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Abstract

In silico discovery of interactions between drug compounds and target proteins is of core importance for improving the
efficiency of the laborious and costly experimental determination of drug-target interaction. Drug-target interaction data
are available for many classes of pharmaceutically useful target proteins including enzymes, ion channels, GPCRs and
nuclear receptors. However, current drug-target interaction databases contain a small number of drug-target pairs which
are experimentally validated interactions. In particular, for some drug compounds (or targets) there is no available
interaction. This motivates the need for developing methods that predict interacting pairs with high accuracy also for these
’new’ drug compounds (or targets). We show that a simple weighted nearest neighbor procedure is highly effective for this
task. We integrate this procedure into a recent machine learning method for drug-target interaction we developed in
previous work. Results of experiments indicate that the resulting method predicts true interactions with high accuracy also
for new drug compounds and achieves results comparable or better than those of recent state-of-the-art algorithms.
Software is publicly available at http://cs.ru.nl/̃tvanlaarhoven/drugtarget2013/.
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Introduction

A core problem in pharmacology is the determination of

interactions between drug compounds and target proteins in order

to understand and study their effects. The in silico prediction of

such interactions is of crucial importance for improving the

efficiency of the laborious and costly experimental determination

of drug-target interaction (see e.g. [1–4]).

Drug-target interaction data are available for various classes of

pharmaceutically useful target proteins including enzymes, ion

channels, GPCRs and nuclear receptors [5]. Publicly available

databases have been built and maintained, such as KEGG BRITE

[6], DrugBank [7], GLIDA [8], SuperTarget and Matador [9],

BRENDA [10], and ChEMBL [11], containing drug-target

interaction and other related sources of information, like chemical

and genomic data.

The availability of these data has boosted the development of

machine learning methods for the in silico prediction of drug-

target interactions, including the seminal paper by Yamanishi

et al. [12]. In that paper the authors distinguish between

prediction for ’known’ drug compounds or targets, for which at

least one interaction is present in the training set; and prediction

for ’new’ drug compounds or targets, for which no interaction in

the training set is available. This results in four possible settings for

predicting drug-target interaction, depending on whether the drug

compounds and/or targets are known or new.

The current state-of-the-art for the in silico prediction of drug-

target interaction involves methods that employ similarity

measures for drug compounds and for targets in the form of

kernel functions, e.g., [12–19].

In this paper we generalize the applicability of the method

introduced in [16] to so-called new drug compounds, that is, drug

compounds for which no interactions are known. The method,

hereafter called GIP, uses known interactions of a drug for

predicting novel ones by means of a regularized least square

algorithm incorporating a product of kernels constructed from

drug compound and target interaction profiles. We propose a

simple weighted nearest neighbor algorithm, called WNN, for

constructing an interaction score profile for a new drug compound

using chemical and interaction information about known com-

pounds in the dataset. The WNN method can be used as a stand-

alone algorithm for predicting interactions for new drug

compounds. It can also be directly incorporated into the GIP

method for handling new drug compounds. We call the resulting

combination WNN-GIP. The methods can be directly adapted to

handle also unknown targets or both unknown drug compounds

and targets.

We test the predictive performance of WNN and WNN-GIP on

four drug-target interaction networks in humans involving

enzymes, ion channels, GPCRs and nuclear receptors. Results as

measured by the area under the curve (AUC) and area under the

precision-recall curve (AUPR) [20] show that the weighted nearest

neighbor profile algorithm and its incorporation into the GIP

method are capable to predict true interactions for new drug

compounds with satisfactory accuracy. The algorithms achieve

competitive or better results than the recent state-of-the-art

algorithms KBMF2K [15] and BLM-NII [17]. KBMF2K is based
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on a fully probabilistic approach to model drug-target interaction,

which can be applied to discover target (respectively drug

compound) interactions for new drug compounds (respectively

target proteins). Results in [15] indicate improved accuracy over

the method introduced in [19]. BLM-NII is an extension of the

BLM method [13] to deal with new drug compounds (or targets).

In BLM-NII a drug-target interaction for a new drug compound is

inferred by constructing an estimated interaction profile from the

drug compounds in the training data. The resulting profile is then

used as label information to learn an interaction model for that

drug compound with the BLM method.

Methods

The Problem
We consider the problem of predicting interactions using a

drug-target interaction network, chemical similarity between drug

compounds and genomic similarity between targets proteins.

Formally we are given a set Xd~fd1,d2, . . . ,dndg of drug

compounds and a set Xt~ft1,t2, . . . ,tntg of target proteins. A

set of interactions between drug compounds and targets is known.

A bipartite network (between drug compounds and targets) can be

constructed whose edges are such known interactions. Its

corresponding adjacency matrix is a nd|nt matrix Y such that

yij~1 if drug compound di interacts with target tj , and yij~0

otherwise. Furthermore, information about the the chemical

similarity between drug compounds and genomic similarity

between targets is given in the form of the similarity matrices Sd

and Sg, respectively.

The goal is to assign scores to drug-target pairs (di,tj ) such that

pairs with higher scores are more likely to interact.

The GIP Method
Machine learning methods for tackling this problem are mainly

based on the assumption that drug compounds exhibiting a similar

pattern of interaction and non-interaction with the targets in a

drug-target interaction network are likely to show similar

interaction behavior with respect to new targets. A similar

assumption on targets is considered. Here use the method

introduced in [16]. It is based on the so-called (target) interaction

profile ydi of a drug compound di, defined to be row i of the

adjacency matrix Y , and the (drug compound) interaction profile

yTtj of a target protein tj , defined to be column j of Y . The

interaction profiles generated from a drug-target interaction

network are used as feature vectors for a classifier. A kernel from

the interaction profiles is constructed using topology of the drug-

target network, defined for drug compounds di and dj as follows:

KGIP,d(di,dj)~ exp ({cdEydi{ydjE2):

where

cd~~ccd=(
1

nd

Xnd

i~1

Dydi D2):

A kernel KGIP,t for the similarities between target proteins is

defined analogously. Moreover, the kernels Kchemical,d and

Kgenomic,t are considered, containing information about the

chemical and genomic space. They are constructed from the

chemical and genomic similarity matrices Sd and Sg between drug

compounds and between targets, by applying a simple transfor-

mation to make them symmetric and positive definite. The

interaction profile kernel can be easily combined with these kernels

using a weighted average.

The kernel for drug compounds and the kernel for target

proteins can be combined using the Kronecker product Kd6Kt,

such that for drug-target pairs (di,ti) and (dj ,tj)

K((di,ti),(dj ,tj))~Kd(di,dj)Kt(ti,tj):

For each drug compound with at least one known interaction in

the training data, a score interaction profile ŷy is computed from its

interaction profile y and the kernel matrix K , using the

Regularized Least Squared (RLS) classifier. This is achieved by

means of the simple closed form solution formula

ŷy~K(KzsI){1y,

where s is a regularization parameter.

We refer the reader to [16] for a more detailed description and

analysis of this method.

For simplicity in the sequel we call GIP the RLS algorithm that

uses the kernel defined as the Kronecker product of the weighted

averages of the interaction kernels and chemical and genomic

kernels.

Weighted Nearest Neighbor for New Drug Compounds
We want to extend GIP to new drug compounds, that is,

compounds for which no interaction is known. To this aim, we

propose a simple weighted nearest neighbor procedure. For a new

drug compound, its chemical similarity with other known drug

compounds and their corresponding profiles are used in order to

infer a score interaction profile for that drug compound.

Specifically, the score interaction profile ydWNN of a new drug

compound d is the weighted sum of the profiles of the drug

compounds in the training data, where a higher weight is assigned

to profiles of those drug compounds more similar to d. Let

y1, . . . ,ynd be the interaction profiles of the other compounds in

the dataset (that is, the rows of Y ), listed in decreasing order with

respect to their chemical similarity to d. Then

ydWNN~
Xnd

i~1

wiyi,

where the weights wi’s are computed using a given decay value

Tƒ1 as wi~Ti{1. For computational reasons we only sum over

drug compounds with weight at least 10{4. In our experiments we

choose the decay rate T with 5 fold cross-validation to maximize

AUC. We call the resulting procedure WNN.

An extension of GIP to handle new drug compounds using

WNN, hereafter called WNN-GIP, can be directly formulated: for

each new drug compound d, add ydWNN as new row to the matrix

Y and apply GIP to predict the score interaction profile ŷy of d .

A Method to Show the Bias of a LOOCV Procedure
In a recent paper [17] the BLM-NII algorithm is introduced

and assessed using the following leave-one-out cross validation

(LOOCV) procedure. Each compound with only one interaction

in Y is treated as a ’new candidate’ in the cross validation and the

BLM-NII procedure is applied to it. We observe that in this way a

Predicting Interactions for New Drugs
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strong prior is implicitly used in the cross validation, namely the

fact that the considered compound had at least one interaction.

To illustrate how this prior introduces a bias on the results, we

consider the following simple procedure, called Const. Const

constructs an all ’1’s profile for the drug compounds or target

proteins with only one interaction.

We can incorporate Const into GIP in the same way as WNN,

giving the Const-GIP method. With this method all possible

interactions for drug/targets with only one interaction will be

ranked before interactions with drugs/targets that also have other

interactions. Essentially, for such interactions the method only has

to do half the work, since the fact that the drug/target is correct

can be known with certainty. In real world situations there are also

drug compounds that interact with none of the target under

consideration, and vice versa, which would invalidate the Const-

GIP method.

Experiments

We perform a comparative experimental analysis of the

proposed algorithms and two recently published methods [15,17].

Datasets
To this end we use the four drug-target interaction networks in

humans involving enzymes, ion channels, G-protein-coupled

receptors (GPCRs) and nuclear receptors from [12]. Table 1 lists

some properties of the datasets.

Drug-target interaction information was retrieved from the

KEGG BRITE [6], BRENDA [10], SuperTarget [9] and

DrugBank [7] databases. Chemical structures of the compounds

was derived from the DRUG and COMPOUND sections in the

KEGG LIGAND database [6]. The chemical structure similarity

between compounds was computed using SIMCOMP [21], which

tries to find a graph matching between two compound structures.

This resulted in a similarity matrix for the denoted by Sc, which

represents the chemical space. Amino acid sequences of the target

(human) proteins were obtained from the KEGG GENES

database [6]. Sequence similarity between proteins was computed

using a normalized version of Smith-Waterman score [22],

resulting in a similarity matrix denoted Sg, which represents the

genomic space.

These datasets are publicly available at http://web.kuicr.kyoto-

u.ac.jp/supp/yoshi/drugtarget/and http://cbio.ensmp.fr/ ˜ yya-

manishi/bipartitelocal/. They are used as current standard

benchmark data for comparing the performance of machine

learning algorithms for drug-target interaction. We use these

datasets as they are without adding new interactions from source

databases.

Results
We follow the experimental procedure adopted in [15,19].

Specifically, for each dataset, drug compounds are split into five

subsets of roughly equal size. Each subset is then used in turn as

the test set and training is performed on the data consisting of the

remaining four subsets. This procedure is repeated five times.

Results are assessed using the AUC and AUPR quality

measures, generally used in this type of studies. Specifically, the

ROC curve of true positives as a function of false positives is

computed, and the area under the ROC curve (AUC) is

considered as quality measure (see for instance [23]). Furthermore,

the precision-recall curve is computed, that is, the plot of the ratio

of true positives among all positive predictions for each given recall

rate. The area under this curve (AUPR) provides a quantitative

assessment of how well, on average, predicted scores of true

interactions are separated from predicted scores of true non-

interactions. Since there are few true drug-target interactions, the

AUPR is a more informative quality measure than the AUC, as it

punishes much more the existence of false positive examples found

among the top ranked prediction scores [20].

Average AUC and AUPR results and standard deviations are

reported in Table 2. They indicate that a WNN-GIP has slightly

better (average) AUC on all datasets except Enzyme. However,

WNN has slightly better AUPR than WNN-GIP. By itself the GIP

method does not work well in this setting, which is to be expected,

since it was not designed to handle new drugs.

To estimate the statistical significance of the AUC results we

used the method described in [24]. To determine significance of

the AUPR results we used bootstrapping.

Table 1. The number of drug compounds and target
proteins, their ratio, and the number of interactions in the
drug-target datasets from [12].

Dataset Drugs Targets nd/nt Interactions

Enzyme 445 664 0.67 2926

Ion Channel 210 204 1.03 1476

GPCR 223 95 2.35 635

Nuclear
Receptor

54 26 2.08 90

doi:10.1371/journal.pone.0066952.t001

Table 2. Results of 5 fold cross validation: average AUC and
AUPR over 5 runs.

Method AUC (std) AUPR (std) T (std)

Enzyme

GIP 0.685 (0.006) 0.150 (0.008)

WNN 0.819 (0.004) 0.299 (0.023) 0.809 (0.068)

WNN-GIP 0.861 (0.004) 0.280 (0.014) 0.908 (0.019)

KBMF2K 0.812 (0.004) 0.287 (0.021)

Ion Channel

GIP 0.637 (0.008) 0.179 (0.013)

WNN 0.757 (0.006) 0.249 (0.046) 0.535 (0.200)

WNN-GIP 0.775 (0.006) 0.233 (0.024) 0.730 (0.171)

KBMF2K 0.802 (0.006) 0.245 (0.023)

GPCR

GIP 0.679 (0.014) 0.260 (0.023)

WNN 0.848 (0.008) 0.308 (0.032) 0.713 (0.084)

WNN-GIP 0.872 (0.008) 0.311 (0.021) 0.702 (0.081)

KBMF2K 0.840 (0.009) 0.347 (0.028)

Nuclear Receptor

GIP 0.758 (0.026) 0.357 (0.060)

WNN 0.788 (0.027) 0.434 (0.068) 0.305 (0.205)

WNN-GIP 0.839 (0.023) 0.456 (0.065) 0.527 (0.103)

KBMF2K 0.810 (0.025) 0.354 (0.063)

Standard deviation is reported between parentheses. The best AUC and AUPR
results are indicated in bold, results that are not significantly different from the
best (at a~0:05) are indicated in italic.
doi:10.1371/journal.pone.0066952.t002

Predicting Interactions for New Drugs

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e66952



The last column of table 2 lists the average value of the decay

rate T over the folds and repetitions. In general, the larger dataset

have a higher (slower) decay rate, which means that more

neighbors are taken into account.

Comparison with other Methods
We consider the two following recent methods: KBMF2K [15]

and BLM-NII [17].

KBMF2K is based on a Bayesian formulation that combines

dimensionality reduction, matrix factorization and binary classi-

fication for predicting drug-target interaction networks using only

chemical similarity between drug compounds and genomic

similarity between target proteins.

In BLM-NII a drug-target interaction for a new drug

compound d is inferred by constructing an estimated interaction

profile for d as follows. For each target, an entry of the profile for d

is defined as the sum of the similarity values of d and each of the

drug compounds interacting with that target. The resulting profile

is then used as label information to learn an interaction model for

d by means of the BLM method.

Comparison with KBMF2K. To compare results of WNN

and WNN-GIP with those reported in [15], we follow the

experimental procedure therein used (described in the previous

section). Table 2 also includes the AUC and AUPR for the

KBMF2K method. They indicate similar performance of

KBMF2K and the simpler WNN algorithm, and slightly better

overall results achieved by WNN-GIP, except on the Ion Channel

dataset.

We could test the prediction capability of the proposed methods

on unknown drug-target interactions of the given network using

the procedure adopted in [15]. Therein, the complete interaction

network for each dataset is used as training data, and the

predictions on non-interacting pairs in the training set are ranked

with respect to their interaction scores. However, since each drug

compound or target in the training set has at least one interaction,

we do not need to use WNN and the results are those of GIP. We

report the top five predicted interactions for each dataset in

Table 3. Highest ranked predicted new interactions for each of the datasets.

Rank Drug compound Target protein

Enzyme

M 1 D00574 Aminoglutethimide hsa1589 cytochrome P450, family 21, subfamily A,
polypeptide 2

C,M,D 2 D00542 Halothane hsa1571 cytochrome P450, family 2, subfamily E,
polypeptide 1

M,D 3 D00139 Methoxsalen hsa1543 cytochrome P450, family 1, subfamily A,
polypeptide 1

M 4 D00437 Nifedipine hsa1585 cytochrome P450, family 11, subfamily B,
polypeptide 2

C,M,D 5 D00437 Nifedipine hsa1559 cytochrome P450, family 2, subfamily C,
polypeptide 9

Ion Channel

D,K 1 D00438 Nimodipine hsa779 calcium channel, voltage-dependent, L
type, alpha 1S subunit

2 D00726 Metoclopramide hsa1138 cholinergic receptor, nicotinic, alpha 5
(neuronal)

C,D 3 D03365 Nicotine hsa1137 cholinergic receptor, nicotinic, alpha 4
(neuronal)

4 D02098 Proparacaine hydrochloride hsa8645 KCNK5: potassium channel, subfamily K,
member 5

K 5 D00552 Benzocaine hsa6331 sodium channel, voltage-gated, type V,
alpha subunit

GPCR

C,M,D 1 D00283 Clozapine hsa1814 dopamine receptor D3

C,D 2 D02358 Metoprolol hsa154 adrenoceptor beta 2, surface

3 D00604 Clonidine hydrochloride hsa147 adrenoceptor alpha 1B

C 4 D03966 Eglumetad hsa2914 glutamate receptor, metabotropic 4

C 5 D00255 Carvedilol hsa152 adrenoceptor alpha 2C

Nuclear Receptor

1 D00316 Etretinate hsa6096 RAR-related orphan receptor B

C 2 D00182 Norethindrone hsa2099 estrogen receptor 1

K 3 D00348 Isotretinoin hsa5915 retinoic acid receptor, beta

4 D01132 Tazarotene hsa6097 RAR-related orphan receptor C

K 5 D00348 Isotretinoin hsa5916 retinoic acid receptor, gamma

Interactions found in ChEMBL, Matador, DrugBank and KEGG are indicated in italic and marked as C, M, D and K respectively.
doi:10.1371/journal.pone.0066952.t003
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Table 3. The full lists of all predicted interactions ranked by

interaction score can be found in http://cs.ru.nl/˜tvanlaarhoven/

drugtarget2013/.

Comparison with BLM-NII. Table 4 shows the results of

the LOOCV experiments. As expected, both Const-GIP and

BLM-NII achieve very good results, with comparable AUC, and

slightly better AUPR performance achieved by Const-GIP. To

asses the statistical significance of these differences we used an

upper bound on the variance of the AUC and AUPR for BLM-

NII, because the actual variance is unknown. With this bound the

differences in AUC scores are not statistically significant.

In general, these results indicate that cross validation should be

applied and interpreted with care. Note that the cross validation

procedure used in the comparison with KBMF2K is also positively

biased, since we know that each ’new’ drug compound has at least

one interaction, but there the bias is much smaller.

Discussion

In this work, we proposed a simple yet effective procedure to

predict interaction profiles for unknown drug compounds and

show how it can be directly integrated into a recent machine

learning algorithm for the in-silico prediction of drug-target

interactions. The novelty of our approach comes in the use of a

weighted nearest neighbor procedure for inferring a profile for a

drug compound by using interaction profiles of the compounds in

the training data, where each profile is weighted using information

about chemical similarity between drug compounds integrated

with a simple decay scheme. The method can be directly modified

to predict interaction scores of unknown targets (or of both

unknown targets and drug compounds).

We performed a comparative assessment of the proposed

methods on four different drug-target interaction networks from

humans involving enzymes, ion channels, GPCRs and nuclear

receptors. Results indicated that WNN is competitive in predicting

interaction for unknown drug compounds with more involved

machine learning methods recently proposed, notably a fully

probabilistic method based on a Bayesian formulation that

combines kernel-based nonlinear dimensionality reduction, matrix

factorization and binary classification. Furthermore we showed

that the direct integration of WNN in a recent kernel based

machine learning method provides a general and powerful tool for

finding drug-target interactions.

The computational complexity of WNN is O(nd
2znt

2), while
the computational complexity of WNN-GIP is dominated by the

RLS prediction using the Kronecker product kernel, which is

O(nd
3znt

3) as implemented in [16], but can be further improved

yielding a quadratic computational complexity by applying recent

techniques for large-scale kernel methods for computing the two

kernel decompositions, e.g. [25]. Therefore WNN-GIP is more

efficient than KBMF2K, since the total time complexity of each

iteration in the variational approximation method used in

KBMF2K is O(Rnd
3zRnt

3zR3), where R is the subspace

dimensionality used in the method.

A limitation of our approach is that it does not make a

difference between an inactive target and a target that has not

been measured for a compound.

Compounds with a higher mutual chemical similarity also have

a higher chance of having the same bioactivity. This information

could be considered by WNN by determining directly the weights

from the similarity, instead of using the proposed ranking-based

decay mechanism. In this way all the compounds with high

similarity would be considered with a high weight and all the

compounds with low similarity would only have a minor

contribution to the final predicted profile. On the same reasoning

there is also a similarity threshold from where the chance is so low

that two compounds have the same profile that it would be better

not to predict something in the first place. In particular for new

screening data from very large screening libraries chances are high

that none of the references are really similar to the screening hits,

which would most likely have a detrimental effect in the overall

prediction performance, if predictions would be made for all such

compounds. Many published target prediction algorithms apply

such "applicability domain" or confidence estimations for their

predictions. WNN could be modified to address this issue for

instance by including a binary annotation based on a similarity

threshold, or a more advanced procedure based on the similarities

of all compounds considered for the generation of the profile.
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Table 4. Results of LOOCV on pairs.

Method AUC AUPR

Enzyme

GIP 0.978 0.915

WNN 0.558 0.141

WNN-GIP 0.983 0.944

Const 0.577 0.179

Const-GIP 0.991 0.969

BLM-NII 0.988 0.929

Ion Channel

GIP 0.984 0.943

WNN 0.528 0.125

WNN-GIP 0.986 0.953

Const 0.535 0.138

Const-GIP 0.991 0.966

BLM-NII 0.990 0.950

GPCR

GIP 0.954 0.790

WNN 0.580 0.219

WNN-GIP 0.972 0.863

Const 0.604 0.266

Const-GIP 0.988 0.910

BLM-NII 0.984 0.865

Nuclear Receptor

GIP 0.922 0.684

WNN 0.694 0.478

WNN-GIP 0.958 0.857

Const 0.744 0.568

Const-GIP 0.989 0.926

BLM-NII 0.981 0.866

Results of BLM-NNII are from [17]. The best AUC and AUPR results are indicated
in bold, results that are not significantly different from the best (at a~0:05) are
indicated in italic, see the main text for details.
doi:10.1371/journal.pone.0066952.t004
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