All-trans-retinal, Dynasore, ethanolamine, anti ß-tubulin anti-

body, human serum albumin (HSA), and laminin (from Engel-

breth-Holm-Swarm murine sarcoma basement membrane) were

purchased from Sigma-Aldrich Ltd. 9-fluorenylmethyl ester of 4,7-

dioxoheptanoic acid (DOHA-Fm) was custom manufactured by

Key Organics Ltd. Lyophilised amyloid ß (1-42) and amyloid ß

(42-1) were obtained from Bachem Ltd and GenScript Ltd

respectively. Human vitronectin, anti-human IL-1ß antibody, and

the caspase-1 inhibitor (Z-WEHD-FMK) were obtained from

R&D Ltd. Anti-mouse IL-1ß antibody was obtained from Abcam

Ltd. ARPE19 cells (passage 22) were obtained from American
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Type Culture Collection (ATCC) Ltd. Recombinant human IL-1a
was obtained from Peprotech Ltd. Cathepsin-B inhibitor (CA-

074 Me) and silica gel 60 were obtained from Merck Millipore

Ltd, while the mouse anti-human ASC monoclonal antibody was

obtained from Millipore Ltd. Short interfering RNA (siRNA),

Alexa Fluor secondary antibodies, and Alexa Fluor 647 dextran

were obtained from Invitrogen Ltd.

Manufacture of Danger Signals Associated with Age
Related Macular Degeneration

N-retinylidene-N-retinylethanolamine (A2E) was manufactured

from all-trans-retinal and ethanolamine according to published

methods. [42,43] Purity and molecular weight were determined

using high performance liquid chromatography (HPLC) and

matrix-assisted laser desorption/ionization mass spectrometry

(MALDI-MS) respectively (Text S1, Figure S1). The purity was

99.4%. The m/z (mass/charge) value obtained, for a single

charged positive ion, was 592.5, in keeping with published results

[44,45,46].

Carboxyethylpyrrole modified human serum albumin (CEP-

HSA) was manufactured from DOHA-Fm and human serum

albumin (HSA) according to published methods. [47] The degree

of pyrrole modification was assessed using a pyrrole assay (Text

S1). Each CEP-HSA molecule contained an average of 4.33

pyrrole groups.

Ne-(Carboxymethyl)lysine modified human serum albumin

(CML-HSA) was prepared as described previously [48]. The final

protein concentration was determined using the Pierce bicincho-

ninic acid (BCA) protein assay.

Amyloid oligomers of both the 1-42 and 42-1 versions were

obtained using a protocol described by Bruban et al. [49] Amyloid

ß at 500 mM (2.2572 mg/ml) in PBS (calcium and magnesium

free) was incubated at 37uC for 5 days and stored at –80uC until

use. Fibril formation was confirmed via thioflavin S staining. [50].

Vitronectin oligomers were obtained using a modified version of

a published protocol. [41].

Table 1. Multiplex assay of cell culture supernatant from ARPE-19 cells stimulated with various danger signals.

Amyloid-ß A2E CEP-HSA CEP-Lysine CML-HSA Vitronectin

Chemokine IL-8 115.1 (62.1) 40.4 (10.7) 282.7 (37.6) 40.4 (10.7) 282.7 (37.6) 107.1 (41.1)

30.6 (21.0) 1225.5 (24.6) 217.8 (29.1) 74.6 (22.0) 328.3 (70.7) 92.1 (14.1)

MCP-1 3358.0 (602.1) 1716.0 (222.3) 5258.8 (122.0) 1716.0 (222.3) 5258.8 (122.0) 3827.9 (707.1)

2412.4 (154.8) 7986.7 (198.6) 4756.9 (211.2) 2186.6 (131.9) 4872.8 (355.4) 3984.8 (214.6)

MIG 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 48.3 (4.9) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

MIP-1a 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 96.6 (12.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

MIP-1ß 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Cytokine G-CSF 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

IFN-c 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

IL-1ß 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 76.5 (5.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

IL-2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 261.7 (9.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

IL-6 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 21.4 (1.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

TNF-a 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.0 (0.0) 46.5 (1.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Other VEGF-A 673.0 (63.7) 458.8 (44.1) 955.3 (40.4) 458.8 (44.1) 955.3 (40.4) 623.4 (106.6)

485.1 (47.3) 1169.8 (39.5) 923.7 (32.8) 577.6 (91.5) 913.3 (62.9) 635.2 (17.9)

Cells were incubated for 24 hours with danger signals associated with AMD or the corresponding negative control. Cells were not pre stimulated with IL-1a. Cell culture
supernatant was then assessed for the presence of twelve different proteins (grouped as chemokines, cytokines and other) using Multiplex assay. Concentrations of
these proteins are expressed in pg/ml. Mean values (with standard deviation in brackets) are presented. The upper value represents stimulation with the negative
control. The lower value represents stimulation with the molecule of interest. Each assay was performed thee times (n = 3) using three separate cell culture wells.
Statistically significant rises in chemokine/cytokine/other level are highlighted in bold (all p,0.0001, one-way ANOVA).
Test molecules: Amyloid-ß (1-42) 10 mM (negative control = Amyloid-ß (42-1)), A2E (dissolved in DMSO) 25 mM (negative control = DMSO only), CEP-HSA 1 mg/ml
(negative control = HSA), CEP-Lysine (dissolved in DMSO) 100 mM (negative control = DMSO only), CML-HSA 1 mg/ml (negative control = HSA), Vitronectin 100 nM
(negative control = Nil).
AMD = Age related macular degeneration, A2E = N-retinylidene-N-retinylethanolamine, CEP-HSA = Carboxyethylpyrrole modified human serum albumin, CEP-
Lysine = Carboxyethylpyrrole modified lysine, CML-HSA = Ne-(Carboxymethyl)lysine modified human serum albumin, DMSO = Dimethyl sulphoxide, HSA = Human serum
albumin.
doi:10.1371/journal.pone.0067263.t001

A2E Induces IL-1ß via the NLRP3 Inflammasome

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e67263



Cell Culture
ARPE-19 cells were cultured in Dulbecco’s Modified Eagle

Medium: Nutrient mixture F-12 (DMEM/F12) (3151 mg/L D-

glucose, 2.5 mM L-Glutamine, 0.5 mM sodium pyruvate, no

phenol red, Invitrogen Ltd) supplemented with 10% fetal bovine

serum (FBS), 100 units/ml penicillin, and 100 mg/ml streptomy-

cin. Cultures were maintained in T75 culture flasks, at 37uC in an

incubator with 5% CO2, being split twice weekly. Cells were

plated and treated in different ways according to the experiment

being performed. Cells were not passaged beyond P35.

In order to culture cells for chemokine/cytokine release, cells

were first seeded onto a 96 well flat-bottomed polystyrene tissue

culture treated plate at a concentration of 30 000 cells/well (in

200 ml DMEM/F12 containing 10% FBS, 100 units/ml penicillin,

100 mg/ml streptomycin). After 24 hours the medium was

replaced with 200 ml of pyruvate-free DMEM (4500 mg/L D-

glucose, 4 mM L-Glutamine, no pyruvate, Invitrogen Ltd)

supplemented with 1% FBS, 100 units/ml penicillin, 100 mg/ml

streptomycin. The cells were cultured for a further 72 hours. Cells

were then starved in 200 ml pyruvate-free DMEM containing 100

units/ml penicillin, 100 mg/ml streptomycin (no FBS). After 24

hours the cell medium was reverted to 200 ml pyruvate-free

DMEM containing 1% FBS, 100 units/ml penicillin, and 100 mg/

ml streptomycin for a further 48 hours. Alternatively they were

pre-stimulated for 48 hours with 200 ml of pyruvate-free DMEM

containing 1000 pg/ml recombinant human IL-1a, 1% FBS, 100

units/ml penicillin, 100 mg/ml streptomycin. This pre-stimulation

step aimed to induce pro-IL-1ß production. [51,52] Cells were

then stimulated with various danger signals for a period of 24

hours (in 200 ml pyruvate-free DMEM containing 100 units/ml

penicillin, 100 mg/ml streptomycin only). Following this period of

stimulation the assay plates were centrifuged at 800 rpm for 10

minutes and the top 150 ml of the supernatant was removed from

each well and frozen at 280uC. This supernatant was processed

for cytokine detection using either Multiplex assay or ELISA.

In order to culture cells for siRNA knock-down, cells were first

seeded at a concentration of 30 000 cells per well in 96 well cell

culture plates (in 200 ml DMEM/F12 containing 10% FBS,

without antibiotics). After 24 hours this medium was exchanged

for 250 ml pyruvate-free DMEM (without antibiotics) supplement-

ed with 1% FBS and 1200 pg/ml of IL-1a (to promote the

manufacture of pro IL-1ß). 50 ml of transfection reagent was

added. This contained 3 ml of 5 mM short interfering RNA

(siRNA), 0.7 ml of Lipofectamine RNAiMax reagent (Invitrogen

Ltd) and 46.3 ml of Opti-MEM-I Reduced Serum Medium

(Invitrogen Ltd). This mixture was pre-incubated for 20 minutes,

at room temperature, before addition to the cell culture media.

The final siRNA concentration, in 300 ml of cell culture media,

was 50 nM (15 pmoles). The final IL-1a concentration was

1000 pg/ml. The cells were then incubated at 37uC in 5% CO2

for 72 hours. Cells were then stimulated with A2E for a period of

24 hours (in 200 ml pyruvate-free DMEM containing, without FBS

or antibiotics).

Multiplex Assay and Enzyme Linked Immunosorbant
Assay (ELISA)

Analysis of cell culture supernatants using a multiplex assay

(eBioscience Ltd) was performed according to manufacturers

instructions.

The human IL-1ß enzyme linked immunosorbant assay

(ELISA) assay (Human IL-1ß DuoSet, R&D Systems Ltd) was

performed according to the manufacturers instructions. In

summary wells of a clear polystyrene High Bind 96 well ELISA

plate (Corning Life Sciences Ltd) were loaded with mouse anti-

human IL-1ß (capture antibody), followed by blocking with 1%

bovine serum albumin (BSA). Cell culture supernatant was then

added. Biotinylated goat anti-human IL-1ß was added to detect

any IL-1ß in the cell culture supernatant, followed by streptavidin-

horse radish peroxidase (S-HRP) and tetramethylbenzidine

(TMB)/H2O2. The reaction was stopped with 1 M H2SO4 and

absorbance was read at 450 nm using a microplate reader (Turner

Biosystems Ltd).

Figure 1. IL-1ß production by ARPE-19 cells following exposure
to A2E. ARPE-19 cells were prestimulated with IL-1a and then treated
with 0, 10 and 25 mM A2E for a period of 24 hours. IL-1ß levels were
recorded in the supernatant via ELISA. A2E stock was dissolved in
DMSO. Therefore DMSO at the same concentration, but without A2E,
was used as a negative control. Four separate wells were stimulated
with each concentration (n = 4). Error bars represent standard
deviation. (*) 10 and 25 mM A2E significantly increased IL-1ß production
(p,0.0001, one-way ANOVA).
doi:10.1371/journal.pone.0067263.g001

Figure 2. Upregulation of pro-IL-1ß and conversion to mature
IL-1ß following exposure to A2E. (A) Western blot showing
upregulation of pro-IL-1ß following stimulation with A2E. ARPE-19 cells
were prestimulated with IL-1a and then treated with 0 and 10 mM A2E
for a period of 24 hours. Cells were lysed (on ice in the presence of a
protease and phosphatase inhibitor) and equal amounts of lysate
(assessed via BCA protein assay) underwent western blotting.
Membranes were probed with anti-human IL-1ß, which detects both
the pro and mature form of the cytokine. Staining with ß-tubulin was
used to confirm that comparable amounts of lysate were used. (B)
Western blot of cell lysate showing both upregulation of pro-IL-1ß, with
some conversion to mature IL-1ß, following stimulation with A2E. (C)
Western blot of cell culture supernatant showing increasing amounts of
mature IL-1ß in the supernatant, with increasing concentration of A2E.
doi:10.1371/journal.pone.0067263.g002
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Immunocytochemistry
ARPE-19 cells, on 13 mm laminin-coated glass coverslips, were

placed in a 24 well cell culture plate, cell side up. All steps occurred

at room temperature. Cells were initially fixed with 4%

paraformaldehyde for 10 minutes. The cells were then permea-

bilised for 3–5 minutes with 500 ml of 0.1% Triton-X-100 in PBS.

Non-specific binding was then blocked for 15 minutes with 500 ml

of 5% goat serum in PBS, containing 0.2% BSA. Primary and

Alexa Fluor 647 secondary antibody were diluted in 5% goat

serum in PBS containing 0.2% BSA. Coverslips were then

mounted onto slides and viewed using a confocal fluorescent

microscope (Zeiss LSM700).

Immunohistochemistry
The ABCA4 knockout mice were a gift from Professor Gabriel

Travis, Jules Stein Eye Institute, UCLA School of Medicine. The

matched control group 129S2/SvHsd were obtained from Harlan

Laboratories Ltd. The animals were housed in accordance with

the ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research. Animals were aged to 35 weeks under normal

conditions, eyes were removed and frozen in Tissue-Tek CRYO-

OCT Compound (Andwin Scientific Ltd) over liquid nitrogen.

Frozen sections were cut and stained using standard immunohis-

tochemical techniques, as described above. The primary antibody

was anti-mouse IL-1ß (Abcam Ltd) with the secondary being

Alexa Fluor 647 donkey anti-rabbit IgG (Invitrogen Ltd). Rabbit

IgG (Millipore Ltd) was used as a negative control.

Figure 3. Endocytosis of A2E by ARPE-19 cells. (A–C) ARPE-19 cells were incubated with 20 mM A2E and 10 mM fixable 10 kDa Alexa Fluor 647
dextran for 6 hours. Cells were fixed with 4% PFA for 10 min, but not permeabilised, and viewed via confocal microscopy. Autofluorescence of A2E
was viewed at an excitation frequency of 490 nm, while the Alexa Fluor dextran was viewed at an excitation frequency of 650 nm. There was no
significant bleeding of A2E autofluorescence into the emission range of Alexa Fluor 647 dextran (data not shown). A2E colocalised with Alexa Fluor
dextran in intracellular vesicles (arrows). (D) ARPE-19 cells were pre-stimulated for 48 hours with 1000 pg/ml IL-1a and then incubated with 20 mM
A2E for 24 hours in the presence of 0, 10, 20, 40 and 100 mM Dynasore. Dynasore stock was dissolved in DMSO. Therefore DMSO at the same
concentration, but without Dynasore, was used as a negative control. Four separate wells were stimulated with each concentration (n = 4). IL-1ß
levels were recorded in the supernatant via ELISA. Cells were also treated with 20 mM ATP in the presence of 0 and 50 mM Dynasore. Error bars
represent standard deviation. (*) 20, 40 and 100 mM of Dynasore significantly inhibited IL-1ß production (p,0.0001, one-way ANOVA).
doi:10.1371/journal.pone.0067263.g003
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Western Blot
Proteins were concentrated from cell culture supernatant using

methanol-chloroform precipitation at room temperature. Remain-

ing cells were lysed with ice cold RIPA buffer (Sigma-Aldrich Ltd)

containing 26 HALT protease and phosphatase inhibitor

(Thermo Scientific Ltd).

Samples were separated by SDS-PAGE (15%), blotted onto

nitrocellulose membrane, and incubated with anti-human IL-1ß

(R&D systems) and anti ß-tubulin (Sigma-Aldrich Ltd), followed by

secondary antibodies and a standard enhanced chemilumines-

cence (ECL) reaction (Amersham Ltd) was performed according to

the manufacturer’s instructions. As a positive control for IL-1ß, we

used recombinant human IL-1ß (Peprotech Ltd).

Statistics
All figures are representative of at least 3 separate experiments.

For comparison of paired data the Student’s t test was performed.

For comparison of multiple sets of data one-way ANOVA,

including the Bonferroni post test, was performed. Results are

expressed as mean +/2 standard deviation. Statistical analysis was

performed using Prism 5 (GraphPad Software Ltd) with p,0.05

considered statistically significant.

Results

A2E Stimulated Widespread Chemokine and Cytokine
Production by ARPE-19 Cells

RPE cells were cultured in the presence of a variety of danger

signals (amyloid ß, A2E, CEP-HSA, CEP-Lysine, CML-HSA, and

vitronectin). Cell culture supernatant was collected and processed

using a Multiplex assay. The assay was designed to detect the

following:

N The human chemokines IL-8, MCP-1, MIG, MIP-1a, MIP-1ß

N The human cytokines G-CSF, IFN-c, IL-1ß, IL-2, IL-6, TNF-

a

N Human VEGF-A

We found that ARPE-19 cells constitutively secreted the

chemokines IL-8 and MCP-1 as well as the protein VEGF-A.

None of the other chemokines or cytokines tested were present. Of

the potential danger signals, only A2E induced a significant

increase in the chemokines or cytokines tested. Upon incubation

with A2E there was a significant rise in production of the

chemokines IL-8, MCP-1, MCG and MIP-1a (all p,0.0001, one-

way ANOVA). There was also a significant rise in the cytokines

IL-1ß, IL-2, IL-6, and TNF-a (all p,0.0001, one-way ANOVA).

VEGF-A levels also significantly increased (p,0.0001, one-way

ANOVA). There was no change in the levels of MIP-1ß, G-CSF

and INF-c (Table 1).

A2E Induced IL-1ß Production by ARPE-19 Cells in a Dose
Dependent Manner

IL-1ß has also been shown to be one of the initial cytokines

produced following PRR activation. [21,25] IL-1ß has been shown

to influence downstream production of other chemokines/

cytokines by the RPE. Stimulation of RPE cells by IL-1ß induces

the production of IL-6, IL-8, and MCP-1. [53,54,55] As we were

interested in the activation of PRRs by danger signals, we

therefore chose to investigate the mechanism of IL-1ß release by

A2E in greater detail.

Pro-IL-1ß is localised intracellularly and is only released upon

proteolytic cleavage to the mature form. Therefore we wished to

investigate IL-1ß extracellular release further to see if PRRs were

involved. First, ARPE-19 cells were incubated with different

concentrations of A2E for 24 hours. A2E induced a significant

increase in IL-1ß release, in a dose dependent manner (Figure 1).

This data was obtained from proliferating, undifferentiated

ARPE-19 cells. To assess whether this still occurred in cells

showing features more like differentiated retinal pigment epithe-

lium, ARPE-19 cells were cultured under specific conditions to

promote differentiation (Text S1, Figure S2). Transmission

electron microscopy of 6-month old cells demonstrated many

features seen in differentiated retinal pigment epithelial cells,

including monolayer formation, intra-cytoplasmic melanin gran-

ules, apical microvilli, apical tight junctions, and zonula occludens-

1 staining between adjacent cells. Stimulation of these differenti-

ated ARPE-19 with A2E also induced IL-1ß release (Figure S3).

A2E exposure had no detectable effect on IL-1ß release in

microvascular endothelial cells (data not shown). Western blotting

of ARPE-19 cells was used to confirm generation of mature IL-1ß.

A2E exposure increased total levels of intracellular pro-IL-1ß, as

well as a small but reproducible level of the mature form.

Importantly, mature IL-1ß was also detected in the cell culture

supernatant (Figure 2).

Figure 4. Effect of cathepsin-B inhibition on IL-1ß production
by ARPE-19 cells following exposure to A2E. Undifferentiated
ARPE-19 cells were pre-stimulated for 48 hours with 1000 pg/ml IL-1a.
During the last 24 hours of pre-stimulation, 0, 10 or 20 mM of cathepsin-
B inhibitor was added. The medium was then exchanged for serum free
DMEM containing 10 mM A2E, along with the cathepsin-B inhibitor (at
the same concentration as during the preceding pre-stimulation step).
After 24 hours the cell culture supernatant was collected and processed
using ELISA. Cathepsin-B inhibitor stock was dissolved in DMSO.
Therefore DMSO at the same concentration, but without cathepsin-B
inhibitor, was used as a negative control. The effect of cathepsin-B
inhibition on ATP (20 mM) induced IL-1ß production was also assessed.
Eight separate wells were stimulated with each concentration (n = 8).
Error bars represent standard deviation. (*) 20 mM of Cathepsin-B
inhibitor significantly inhibited IL-1ß production as compared to the
DMSO control (p,0.0001, one-way ANOVA).
doi:10.1371/journal.pone.0067263.g004
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A2E Stimulated IL-1ß Release is Dependent on
Endocytosis

A2E has been shown to enter ARPE-19 cells via endocytosis,

becoming localized in lysosomes. [56] We therefore wished to

assess whether endocytosis was an important initial step in their

production of IL-1ß.

In order to confirm that A2E entered the cells via endocytosis,

we incubated ARPE-19 cells with A2E in the presence of Alexa

Fluor dextran. Fluorescent dextrans have been shown to label

endocytic vesicles. They do not cross cell membranes or adsorb

appreciably onto cell surfaces. [57] We demonstrated colocalisa-

tion of A2E with Alexa Fluor dextran, to intracellular compart-

ments (Figure 3). This suggested that A2E entered the cell via

endocytosis.

In order to confirm that endocytosis was an important initial

step in the production of IL-1ß, we inhibited endocytosis using the

small molecule dynamin inhibitor, Dynasore. [58] We then

assessed whether this had an effect upon IL-1ß production. We

found that Dynasore significantly inhibited A2E induced IL-1ß

production, in a dose dependent manner (p,0.0001 for 20, 40 and

100 mM Dynasore, one-way ANOVA) (Figure 3).

ATP exposure was chosen as an additional control. ATP also

has the ability to stimulate IL-1ß production in ARPE-19 cells.

[22] The pathway of ATP induced IL-1ß production is

independent of endocytosis, occurring through stimulation of cell

surface P2 purinergic receptors. [59] Release of IL-1ß, by ATP,

was not inhibited by Dynasore. The relationship between the

endocytosis of A2E, and IL-1ß release led us to consider whether

the NLRP3 inflammasome was involved. NLRP3 activation has

been associated with IL-1ß production, following the endocytosis

of other danger signals, including amyloid-ß, asbestos, silica, uric

acid crystals, and cholesterol crystals. [25,60,61,62] The endocy-

tosis of these danger signals is believed to damage endo-lysosomes,

releasing cathepsin-B, and thus activating the NLRP3 inflamma-

some. [25] To assess a role for cathepsin-B, ARPE-19 cells were

stimulated with A2E, in the presence of different concentrations of

a cathepsin-B inhibitor. Cathepsin-B inhibitor significantly inhib-

ited A2E induced IL-1ß production (p,0.0001 for 20 mM

cathepsin-B inhibitor, one-way ANOVA) (Figure 4), but did not

have any effect on the release of IL-1ß following exposure to ATP.

This data is consistent with a role for the inflammasome in A2E-

induced IL-1ß release, but we sought further direct proof

investigating the three main components of the NLRP3 inflam-

masome.

A2E Altered the Cytoplasmic Localisation of ASC Protein
in ARPE-19 Cells

ASC is the inflammasome adaptor protein. Along with the

NOD-like receptor protein P3 (NLRP3), and activated caspase-1,

it forms a multiprotein intracellular complex known as the NLRP3

inflammasome, which is responsible for the production of the

cytokines IL-1ß and IL-18. [37] ASC is also known as the

Figure 5. Effect of A2E on ASC complex formation in ARPE-19 cells. To assess ASC activity in the presence of A2E, ARPE-19 cells, cultured on
laminin coated glass coverslips, were incubated for 6 hours with 20 mM A2E. A2E stock was dissolved in DMSO. Therefore DMSO at the same
concentration, but without A2E, was used as a negative control. Coverslips were then removed and immediately stained. The primary antibody used
was a mouse anti-human ASC monoclonal antibody at 1 mg/ml. An Alexa Fluor 647 goat anti-mouse IgG was used as a secondary antibody. A masked
examiner counted the number of ASC complexes in five randomly assigned fields per slide. A mean count per field was then calculated for each slide.
This was performed for three slides per group (n = 3). Error bars represent standard deviation. (A) Number of ASC complexes per field for 20 mM A2E
and for the DMSO control. (*) 20 mM of A2E significantly increased the number of ASC complexes visualized (p = 0.0067, one-way ANOVA). (B–C) Low
magnification view of ASC complexes (some are highlighted with arrows). An increased number of complexes were seen per field, in the presence of
A2E. (D–G) High magnification view of a cytoplasmic ASC complex (far-red). A2E shows autofluorescence in both the green and blue spectrum.
Hence the DAPI nuclear stain is blurred by A2E autofluorescence. There is no bleeding of A2E autofluorescence into the ASC far-red spectrum.
doi:10.1371/journal.pone.0067263.g005
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apoptosis-associated speck-like protein containing a carboxy-

terminal CARD. Upon activation it has been shown to condense

in the cytoplasm, forming large oligomers, visible on confocal

microscopy. These complexes can be used as an ‘optical reporter’

of ASC activation. [63].

To assess ASC activity in the presence of A2E, ARPE-19 cells

were cultured on coverslips and then incubated for 6 hours with

A2E. DMSO acted as a negative control.

A masked examiner counted the number of ASC complexes

present per field.

There were significantly more ASC complexes in the A2E

group, as compared to the DMSO (negative control) group

(p = 0.007– unpaired t test) (Figure 5). This demonstrated that A2E

induces alterations in ASC localization within the cell, supporting

the involvement of ASC in A2E induced downstream signaling

within the ARPE-19 cell.

IL-1ß Production by A2E Stimulated ARPE-19 Cells is
Dependent upon NLRP3

Having demonstrated ASC complex formation, we went on to

investigate the involvement of the NOD-like receptor protein P3

(NLRP3). Specific NLRP3 siRNA knock down was performed to

assess the role of the NLRP3 protein in IL-1ß production by cells

stimulated with A2E. This was compared with a negative control

siRNA.

NLRP3 siRNA significantly inhibited A2E induced IL-1ß

production as compared to the negative control siRNA

(p,0.0001, one-way ANOVA). The negative control siRNA had

no significant effect upon IL-1ß production, as compared to

incubation with transfection reagent alone (Figure 6).

IL-1ß Release by A2E Stimulated ARPE-19 Cells was
Dependent upon caspase-1

The NLRP3 inflammasome also contains activated caspase-1,

directly converting pro-IL-1ß into mature IL-1ß. In order to

confirm that A2E stimulates IL-1ß production through activation

of caspase-1, the caspase-1 inhibitor Z-WEHD-FMK was used.

The short peptide sequence (tryptophan-glutamic acid-histidine-

aspartic acid) of this molecule covalently binds to activated

caspase-1, irreversibly inhibiting its activity. Caspase-1 inhibition

significantly inhibited A2E induced IL-1ß production, in a dose

dependent manner (p,0.0001 for 10, 25 and 50 mM caspase-1

inhibitor, one-way ANOVA) (Figure 7). Interestingly, besides

activation of IL-1ß, A2E also leads to RPE cell loss in the cultures

[64], which we also observed. This cell loss was not rescued by the

capase-1 inhibitor, suggesting that the cell death and IL-1ß release

are distinct A2E-related events (Figure S4).

Figure 6. Effect of NLRP3 siRNA on IL-1ß production by ARPE-
19 cells following exposure to A2E. Undifferentiated ARPE-19 cells
were seeded onto 96-well plates and after 24 hours transfected for 72
hours with a 50 nM concentration of Silencer Select NLRP3 siRNA
(Hs00918085_m1, Applied Biosystems Ltd). 50 nM of Silencer Select
Negative Control No. 1 siRNA was also used. 1000 pg/ml Il-1a was
added to the transfection media during this period. The cells were then
stimulated for 24 hours with 10 mM A2E. Cell culture supernatant was
collected and processed using ELISA. Cells were also incubated with
transfection reagent alone, in the absence of any siRNA, and then
stimulated with either A2E in DMEM, or DMEM alone. Eight separate
wells were stimulated under each condition (n = 8). Error bars represent
standard deviation. (*) NLRP3 siRNA significantly inhibited IL-1ß
production as compared to negative control siRNA (p,0.0001, one-
way ANOVA).
doi:10.1371/journal.pone.0067263.g006

Figure 7. Effect of caspase-1 inhibition on IL-1ß production by
ARPE-19 cells following exposure to A2E. Undifferentiated ARPE-
19 cells were cultured in 96-well plates. The cells were pre-stimulated
for 48 hours with 1000 pg/ml IL-1a and then incubated with 10 mM A2E
for 24 hours in the presence of 0, 5, 10, 25, 50 mM of caspase-1 inhibitor.
The caspase-1 inhibitor stock was dissolved in DMSO. Therefore DMSO
at the same concentration, but without caspase-1 inhibitor, was used as
a negative control. IL-1ß levels were recorded in the supernatant via
ELISA. Four separate wells were stimulated with each concentration (n
= 4). Error bars represent standard deviation. (*) 10, 25 and 50 mM of
caspase-1 inhibitor significantly inhibited IL-1ß production (p,0.0001,
one-way ANOVA).
doi:10.1371/journal.pone.0067263.g007
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ABCA4 Knockout Mice Demonstrate Increased Retinal
Pigment Epithelial IL-1ß Staining

Finally, one prediction that comes from our in vitro findings is

that IL-1ß production should be elevated after exposure to A2E.

To test this prediction, we chose to look at the ABCA4 knockout

mouse. This mouse demonstrates increased levels of lipofuscin and

A2E in the RPE with increasing age. [65]. Tissue sections were

stained for IL-1ß and both age-matched wild type mice and

isotype matched IgG were used as negative controls. ABCA4

knockout mice showed increased autofluoescence in the RPE,

consistent with previous reports and indicative of accumulation of

fluorophores such as A2E. A specific increase in IL-1ß staining was

also observed in and around the RPE-photoreceptor outer

segment junction in the ABCA4 knockout mouse, compared to

the age-match controls (Figure 8).

Discussion

In this study we demonstrated that RPE cells secrete a wide

variety of chemokines and cytokines in response to stimulation

with A2E. The other danger signals tested did not produce a

significant rise in the tested chemokines or cytokines. Release of

IL-1ß, in response to A2E, was dependent on PRR activation, in

particular the NLRP3 inflammasome.

IL-1ß appears to play an early role in inflammatory chemokine/

cytokine production by the RPE. Stimulation of RPE cells by IL-

1ß has been shown to induce the production of IL-6, IL-8, and

MCP-1 [53,54,55] (Table S1). Therefore activation of the PRR

NLRP3, with subsequent IL-1ß production, appears to be an

important initial step in the pathway of A2E induced chemokine/

cytokine production by the RPE. Despite initial data suggesting

endothelial cells do not respond similarly, it will be important to

more thoroughly assess other relevant cell types for their cytokine

response to A2E, such as photoreceptors and inflammatory cells

such as macrophages. While it may be assumed that inflammatory

chemokine production by RPE cells, in response to A2E is likely to

be damaging, this may not be the case. The inflammatory cell

recruitment may initially serve as a protective mechanism,

enabling the scavenging of extracellular material and regulation

of RPE lipofuscin/A2E content. Indeed impaired trafficking of

leucocytes, in the MCP-1 (Ccl-2) double knockout model, leads to

increased levels of A2E in the RPE. [3] A2E induced MCP-1

production may therefore initially serve as a regulatory, rather

than pathological inflammatory mechanism. However with time

this regulatory function may become pathological. Our in vivo

data suggest that the ABCA4 mouse model of A2E accumulation

may be very relevant for future exploration of the role of A2E-

induced IL-1ß production, the inflammasome and RPE pathology

akin to early changes in AMD and Stargardt’s.

The role of the NLRP3 inflammasome in the pathogenesis of

AMD is a very new area of interest. NLRP3 activity has been

demonstrated in a wide variety of other diseases, including

Alzheimer’s disease, asbestosis and silicosis, gout, and atheroscle-

rosis. [25,60,61,62] It is notable that in all of these studies, the

molecules which initiated NLRP3 inflammasome activity were all

relatively insoluble (amyloid-ß, asbestos, silica, uric acid crystals,

and cholesterol crystals). A2E, a major component of lipofuscin, is

also insoluble under aqueous conditions. Ingested A2E collects in

the ARPE-19 cells, forming visible intracellular deposits.

Several of our findings support the conclusion that the IL-1ß

release was an active process, rather than due to cell damage,

secondary to the oxidizing properties of A2E. First, the inhibitor of

caspase-1 activity potently reduced IL-1ß release. In contrast, the

caspase-1 inhibitor had no effect on A2E-induced cell loss, thus

suggesting the two events are unrelated. Interestingly, Dynasore,

the inhibitor of endocytosis, potently inhibited both IL-1ß release

and the cell loss, suggesting that active internalization is required

for at least these two bioactivities of A2E in ARPE-19.

Figure 8. ABCA4 knockout mice demonstrate increased retinal pigment epithelial IL-1ß staining. Sections were stained for IL-1ß. Both
matched wild type mice (129S2/SvHsd) and isotype matched IgG were used as negative controls. (A & B) Upper micrographs show IL-1ß staining of
retinal pigment epithelium for ABCA4 knockout mice and SVHSD control mice. Increased IL-1ß staining is seen in the ABCA4 knockout mice
compared to the wild type mice. Lower micrographs show RPE autofluorescence (AutoF - absorption 490 nm, emission 520 nm). Higher
autoflourescence of the ABCA4 knockout mice is in keeping with increased levels of lipofuscin. (C & D) Upper micrographs show control IgG staining
(primary antibody) of ABCA4 knockout mice and wild type mice. No significant staining is seen in both samples. Lower micrographs show RPE
autofluorescence. Abbreviations: BM – Bruch’s membrene, OS – Outer segments, RPE – Retinal pigment epithelium.
doi:10.1371/journal.pone.0067263.g008
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The process of inflammasome activation in ARPE-19 was

similar to that described for other insoluble NLRP3 inflammasome

activators. The initial step involved ingestion, through endocytosis,

followed by involvement of the inflammasome proteins ASC,

NLRP3 and caspase-1. Our findings using the cathepsin-B

inhibitor also suggest a role for this protease as a potential link

between endocytosis and the inflammasome-based IL-1ß release.

Lysosomal damage and release of cathepsins into the cytoplasm is

proposed to trigger conversion of pro-caspase-1 to the active

enzyme and activate the inflammasome. However CA-074 Me

(used to inhibit cathepsin-B) has also been suggested to inhibit

inflammasome activity through off-target effects. [66] Therefore

the involvement of cathepsin-B requires further confirmation.

There have recently been some exciting discoveries concerning

the role of the NLRP3 inflammasome in AMD. NLRP3

inflammasome activation and IL-18 secretion, involving periph-

eral blood mononuclear cells, has been shown to suppress the

formation of laser induced choroidal neovascularisation (CNV), a

model for the wet form of AMD. [22] Tarallo et al demonstrated

increased levels of NLRP3, ASC, and caspase-1 in human eyes

containing geographic atrophy. They also showed that inhibition

of components of the NLRP3 inflammasome (NLRP3, ASC and

caspase-1), in RPE, prevented RPE degeneration and atrophy

induced by DICER1 loss or Alu RNA exposure. The pathway

towards geographic atrophy, a key feature of dry AMD, involved

MyD88 and IL-18. [23] Since A2E also activates the NLRP3

inflammasome, it will be interesting in the future to determine if

A2E also has any direct effects on the processing of Alu RNA.

Amyloid-ß, CEP-HSA, CEP-Lysine, CML-HSA and vitronec-

tin did not induce any chemokine/cytokine production in the RPE

cells. Doyle et al found that stimulation with CEP modified

proteins alone was not sufficient to activate NLRP3 inflamma-

some, in bone marrow derived macrophages. CEP modified

proteins did have the ability to prime the NLRP3 inflammasome,

enabling increased secretion of IL-1ß following stimulation with

compounds such as ATP. [22] We also found that stimulation with

CEP modified proteins alone was not sufficient to activate NLRP3

inflammasome, this time in a RPE cell model. CEP modified

proteins are still likely to play an important role in promoting

inflammation in AMD, through their priming effect upon the

NLRP3 inflammasome.

This effect of A2E, in stimulating the production of chemokines

and cytokines by RPE cells, has never been characterized before.

A2E has been shown to promote complement activation, induced

photo-oxidative cellular damage, and inhibit lysosomal protein

degradation. [31,45,67,68] All these effects have been implicated

in the pathogenesis of AMD. The discovery that it also can induce

chemokine and cytokine production by RPE cells, including IL-1ß

production through activation of the NLRP3 inflammasome,

further supports the link between A2E, inflammation and the

pathogenesis of AMD. It also supports the recent discovery of

NLRP3 inflammasome activation in AMD. A2E is an important

component of lipofuscin, and appears not to be simply a byproduct

of an aged retina. It’s potent inflammatory chemokine and

cytokine induction capabilities make it a potential early contrib-

utor to inflammation in AMD.

Supporting Information

Figure S1 HPLC trace for crude A2E. The two labeled

peaks represent A2E and iso A2E respectively.

(TIFF)

Figure S2 Six month old ARPE-19 cells show features of
differentiation. Transmission electron microscopy: (A) ARPE-

19 cells form a monolayer with clear delineation between adjacent

cells (arrows). Basal infoldings can also be seen (asterisk). (B)

Microvilli are seen on the apical cell surface (arrow). Intra-

cytoplasmic melanin granules in various stages of differentiation

are also seen (asterisk) (C) Tight junctions are seen between

adjacent cells at the apical side of the cell (arrow). Light

microscopy: (D) ARPE-19 cells show multiple pigment granules

consistent with intra-cytoplasmic melanin. Immunohistochemistry:

(E) Six month old ARPE-19 cells on transwell inserts were stained

with a 8 mg/ml rabbit anti-human zonula occludens-1 (Invitrogen

Ltd) antibody followed by Alexa Fluor 488 goat anti-rabbit IgG

(Invitrogen Ltd) at a 1:200 dilution. Cells were mounted in

Prolong Gold antifade reagent with DAPI.

(TIFF)

Figure S3 IL-1ß production by differentiated ARPE-19
cells following exposure to A2E. Undifferentiated ARPE-19

cells were treated with 0 and 20 mM A2E for a period of 24 hours

and IL-1ß levels were recorded in the supernatant via ELISA. As

A2E was dissolved in DMSO, cells were also stimulated with

DMSO only, to exclude an effect from DMSO. Six separate wells

were stimulated with each concentration (n = 6). Error bars

represent standard deviation. (*) 20 mM A2E significantly

increased IL-1ß production (p,0.0001, one-way ANOVA).

(TIFF)

Figure S4 Effect of A2E on cell survival over 24 hours.
Undifferentiated ARPE-19 cells were incubated with either 0 or

10 mM A2E for 24 hours. The supernatant was then removed and

the adherent cells trypsinised, resuspended in tryphan blue, and

counted using a haemocytometer. Cells were also incubated in the

presence of both 10 mM A2E and 50 mM caspase-1 inhibitor.

Eight separate wells were stimulated with each method (n = 8) (*)

10 mM A2E significantly reduced the number of viable adherent

ARPE-19 cells (p,0.0001, unpaired t test). This reduction in cells

was not rescued by the presence of the caspase-1 inhibitor.

(TIFF)

Text S1 Supporting Methods.
(DOCX)

Table S1 Multiplex assay of cell culture supernatant
from ARPE-19 cells stimulated with IL-1a.
(DOCX)
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