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Abstract

The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight
into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-
degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade
cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the
strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains
showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific
plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC
were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol
degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both
strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also
contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes
suggests that the two strains have a broader substrate range than known thus far.
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Introduction

Microbial (per)chlorate-reducing bacteria are able to produce

oxygen as intermediate during anaerobic respiration with

perchlorate and chlorate [1,2,3,4]. This process can create possible

advantages in in-situ bioremediation of anaerobic environments

where pollutants like aromatic hydrocarbons persist that are more

prone to aerobic degradation [1,5]. Alicycliphilus denitrificans strain

BC is able to couple benzene and toluene degradation to chlorate

reduction [3]. Strain BC and A. denitrificans strain K601T are

members of the Comamonadaceae family of the Betaproteobac-

teria [3]. A. denitrificans strain K601T was isolated with cyclohex-

anol and nitrate as substrates [6]. Contrary to strain BC, strain

K601T lacks the chlorate-reducing capability. Strain BC, on the

other hand, cannot degrade cyclohexanol [3,7].

Benzene degradation coupled to chlorate reduction was

proposed to be an aerobic process, in which oxygen is derived
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from the conversion of chlorate is used in oxygenase-dependent

pathways [3,8,9,10]. Aerobic degradation of benzene and other

aromatic hydrocarbons is well-studied [11,12,13]. In aerobic

microorganisms, benzene degradation may be initiated by Rieske

non-heme iron oxygenases, which catalyze a one-step incorpora-

tion of dioxygen into their substrates [14,15] or by two successive

monooxygenations. These monooxygenations are catalyzed by

distinct multicomponent toluene/benzene monooxygenases,

which produce intermediate phenols, and successively by multi-

component phenol monooxygenases, forming catechols [16]. The

end product of catechol degradation is acetyl-CoA that can enter

the citric acid cycle.

Degradation of aliphatic hydrocarbons, such as cyclohexanol

and cyclohexanone can occur via aerobic and anaerobic pathways

[17,18,19,20]. Aerobic degradation of cyclohexanol is mediated by

monooxygenases that cleave the aromatic ring. A. denitrificans strain

K601T degrades cyclohexanol under anaerobic conditions [6].

Likely, in the anaerobic cyclohexanol degradation pathway

cyclohexanol is oxidized to 2-cyclohexenone via cyclohexanone.

The enzyme that mediates conversion of 2-cyclohexenone is a

bifunctional oxidoreductase that catalyzes both the Michael

addition of water to 2-cyclohexenone and the subsequent

oxidation of the resulting 3-hydroxycyclohexanone to 1,3-

cyclohexanedione [7].

We aimed to obtain insight in the physiological properties of A.

denitrificans strains BC and K601T and in the pathways involved in

degradation of aromatic and alicyclic compounds with different

electron acceptors. Therefore, we studied the genome sequences of

A. denitrificans strain BC and strain K601T and performed more

detailed physiological comparisons of these strains.

Materials and Methods

Cultivation and DNA Isolation
A. denitrificans strain BC (DSM 18852, JCM 14587) was isolated

and described previously [3]. A. denitrificans strain K601T (DSM

14773, CIP 107495) was purchased from the DSMZ, (Deutsche

Sammlung von Mikroorganismen und Zellculturen GmbH,

Braunschweig, Germany). The strains were cultivated in AW1-

sulfate medium as described previously [21]. For DNA isolation

cells were grown in 1.2L-bottles containing 500 mL medium with

acetate (10 mM) and nitrate (10 mM). Cultures were incubated at

30uC without agitation. Cells were harvested by centrifugation and

genomic DNA was isolated following the protocol for bacterial

genomic DNA isolation using CTAB of DOE JGI (U.S.

Department Of Energy, Joint Genome Institute, CA, USA).

DNA concentration was measured using Nanodrop (Thermo

scientific) and DNA integrity and quality were determined by

loading the genomic DNA on a 1% agarose gel with size and

concentration markers according to the instructions of DOE JGI.

Growth Experiments
To determine the substrate spectrum of the A. denitrificans

strains, different electron donors were tested in duplicate batches

with nitrate (10 mM), oxygen (5% in headspace) or chlorate

(10 mM) as electron acceptor. Late log-phase cells of strain BC

grown on acetate (10 mM) and nitrate (10 mM) were used as

inoculum (5%) for all batches except for batches with aromatic

compounds as substrate. In these batches late log-phase cells

grown on either benzene (repeated feeds of 0.5 mM) or acetate

(10 mM) and chlorate (10 mM) were used as inoculum (5%–10%).

Physiological properties of strain K601T were described before [6],

but additional substrate tests were performed. Late log-phase cells

of strain K601T grown on acetate (10 mM) and either oxygen (5%

in headspace) or nitrate (10 mM) were used as inoculum in these

tests. Growth was monitored by visual observation of turbidity and

the decrease in electron acceptor and donor concentration.

Analytical procedures were as described previously [3].

Genome Sequencing, Assembly and Annotation
High molecular weight genomic DNA of A. denitrificans strains

BC and K601T was provided to the DOE JGI. For cloning and a

combination of Illumina GAii and 454 shotgun sequencing

[22,23], a combination of small and large insert libraries were

prepared. For strain BC the Illumina GAii shotgun library

generated 32,476,780 reads comprising 1,169 Mb and for strain

K601T this generated 28,774,946 reads comprising 2,186 Mb. A

454 Titanium standard library generated 198,756 reads for strain

BC and 637,992 reads for strain K601T. For strain BC a paired

end 454 library generated 83,659 reads comprising 191 Mb and

for strain K601T this generated 314,193 reads comprising

281.7 Mb of 454 paired end data. All general aspects of library

construction and sequencing performed at the JGI can be found at

http://www.jgi.doe.gov/. The initial draft assembly of strain BC

contained 120 contigs in 3 scaffolds and the draft assembly of

strain K601T contained 175 contigs in 2 scaffolds.

The 454 Titanium standard data and the 454 paired end data

were assembled together with Newbler, version 2.3. The Newbler

consensus sequences were computationally shredded into 2 kb

overlapping fake reads (shreds). Illumina sequencing data were

assembled with VELVET, version 0.7.63 [24], and the consensus

sequences were computationally shredded into 1.5 kb shreds. We

integrated the 454 Newbler consensus shreds, the Illumina

VELVET consensus shreds and the read pairs in the 454 paired

end library using parallel phrap, version SPS - 4.24 (High

Performance Software, LLC). The software Consed was used in

the following finishing process [25,26,27]. Illumina data were used

to correct potential base errors and increase consensus quality

using the software Polisher developed at JGI (www.jgi.doe.gov/

software). Possible mis-assemblies were corrected using gapReso-

lution (www.jgi.doe.gov/software), Dupfinisher [28], or sequenc-

ing cloned bridging PCR fragments with subcloning. Gaps

between contigs were closed by editing in Consed, by PCR and

by Bubble PCR primer walks (Cheng, unpublished). To close gaps

and to raise the quality of the finished sequence, a total of 511

additional reactions were necessary for strain BC, for strain K601T

a total of 415 additional reactions were necessary. The total size of

the genome of strain BC is 4,835,713 bp and the genome size of

strain K601T is 5,070,751 bp.

The final assembly is based on 191 Mb and 227 Mb of 454

draft data for strains BC and K601T, respectively. This provides

an average 406 coverage for the genome of strain BC and an

average 456 coverage of the genome of strain K601T. Addition-

ally, the final genomes are based on 650 Mb and 2,099 Mb of

Illumina draft data for strains BC and K601T, respectively, which

provides an average 1356 coverage of the genome of strain BC

and an average 416.36 coverage of the genome of strain K601T.

Genes were identified using Prodigal [29] as part of the Oak

Ridge National Laboratory genome annotation pipeline, followed

by a round of manual curation using the JGI GenePRIMP

pipeline [30]. The predicted CDSs were translated and used to

search the National Center for Biotechnology Information (NCBI)

nonredundant database, UniProt, TIGRFam, Pfam, PRIAM,

KEGG, COG, and InterPro databases. These data sources were

combined to assert a product description for each predicted

protein. Non-coding genes and miscellaneous features were

predicted using tRNAscan-SE [31], RNAMMer [32], Rfam

[33], TMHMM [34], and signalP [35].

Genomics and Physiology of A. denitrificans
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The complete final assemblies were released on September 3

2010 (strain BC) and on January 7 2011 (strain K601T). The

genomes were implemented in GenBank. For strain BC the

accession numbers are CP002449 (chromosome), CP002450

(megaplasmid), CP002451 (plasmid). For strain K601T the

accession numbers are CP002657 (chromosome) and CP002658

(plasmid).

Bidirectional BLAST Analysis
The genomes of A. denitrificans strains BC and K601T were

compared using bidirectional BLAST analysis. The FTP server of

NCBI (http://www.ncbi.nlm.nih.gov/Ftp) was used to download

the protein sequence files obtained from the genome sequences of

strains BC and K601T. Bidirectional best hits were obtained by

BLAST using a similarity threshold of 50% and a sequence length

mismatch of 80 to 120% [36].

Comparative DNA and Cellular Property Analysis of
Strains BC and K601T

The G+C content, DNA-DNA hybridization and cellular fatty

acids analysis were performed by the DSMZ (Braunschweig,

Germany). For cellular fatty acid analysis, strains BC and K601T

(DSM 14773T) were grown under identical conditions, i.e. acetate

(10 mM) and nitrate (10 mM) in 2L AW-1-sulfate medium at

30uC [21]. ANI and TETRA of strain BC against strain K601T

and against Acidovorax sp. JS42, were determined using the software

program JSpecies (http://www.imedea.uib.es/jspecies/). ANIb,

ANIm and TETRA are calculated as described by Richter and

Rosselló-Móra [37].

Results and Discussion

Comparison of Strains BC and K601T

The genomes of A. denitrificans strains BC and K601T have been

annotated [38]. Based on 16S rRNA gene sequence analysis A.

denitrificans clusters in the family Comamonadaceae of the

Betaproteobacteria [3]. Strains K601T and BC showed 99.7%

16S rRNA gene similarity [3]. This study reveals that the three

16S rRNA gene copies present in each genome are identical for

both strain BC and K601T, but have different gene location and

orientation in each of the strains (Table S1), indicating that the

genomes have a different topology. However, the general

characteristics of the genomes of strains BC and K601T are

similar (Table 1). Furthermore, the strain-specific fatty acid methyl

ester patterns of strains BC and K601T are similar (Table S2).

The G+C content of A. denitrificans strains K601T and BC is 66.0

and 67.6 mol%, respectively, as determined by conventional

methods [3,6]. These values are comparable to those determined

from the genomic DNA sequences of strains BC and K601T,

which gave values of 67.9% and 67.8%, respectively. Experimen-

tal DNA-DNA hybridization of strain BC against K601T showed

74.563.5% similarity. Based on the genome size difference this

value seems low, but the genome of strain K601T is about 7%

larger than the genome of strain BC. Genome size differences may

affect DNA-DNA hybridization values. However, the experimen-

tal error of DNA-DNA hybridization is too high for the genome

size difference to have an effect. For species circumscription, a cut-

off point of 70% DNA-DNA hybridization similarity is generally

used. This cut-off point corresponds to 95% average nucleotide

identity of genes present in both strains tested [39]. Based on this

cut-off for average nucleotide identity, a tetranucleotide frequency

correlation coefficient of .0.99 may support species delineation

[37]. Values for average nucleotide identity (ANI) and the

tetranucleotide frequency correlation coefficient (TETRA) can

be determined using the software programme JSpecies [37].

According to JSpecies, the ANIb (BLAST calculation of ANI)

value of strain BC compared to K601T is 98.71% and the ANIm

(MUMmer calculation of ANI) value is 99.60%, both well above

the threshold of 95% for circumscribing species. The TETRA

value was 0.9995, which is above the boundary of 0.99. In

summary, ANIb, ANIm and TETRA values also indicate that

both strains belong to the same species. As a comparison, we

determined the values when comparing strain BC and another

member of the Comamonadaceae family, Acidovorax sp. JS42, to

which strain BC is closely related. In this case the ANIb value was

84.11%, the ANIm value 87.04% and the TETRA value 0.9756,

confirming that these strains are different species, while there was

97% 16S rRNA similarity between the strains.

Bidirectional BLAST analysis showed that strain K601T

contains 857 proteins that are not present in strain BC and that

strain BC has 721 proteins not present in strain K601T (Fig. 1). An

overview of the main metabolic pathways deduced from the

genomes of the A. denitrificans strains is depicted in Fig. 2, and

specific pathways for strain BC or K601T are indicated. Lists of

genes involved in these pathways are given from Table S3, S4, S5.

Chlorate, Nitrate and Oxygen Respiration Pathways
In contrast to strain K601T, strain BC contains a megaplasmid

harboring the genes involved in respiratory chlorate reduction

(Alide01) [38]. To date, it is unknown if the megaplasmid can be

transferred to other strains, e.g. to strain K601T and if this plasmid

allows other strains to grow by respiratory chlorate reduction.

Alide_4611–4614 encode subunits of a DMSO reductase family

type II enzyme, or more specifically these genes encode chlorate

reductase. Chlorate reductase is composed of four subunits

encoded by the clrABCD genes (Alide_4611–4614). The chlorite

Table 1. General features of the genomes of A. denitrificans
strains BC and K601T.

Strain BC Strain K601T

Genome size 4,835,713 bp 5,070,751 bp

G+C content 67.9% 67.8%

DNA scaffolds 3 2

Chromosome Size 4,637,013 bp 4,995,263 bp

Coding DNA 91% 90%

G+C content 68% 67%

Plasmid Size 78,982 bp 75,488 bp

Coding DNA 84% 87%

G+C content 64% 62%

Megaplasmid Size 119,718 bp –

Coding DNA 78% –

G+C content 58% –

Total gene number 4709 4899

Protein coding genes 4542 4696

Pseudogenes rRNA
genes

101 136

5S rRNA 3 3

16S rRNA 3 3

23S rRNA 3 3

tRNA genes 53 54

doi:10.1371/journal.pone.0066971.t001

Genomics and Physiology of A. denitrificans
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dismutase gene (cld, Alide_4615) is transcribed in opposite

direction (forward) compared to the genes encoding chlorate

reductase (reverse). The gene cluster for chlorate reduction of

strain BC is highly similar to the cluster of Ideonella dechloratans

(Fig. 3), though it is not known whether the genes are plasmid-

encoded in this bacterium [40,41]. In Dechloromonas aromatica strain

RCB genes encoding perchlorate reductase and chlorite dismutase

are clustered and located on the chromosome (Daro_2580–2584,

GenBank accession number of genome CP000089). These genes

are clustered in D. agitata as well [42]. Recently, it was found that

the genes encoding (per)chlorate reductase and chlorite dismutase

in these Dechloromonas strains and two other (per)chlorate-reducing

bacteria are located on a genomic island in the chromosomes [43].

Three types of nitrate reductases are known, the dissimilatory

membrane-associated Nar, the dissimilatory periplasmic Nap and

the assimilatory cytoplasmic Nas. Nas is exclusively involved in

assimilatory nitrate reduction to ammonium [44,45]. Nar and Nap

differ with respect to chlorate reduction; Nar can catalyze chlorate

reduction, but Nap cannot or only poorly reduce chlorate

[46,47,48,49]. Strains BC and K601T have a functional Nar (the

gene product of Alide_0508–0511 in BC and of Alide2_0465–

0468 in K601T), but no functional Nap or Nas.

Putative nitrite reductase, nitric oxide reductase and nitrous

oxide reductase encoding genes (nir genes: Alide_2156–2162 in BC

and Alide2_2345–2351 in K601T, nor genes: Alide_0128 in BC

and Alide2_0119 in K601T, and nos genes: Alide_3077–3083 in

BC and Alide2_1364–1370 in K601T) indicate that nitrate is

reduced to N2, which is in accordance with physiological tests

[3,6].

A. denitrificans strains BC and K601T are facultative anaerobes

[3,6]. In the presence of oxygen, cytochrome oxidases catalyze the

reduction oxygen to water, resulting in proton translocation and

generating ATP by electron transport phosphorylation [50,51].

Several cytochrome oxidases are known [52]. The genomes of

strains BC and K601T encode cytochrome oxidases that can be

used under aerobic and micro-aerophilic (high-oxygen affinity)

conditions. Cytochrome c oxidase genes are present (Alide_2815,

2816, 3608, 3609, 3487, 3488 in strain BC and Alide2_1643,

1644, 3908, 3909, 3953, 3954 in strain K601T). Furthermore, the

genomes contain genes encoding cytochrome o ubiquinol oxidase

(Alide_1992–1995 in strain BC and Alide2_2246–2249 in strain

K601T) that are employed at high oxygen concentration. At low

oxygen concentration, high-affinity cytochrome oxidases are used.

The genomes of strains BC and K601T contain cytochrome bd

ubiquinol oxidase coding genes (Alide_2141 and 2142 in strain BC

and Alide2_2330 and 2331 in strain K601T) and cytochrome c

oxidase cbb3-type coding genes (Alide_3325–3328 in strain BC

and Alide2_1119–1122 in strain K601T). An overview of genes

involved in respiration in A. denitrificans strains BC and K601T is

shown in Table S4.

Degradation Pathways of Aromatic and Alicyclic
Compounds

Strains K601T and BC are able to degrade benzene and toluene

with oxygen, but not with nitrate as electron acceptor (Table 2),

indicating that oxygenases are involved in the initial degradation

steps of these aromatic compounds. In previous research, two

oxygenase-coding genes involved in the initial successive oxidation

reactions (BC-BMOa) and the subsequent cleavage of catechol (BC-

C23O) were identified in the Alicycliphilus strains [3]. Monooxy-

genases that catalyze the conversion of benzene or toluene to

phenol or methylphenol (benzene/toluene monooxygenases) and

of phenols to catechols (phenol monooxygenases), belong to an

evolutionary related family of soluble diiron monooxygenases [53].

Based on their alpha subunits, which are assumed to be the site of

substrate hydroxylation, phenol as well as benzene/toluene

monooxygenases can be differentiated within this family [53],

[54]. Genome analysis confirmed the presence of a multicompo-

nent phenol monooxygenase (Alide_0323–0328 in BC;

Alide2_0270–0275 in K601T) [3]. The absence of other

benzene/toluene mono- and/or dioxygenases suggests that the

phenol monooxygenase is responsible for both the hydroxylation

of benzene (and/or toluene) to (methyl-)phenol and the subsequent

hydroxylation of (methyl-)phenol to (methyl-)catechol. Hydroxyl-

ation of the benzene ring catalyzed by phenol monooxygenases

has been reported [16]. Phenol monooxygenase of Pseudomonas

stutzeri strain OX1 transforms benzene and toluene to catechol and

3-methylcatechol (via phenol and 2-methylphenol), respectively

[55]. Moreover, toluene-2-monooxygenase of Burkholderia cepacia

strain G4 oxidizes toluene to 3-methylcatechol [56]. Although

often lacking among phenol hydroxylase clusters [53], both strain

BC and K601T contain a gene coding for a ferredoxin (Alide_0329

in BC; Alide2_0276 in K601T) clustered with the phenol

monooxygenase encoding genes. Furthermore, the phenol mono-

oxygenase gene clusters contain genes encoding sigma54 specific

transcriptional regulators (Alide_0322 and 0334 in BC;

Alide2_0269 and 0279 in K601T) (Fig. 4). The protein products

of Alide_0322 and Alide2_0269 have homology to regulatory

proteins comprised in previously described phenol monooxygenase

gene clusters, such as DmpR of Pseudomonas sp. strain CF600 (45%

homology on protein level) that regulates transcription based on

direct interaction with aromatic compounds [57]. A similar

multicomponent phenol monooxygenase cluster is present in the

close relative Acidovorax sp. strain JS42 (Ajs_0206–0210, which has

72% similarity on protein level) [58]. D. aromatica strain RCB and

Comamonas sp. strain E6 contain similar monooxygenase clusters

with 76% and 86% identity on protein level, respectively [59], and

D. aromatica strain RCB also contains a benzene/toluene mono-

oxygenase gene cluster.

Benzene and toluene degradation leads to the formation of

(methyl)catechol. There are two routes of aerobic catechol

degradation, the meta- and the ortho-cleavage pathway. All genes

involved in the meta-cleavage pathway of (methyl)catechol degra-

dation are present in the genomes of strains BC and K601T. We

confirmed the presence of genes encoding a catechol 2,3-

dioxygenase in strain BC as reported previously [3] and found

homologous genes in strain K601T (Alide_0330 in BC;

Alide2_0277 in K601T). This catechol 2,3-dioxygenase catalyzes

the extradiol cleavage of catechol to 2-hydroxymuconic semialde-

hyde. Among the 16 sequenced strains of Comamonadaceae only

in five strains catechol 2,3-dioxygenase genes are present [54].

Acidovorax sp. JS42 contains a catechol 2,3-dioxygenase homolo-

Figure 1. Bidirectional BLAST analysis of the genomes of A.
denitrificans strains K601T and BC. The amount of protein
sequences present only in strains K601T (left) and BC (right) and in
both strains (center) is shown in the VENN diagram. 172 protein
sequences of strain K601T and 154 of strain BC could not be assigned
(for instance duplicates of sequences).
doi:10.1371/journal.pone.0066971.g001

Genomics and Physiology of A. denitrificans
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gous to that of strains BC and K601T with 92% similarity on

protein level (Ajs_0214) [58]. Further degradation of 2-hydro-

xymuconic semialdehyde can proceed via the hydrolytic or the

oxalocrotonate branch of the meta-cleavage pathway [60]. Genes

encoding enzymes involved in both of these branches are present

in the genomes of strains BC and K601T (Fig. 2). The hydrolytic

branch is used when toluene is converted via 3-methylcatechol and

involves degradation of 2-hydroxymuconic semialdehyde to 2-

oxopent-4-enoate. The enzyme catalyzing this conversion is a 2-

hydroxymuconic semialdehyde hydrolase (Alide_0336 in BC;

Alide2_0281 in K601T). Methyl-catechol and catechol are

converted to 2-oxopent-4-enoate using the oxalocrotonate branch

Figure 2. Main metabolic pathways of A. denitrificans. Pathways are indicated using arrows. Black arrows indicate pathways of both strain BC
and K601T, red arrows indicate pathways of strain BC, and blue arrows pathways of strain K601T. Red gene numbers indicate genes of strain BC
(geneID is Alide_red gene number) and blue gene numbers genes of strain K601T (geneID is Alide2_blue gene number).
doi:10.1371/journal.pone.0066971.g002

Genomics and Physiology of A. denitrificans
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of the meta-cleavage pathway, which proceeds via a dehydroge-

nase, tautomerase and decarboxylase (Alide_0335+0340+0342 in

BC; Alide2_0280+0285+0287 in K601T). Finally, 2-oxopent-4-

enoate is converted to acetyl-CoA that can enter the citric acid

cycle and the genes encoding the enzymes involved in this

conversion are Alide_337–339 in strain BC and Alide2_282–284

in strain K601T.

Strain BC, but not K601T, also contains all genes essential for

ortho-cleavage of catechol. In this pathway, catechol is converted by

catechol 1,2-dioxygenase (encoded by Alide_2650) to cis,cis-

muconate, which via muconolactone, 3-oxoadipate-enol-lactone,

3-oxoadipate and 3-oxoadipyl-coA, is converted to acetyl-coA

(Alide_2647+2648+2651+3513+3514 of strain BC) [61]. Strain

K601T lacks genes coding for catechol 1,2-dioxygenase, muconate

Figure 3. Gene cluster for chlorate reduction in A. denitrificans strain BC (Aden) compared to I. dechloratans (Idec). The gene cluster for
chlorate reduction comprises of chlorite dismutase (cld), chlorate reductase subunit A, B, C and D (clrA, clrB, clrC, clrD), and in I. dechloratans it also
includes an insertion sequence (ISIde1). The numbers represent the location of nucleotide differences (in red) of strain BC compared to I. dechloratans
counted from the first nucleotide of each gene. The scale bar represents 500 bp. Sequences for the chlorate reduction gene cluster of I. dechloratans
were obtained from the EMBL nucleotide sequence database (accession numbers AJ296077 and AJ566363).
doi:10.1371/journal.pone.0066971.g003

Figure 4. Organization of the multicomponent benzene/phenol monooxygenase cluster (B1–B6) and catechol dioxygenases (C23O)
of A. denitrificans strains BC and K601T. In this gene cluster a gene coding for a transcriptional regulator (R) and a gene coding for a ferredoxin
(Fe) were also found. Both strains BC and K601T have highly similar gene clusters (99%) with differences only in subunit B2 and B4. The numbers
represent the location of the nucleotide differences (in red) of strain BC compared to K601T counted from the first nucleotide of each gene. The scale
bar represents 500 bp.
doi:10.1371/journal.pone.0066971.g004
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cycloisomerase and 3-oxoadipate-enol-lactonase, rendering the

ortho-cleavage pathway incomplete.

Although anaerobic benzene degradation was described for

some pure bacterial cultures, information about the degradation

pathways is incomplete [62,63,64,65]. D. aromatica strain RCB is

capable of anaerobic degradation of all BTEX compounds with

nitrate as electron acceptor, but A. denitrificans strain BC and

K601T cannot degrade these compounds with nitrate while

acetate can be degraded with nitrate as electron acceptor (Fig. 5).

This is confirmed by the absence of genes that code for known key

enzymes for anaerobic aromatic degradation in the genomes of

strain BC and K601T, such as benzylsuccinate synthase or

ethylbenzene dehydrogenase. Remarkably, these key enzymes

are also not present in D. aromatica strain RCB [59]. Strain RCB is

able to couple benzene degradation to nitrate reduction, but the

occurrence of a strict anaerobic pathway is not proven, and it has

been suggested that strain RCB might activate benzene with

oxygen produced from the reduction of nitrate or uses hydroxyl

free radicals [63,66]. Oxygen production by nitrite reduction was

found in the anaerobic methane degrading Candidatus Methylomir-

abilis oxyfera [67,68] and was reported as a possible mechanism for

the initial alkane activation in strain HdN1 [69]. A similar

mechanism was proposed for benzene and toluene degradation

using chlorate as electron acceptor in strain BC [3]. Physiological

tests showed that these compounds are degraded in 3 to 5 days in

presence of chlorate or oxygen (Fig. 5). Both strains BC and

K601T are unable to aerobically utilize ethylbenzene, xylenes and

benzoate (Table 2). Accordingly, enzymes involved in the initial

steps of degradation of these compounds are not present in the

genomes.

Cyclohexanol degradation by strain K601T follows a proposed

pathway via the intermediates cyclohexanone, 2-cyclohexenone,

3-hydoxycyclohexanone to 1,3-cyclohexanedione and subsequent

cleavage of the ring [7]. Genes encoding a three subunit

molybdoenzyme (Alide2_4320– Alide2_4322) are present in the

genome of strain K601T, but are absent in strain BC. This gene

cluster, homologous to carbon monoxide dehydrogenase (CO-

DH) and xanthine dehydrogenase (Xdh), is identified as a

bifunctional hydratase/alcohol dehydrogenase (MhyADH), be-

longing to the molybdopterin binding oxidoreductase family with

the double function of hydration of cyclohexenone and oxidation

of its product 3-hydroxycyclohexanone to 1,3-cyclohexanedione

[7]. An ORF located close to the MhyADH shows a sequence

(Alide2_4318) with similarity to a flavin-containing domain of

fumarate reductase/succinate dehydrogenase and 3-ketosteroid

dehydrogenase (KSTD). Based on the reactions catalyzed by those

types of enzymes, this sequence might be coding for a

cyclohexanone dehydrogenase [7]. Depending on the substrate

specificity of the coding enzyme, the conversion of cyclohexanol to

cyclohexanone could also be catalyzed by this enzyme. Since

members of this group of enzymes are known to catalyze the

oxidative hydroxylation of a wide range of aldehydes and aromatic

heterocyclic compounds [70] the substrate range of strain K601T

might be broader than known so far. More genes closely located to

the MhyADH cluster are identified as CO-DH genes

(Alide2_4319; Alide2_4326) and are possibly also involved in

cyclohexanol degradation.

A cyclopentanol dehydrogenase (Alide2_4312) and, further-

more, more mono- and dioxygenase genes were found in the

genomes than the ones we already described, such as an extradiol

ring cleavage dioxygenase (Alide_2035 in BC; Alide2_2289 in

K601T), a cytochrome P450 (Alide_3136 in BC; Alide2_1311) and

several 2-nitropropane dioxygenases (Alide_0303, Alide_0687,

Alide_2358, Alide_3754, Alide_3890, Alide_4340 in strain BC;

Alide2_0250, Alide2_1856, Alide2_2552, Alide2_4108,

Alide2_4236, Alide2_4670 in K601T). This indicates that a

broader spectrum of xenobiotic compounds might be degraded

by the Alicycliphilus strains. A list of genes involved in degradation

of aromatic and alicyclic compounds in strains BC and K601T can

be found in Table S5.

Other Physiological Characteristics
Strains BC and K601T were physiologically characterized

previously [3,6]. Additional physiological tests were performed

based on the genome sequences. Genome analysis showed that

Table 2. Overview of substrate range of A. denitrificans
strains BC and K601T.

Strain BC Strain K601T

Electron
donor Concentration NO3

2 O2 ClO3
2 NO3

2 O2

Acetate 10 mM + + + +a +a

Lactate 10 mM + + + +a +a

Pyruvate 10 mM + + + +a +a

Succinate 10 mM + + + +a +a

Propionate 10 mM + + + +a +a

Butyrate 10 mM + + + +a +a

Malate 10 mM + + + +a +a

Citrate 10 mM + + + +a +a

Fumarate 10 mM + + + +a +a

Glucose 10 mM 2 2 2 2a 2

Fructose 10 mM 2 2 2 2a 2

Xylose 10 mM 2 n.d. n.d. -a n.d.

Alanine 10 mM 2 + + + +

Glycine 10 mM 2 2 2 2 2

Glutamate 10 mM + + + + +

Ethanol 10 mM 2 n.d. n.d. 2a 2a

Methanol 10 mM 2 2 2 2a 2a

Glycerol 10 mM 2 n.d. n.d. n.d. +a

Benzene 0.25 mM 2 + + 2 +

Toluene 0.25 mM 2 + + 2 +

Ethylbenzene 0.25 mM 2 2 2 2 2

o-Xylene 0.1 mM 2 2 2 2 2

m-Xylene 0.1 mM 2 2 2 2 2

p-Xylene 0.1 mM 2 2 2 2 2

Benzoate 1 mM 2 2 2 2a 2a

Phenol 1 mM 2 + + 2a +

p-
Hydroxybenzoate

1 mM 2 2 2 2a +a

o-Cresol 1 mM 2 + + 2a +a

m-Cresol 1 mM 2 + + 2a +a

p-Cresol 1 mM 2 + + 2a +a

Monochloro-
benzene

0.05 mM 2 2 2 2 2

Catechol 1 mM 2 + + 2 +

Cyclohexanol 1 mM 2 2 2 +a +a

+: growth, 2: no growth, n.d.: not determined,
aprevious data [6].
doi:10.1371/journal.pone.0066971.t002
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there are no known sugar transporter genes in strains BC and K601T.

We did not observe growth of strains BC and K601T with glucose

and fructose (Table 2), though previously strain K601T was described

to use these sugars [6]. Comparative genome analysis showed that all

genes of the tricarboxylic acid cycle are present in strains BC and

K601T (Table S3). The two bacteria use carboxylic acids like acetate,

lactate, succinate or fumarate as substrates for growth (Table 2).

Strains BC and K601T can use the amino acids glutamate and

alanine as growth substrates and genes encoding glutamate

dehydrogenase (Alide_0201+1063 in BC; Alide2_0190+4027 in

K601T) and beta-alanine-pyruvate transaminase (Alide_4363 in

BC; Alide2_4693 in K601T) were found in the genome.

Concluding Remarks
Bacteria that degrade benzene and other aromatic hydrocarbons in

the absence of oxygen have two strategies for degradation: 1) employ-

ment of alternative pathways which are oxygenase-independent

[4,62,71,72] and 2) as described here, production of oxygen in the

reduction of the electron acceptor to employ oxygenase-dependent

pathways. Here we present genome information that shows how A.

denitrificans strain BC is able to couple benzene degradation to chlorate

reduction. The key genes that code for enzymes that are essential for

chlorate reduction and oxygen production are located at a plasmid. A.

denitrificans strain K601T lacks this plasmid and thus is not able to

degrade benzene with chlorate. The two strains are not able to degrade

benzene with nitrate. Only a few pure cultures of anaerobic benzene-

degrading bacteria have been described. Azoarcus strain DN11 and

AN9, Dechloromonas aromatica strain RCB and JJ and a Bacillus cereus

strain were reported to degrade benzene with nitrate as electron

acceptor [66,73,74,75]. Recently, Bacillus subtilis and Pseudomonas

aeruginosa strains were found to degrade benzene with nitrate and

oxygen as electron acceptors [76]. Thus far, it is not clear how these

bacteria degrade benzene in the absence of oxygen. One of the options

is an aerobic pathway involving oxygen derived from nitrate.

As aromatic hydrocarbons often accumulate in the anaerobic

zones of soil, bacteria that are able to degrade hydrocarbons in the

absence of oxygen are important for in situ bioremediation.

However, oxygen is often difficult to introduce in soil. Chlorate

Figure 5. Degradation of benzene (1), toluene (2) and acetate (3) with chlorate (a), nitrate (b) or oxygen (c) as electron acceptor by
A. denitrificans strain BC. Benzene, toluene and acetate degradation is indicated with diamonds. Benzene and toluene concentrations are outlined
on a secondary y-axis while acetate and electron acceptor concentrations are indicated on the primary y-axis. Chlorate, nitrate and oxygen
consumption is depicted with squares. Chloride production when chlorate is used as electron acceptor is indicated with triangles and no electron
acceptor consumption is shown when no significant difference could be observed because of presence of the electron acceptor in abundance.
doi:10.1371/journal.pone.0066971.g005
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and nitrate addition is an alternative to stimulate the breakdown of

aromatic and aliphatic hydrocarbons. A. denitrificans strain BC has

the ability to degrade some aromatic hydrocarbons, but its

substrate range is limited. However, the observation that the

essential genes for chlorate reduction (chlorate reductase and

chlorite dismutase) are coded on a plasmid suggests that the ability

to degrade hydrocarbons with chlorate can be transferred to

bacteria with a wider substrate spectrum such as e.g. Pseudomonas

putida. An important prerequisite, however, may be that the

oxygenases possess a high affinity for oxygen.
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(2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic

view. Microbiol Mol Biol Rev 73: 71–133.

73. Dou J, Ding A, Liu X, Du Y, Deng D, et al. (2010) Anaerobic benzene

biodegradation by a pure bacterial culture of Bacillus cereus under nitrate

reducing conditions. J Environ Sci 22: 709–715.

74. Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable

isotope probing and isolation of anaerobic benzene-degrading bacteria from

gasoline-contaminated groundwater. Appl Environ Microbiol 72: 3586–3592.

75. Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of

benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ

Microbiol 77: 5926–5933.

76. Mukherjee A, Bordoloi N (2012) Biodegradation of benzene, toluene, and xylene

(BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa

strains and a formulated bacterial consortium. Environ Sci Pollut Res Int 19:

3380–3388.

Genomics and Physiology of A. denitrificans

PLOS ONE | www.plosone.org 10 June 2013 | Volume 8 | Issue 6 | e66971


