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Abstract

A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random
number of nodes can be updated at each time step (ARBNs). In this article, the logical equations of ARBNs are converted
into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general
formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine
whether a group of given states compose an attractor of lengths in ARBNs. Consequently, algorithms are achieved to find all
of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.
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Introduction

The gene regulatory networks (GRNs) as complex systems

present diverse dynamical behaviors. In 1969, random Boolean

networks (RBNs) were first introduced by Stuart Kauffman to

model gene regulatory networks [1]. Each gene is represented by a

node in RBNs with two possible states, i.e. the logical 0 and 1.

Generally, the ‘‘1’’ value represents the state ‘‘on’’ corresponding

to a gene that is being transcribed and the ‘‘0’’ value represents

‘‘off’’ corresponding to a gene that is not being transcribed [2]. A

directed edge from one node to another stands for the interaction

between genes, the mutual regulation of which is described by an

assigned Boolean function. The values of all nodes in a network

are updated in parallel and all of them together constitute the state

of the whole network. Since dynamics is deterministic and the state

space is finite, the states of a particular RBN eventually converge

into a series of periodically recurring states, which are called

attractors including the fixed points and cycles, starting from an

arbitrary initial condition. Attractors and their transient states

compose the basins of attraction, which present the dynamical

behaviors of systems. RBNs provide a way to formalize large scale

complexity in a realistic manner by describing the gene expression

with ON/OFF and reflect the statistical features of real living cells

by adjusting the parameters of networks [3]. Recent years, along

with the research of networks in molecular biology, chemistry,

neurobiology, and economy etc [4–16], RBNs have been

extensively investigated and a wealth of results have been achieved

[17–28].

As abstract models of physical and biological phenomena, a

certain degree of simplification is necessary. Usually, synchrony

idealization is adopted as update scheme in the classical RBNs, as

Ref. [22], ‘‘The simplest class of Boolean network is synchronous,

which means that all elements update their activities at the same

moment’’. All of elements in RBNs evolve according to a global

synchronized clock, which is based on a tacit assumption that

update scheme would not affect the essential properties of

dynamics. However, some doubts have been cast on the validity

of the above assumption when more and more evidences showed

the dynamic behaviors of systems under asynchronous update

presented considerable divergence comparing with the counter-

parts under synchronous update [29–30]. ARBNs was firstly

proposed in 1997 by Harvey et al. [31] where only one node was

randomly chosen for update at each time step. Since then, many

results on ARBNs have been presented and some modified

versions of ARBNs were also proposed [32–38]. We think, if

‘‘synchronous update’’ is considered as ‘‘idealization’’ [31],

Harvey’s model as the extreme opposite of synchronous models

should be another form of ‘‘idealization’’. Motivated biologically,

since the expression of genes is not an instantaneous process, but

the transcription of DNA and the transport of enzymes may take

from milliseconds up to a few seconds [36]. So when modeling the

above dynamics by means of a discrete form, at each time step, the

condition to strictly limit only one node for update is too strong to

describe the real situation.

Although RBNs have been much analyzed, but as logical

systems, they are difficult to be investigated analytically. Recently,

a new matrix theory called the semi-tensor product (STP) was

proposed by Cheng et al. [39], whereby logical equations can be

represented as a linear discrete-time dynamic equation

x(tz1)~L D|x(t) ð1Þ
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where x(t)~ D|n
i~1xi is the semi-tensor product of logical variables.

In contrast with usual transition matrix expression, Eq. (1) contains

complete information of the logical equations of RBNs, based on

which dynamics of systems, such as attractors and basins, can be

analyzed. Furthermore, this form can easily be extended to the

Boolean control networks. Certain control problems, such as

controllability [40,41], observability [42], and realization [43],

etc., can be investigated. So far, the previous studies mainly focus

on models under synchronous update. However, ARBNs as

nondeterministic systems are considerable different from RBNs.

For instance, in Ref. [39], Cheng et al. proposed a method by STP

technique to find attractors of RBNs, but, which is based on a fact

that RBNs are deterministic systems and attractors are circular.

Obviously, this prerequisite can’t be satisfied for ARBNs. So, we

think it’s interesting and meaningful to extend the related research

into the field of asynchronous random Boolean networks.

Based on the above discussion, firstly, from the aspect of model

selection, most of the previous results on ARBNs are based on the

Harvey’s model. As mentioned above, we think Boolean networks

with a more general asynchronous update schedule are worth

investigating. Secondly, from the aspect of methodology selection,

despite of the overload of matrix operations, STP technique

provides a new perspective to make the analytical analysis of

logical dynamics. From the viewpoint of theoretical part, it’s a

valuable technique to be considered. Therefore, in this article, we

focus on dynamics of ARBNs where a random number of nodes

can be updated at each time step. Mainly, two parts of work are

involved in this article. First of all, we complete an algebraic

representation of the studied logical models. At the best of our

knowledge, the related result is firstly presented. Network

transition matrix takes the essential role for the linear represen-

tation of logical dynamics based on STP technique. Actually, in

the previous works, Cheng et al. [39] have achieved results of

RBNs. Here, we engage in a particular class of ARBNs, from the

perspective of update schedule, this special update scheme can

involve the case of synchronous update, which allow all of nodes

are updated at a certain time step. As a result, a general formula of

network transition matrices is achieved, based on which one can

calculate all of network transition matrices of a particular ARBN

including the counterparts under synchronous update and

Harvey’s model. Secondly, a necessary and sufficient algebraic

criterion is discussed, which determine whether a given group of s

states could compose a loose attractor of length s in a specific

ARBN. Consequently, a novel approach to detect the attractors

and basins of ARBNs is designed, which is completely based on set

operations and different from the previous studies.

As we know, to search attractors in RBNs is a NP-hard problem.

Recent years, many powerful algorithms [3,17,20,35,45] have

been presented to improve the search efficiency and reduce the

time complexity. Yet, it should be noted that our main interest in

this article is to provide a complete quantitative method and a

novel perspective to analyze the dynamics of ARBNs from the

view point of theoretical part. And results would be taken as

preparations for the further research, e.g. Boolean control network

under asynchronous update.

This article is organized as follows. In the section of Methods,

some concepts and properties of STP are introduced. In Results

and discussion, the linear representation of ARBNs is discussed,

based on which the dynamic properties of ARBNs are studied and

algorithms to find attractors and basins of ARBNs are presented.

Some examples are shown to illustrate the main results. Finally, a

concluding remark is given.

Methods

In this section, the semi-tensor product of matrices is briefly

introduced. Some concepts and properties related to this article

are presented.

Definition 1 ([39])

1) Let X be a row vector of dimension np, and Y be a column

vector of dimension p. Then we split X into p equal-size

blocks as X 1, . . . ,X p, which are 1|n rows. Define the STP,

denoted by , as

X D|Y~
Pp
i~1

X iyi[Rn,

Y T D|X T~
Pp
i~1

yi(X
i)T[Rn:

8>>><
>>>:

2) Let A[Mm|n and B[Mp|q. If either n is a factor of p, say

nt~p and denote it as A[tB, or p is a factor of n, say n~pt

and denote it as A]tB, then we define the STP of A and B,

denoted by C~A D|B, as the following: C consists of m|q

blocks as C~(Cij) and each block is

Cij~Ai D|Bj , i~1, . . . ,m, j~1, . . . ,q

where Ai is the i-th row of A and Bj is the j-th column of B.

It’s easy to verify that for two column vectors X[Rm and Y[Rn,

X D|Y[Rmn.

Note that STP of matrix can be seen as a generalization of the

conventional matrix product, so the properties of matrix product,

such as distributive rule, associative rule, etc, still hold.

Some notations in this article are defined as follows

1) dr
n denotes the r-th column of the n|n identity matrix In and

Dn : ~ dr
n 1ƒrƒnj

� �
, which is the set of all n columns of In.

An operation is defined as H(dr
n)~ rf g, furthermore, when

C~ di1
n ,di2

n , . . . ,dip
n

� �
, H(C)~ i1,i2, . . . ,ip

� �
.

2) A matrix L[Mn|m can be called a logical matrix if

L~ di1
n ,di2

n , . . . ,dim
n

� �
, wh i ch i s b r i e f l y deno ted by

L~dn i1,i2, . . . ,im½ �. And the set of n|m logical matrices is

denoted by Ln|m.

3) Let matrix A[Mn|m, all of elements in i-th column of matrix

A compose a set denoted by C(A)i, and when a set

S[r( 1,2, . . . ,mf g), C(A)S~
S
i[S

C(A)i, where r .ð Þ represents

the power set.

Next, we define the swap matrix W½m,n�, let X[Rm and Y[Rn be

two column vectors

W½m,n�XY~YX ,

where W½m,n� is a mn|mn matrix labeled columns by

(11,12, . . . ,1n, . . . ,m1,m2, . . . ,mn) and rows by

(11,21, . . . ,m1, . . . ,1n,2n, . . . ,mn), the elements in position

((I ,J),(i,j)) is

Dynamics of Asynchronous Random Boolean Networks
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w(I ,J),(i,j)~
1, I~i and J~j

0, otherwise

�
:

W½m,m� is briefly denoted by W½m�.

In order to get the matrix expression of logic, the Boolean values

should be denoted as vector forms T~1*d1
2 and F~0*d2

2. For a

logical function L(P1, . . . ,Pr) with arguments P1, . . . ,Pr, it has

been proved in Ref. [39] that L(P1, . . . ,Pr) can be represented as

L(P1, . . . ,Pr)~MLP1P2 . . . Pr, where matrix ML[M2|2r is

unique, which is called the structure matrix of logical function L.

More details on STP can be found in Ref. [39]. In this article,

the matrix products are assumed to be STP and the symbol is

omitted.

Results and Discussion

Model
In this section, the algebraic representation of asynchronous

random Boolean networks is discussed. Without special note,

‘‘asynchrony’’ in this article implies mt (mt[ 1, . . . ,Nf g) nodes are

randomly selected to be updated at time step t. Here, we don’t

consider the case mt~0 i.e. none of nodes are updated.

ARBNs with N nodes can be described as follows:

xi(tz1)~fi(xi1
(t), . . . ,xip (t)), i[Ht

xj(tz1)~xj(t), j[ 1,2, . . . Nf g{Ht

ð2Þ

Where xi(t) represents the state of node i at time t, which receives

inputs from p distinct neighbors and xij’ (t) is the j’ th input. The

nodes in ARBNs take values from the set 0,1f g corresponding to

two levels of gene expressions. fi is a Boolean logic from

0,1f gp? 0,1f g, which is assigned to node i. At time t, there are

mt (mt[ 1, . . . ,Nf g) nodes which are selected at random for

update, and all of updated elements are included in set

Ht~ i1, . . . ,imt
� �

, without the loss of generality, we assume that

ia1via2 when a1va2. The updated value of selected node i is

determined by all of the input values of xij’ (t), j’[ 1,2, . . . pf g and

the logic fi. At the same time, the remaining nodes keep the values

at time step t.

Firstly, with the structure matrix Mi of each Boolean logic fi,

Eq. (2) can be converted into

xi(tz1)~Mix(t), i[Ht

xj(tz1)~xj(t), j[ 1,2, . . . Nf g{Ht

ð3Þ

When the in-degree of node i is less than N , a dummy matrix

Ed~d2 1,2,1,2½ � should be applied. It’s easy to verify that for any

Boolean variable u, one can get Edu~I2. Assume there was no

input from node q to i, xq(t) can be substituted by Edxq(t).

Multiplying all the equations in (3) as

x(tz1)~x1(t), . . . ,x
i1{1

(t)M
i1

x(t)x
i1z1

(t), . . . ,

ximt {1(t)Mimt x(t)ximt z1(t), . . . ,xN (t),
ð4Þ

According to Ref [39], when XN (t)~ D|N
i~1xi(t) and xi(t)[D2, one

can obtain X 2
N (t)~WNXN (t), where WN~ P

N

i~1
I

2i{16 (I26½
W½2,2N{i �)Mr� and 6 refers to the Kronecker product. Here,

Mr~d4½1,4�, which is power-reducing matrix and it can be

verified that P2~PMr, VP[D2.

Then, the following result can be achieved.

Theorem 1. Equation (4) can be represented as

x(tz1)~LHt x(t), Ht[r 1,2, . . . Nf gð Þ,Ht=W ð5Þ

where LHt~ P
mt

u~1
(I

2iu{uz(u{1)N6Miu ) P
1

v~mt
(I

2(iv{1)z(v{1)(N{1)

6W½2N{iv{(mt{v),2N �) P
mt{1

w~0
(I2w6Ed ) P

mt

y~1
W½2(mt{y)z(iy{1),2�W

mt
N .

Proof
x(tz1)~x1(t), . . . ,xi1{1(t)Mi1 x(t)xi1z1(t), . . . ,

ximt {1(t)Mimt x(t)ximt z1(t), . . . ,xN (t)
~(I

2i1{16Mi1 )x1(t), . . . ,xi2{1(t)Mi2 x(t)xi2z1(t), . . . ,

ximt {1(t)Mimt x(t)ximt z1(t), . . . ,xN (t)

~P
mt

u~1
(I2iu{uz(u{1)N6Miu )x1(t), . . . ,

xi1{1(t)x(t)xi1z1(t), . . . ,
ximt {1(t)x(t)ximt z1(t), . . . ,xN (t)

~P
mt

u~1
(I2iu{uz(u{1)N6Miu )(I2(imt {1)z(mt{1)(N{1)6

W½2N{imt ,2N �)x1(t), . . . ,xi1{1(t)x(t)xi1z1(t), . . . ,ximt {1

(t)ximt z1(t), . . . ,xN (t)x(t)

~P
mt

u~1
(I2iu{uz(u{1)N6Miu ) P

1

v~mt

(I2(iv{1)z(v{1)(N{1)

6W½2N{iv{(mt{v) ,2N �)x1(t), . . . ,

xi1{1(t)xi1z1(t), . . . ,ximt {1(t)ximt z1(t), . . . ,xN (t)xmt (t)

~P
mt

u~1
(I2iu{uz(u{1)N6Miu ) P

1

v~mt

(I2(iv{1)z(v{1)(N{1)6

W½2N{iv{(mt{v) ,2N �)Ed (I26Ed ), . . . ,

(I2mt{16Ed )xi1 (t)xi2 (t), . . . ,ximt (t)x1(t), . . . ,
xi1{1(t)xi1z1(t), . . . ,ximt {1(t)ximt z1(t), . . . ,xN (t)xmt (t)

~P
mt

u~1
(I2iu{uz(u{1)N6Miu ) P

1

v~mt

(I2(iv{1)z(v{1)(N{1)6

W½2N{iv{(mt{v) ,2N �) P
mt{1

w~0
(I2w6Ed )

W½2(mt{1)z(i1{1),2�W½2(mt{2)z(i2{1),2�, . . . ,W½2imt {1,2�x
mtz1(t)

~P
mt

u~1
(I2iu{uz(u{1)N6Miu ) P

1

v~mt

(I2(iv{1)z(v{1)(N{1)6

W½2N{iv{(mt{v) ,2N �) P
mt{1

w~0
(I2w6Ed )

P
mt

y~1
W½2(mt{y)z(iy{1),2�W

mt

N x(t)

This completes the proof.

One can prove that the mapping D|N
i~1 : DN

2 ?D2n is a bijective

mapping. So Eq. (5) can adequately describe the dynamics of Eq.

(3) at time t, say, LHt
involves all of transition information of

system from time t to tz1 when set Ht is chosen for update, which

is called network transition matrix under update elements Ht.

Whether RBNs or ARBNs, Network transition matrix is an

essential concept for linear representation of logical dynamics

based on STP technique. As deterministic system, there is only one

network transition matrix for a particular RBN. However,

multiple matrices exist in ARBNs depending on different

asynchronous update scheme. For models discussed in this article,

Dynamics of Asynchronous Random Boolean Networks
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there are total 2N{1 network transition matrices. By means of

Theorem 1, when getting the structure matrix Mi of each Boolean

logic fi for any specific ARBN, all of network transition matrices

could be calculated.

Example 1. A logical dynamics is described as

x1(tz1)~x2(t) _ x3(t)

x2(tz1)~x1(t) ^ x3(t)

x3(tz1)~x2(t)

8><
>: ð6Þ

where xi(t) represents the state of node i at time t, and the symbols

‘‘^’’, ‘‘_’’ represent conjunction and disjunction, respectively. By

truth tables, one can get _*Md~d2 1,1,1,2½ � and

^*Mc~d2 1,2,2,2½ �.
The algebraic form of Eq. (6) as

x1(tz1)~Mdx2(t)x3(t)

x2(tz1)~Mcx1(t)x3(t)

x3(tz1)~x2(t)

8><
>: ð7Þ

Case 1: at time t, when only node 1 is selected for update,

x(tz1)~x1(tz1)x2(t)x3(t)

~Mdx2(t)x3(t)x2(t)x3(t)

~MdW½2,4�x2(t)x2(t)x3(t)x3(t)

~MdW½2,4�Mr(I26Mr)x2(t)x3(t)

~MdW½2,4�Mr(I26Mr)Edx1(t)x2(t)x3(t)

Case 2: at time t, when all of three nodes are selected for

update,

x(tz1)~x1(tz1)x2(tz1)x3(tz1)

~Md x2(t)x3(t)Mcx1(t)x3(t)x2(t)

~Md (I46Mc)x2(t)x3(t)x1(t)x3(t)x2(t)

~Md (I46Mc)W½2,4�x1(t)x2(t)Mrx3(t)x2(t)

~Md (I46Mc)W½2,4�(I46Mr)x1(t)x2(t)x3(t)x2(t)

~Md (I46Mc)W½2,4�(I46Mr)(I46W½2�)(I26Mr)

x1(t)x2(t)x3(t)

Here, we just show the calculations of network transition matrices

under the above two cases. Similarly, all of the network transition

matrices can be calculated and results are as follows.

L1~MdW½2,4�Mr(I26Mr)Ed~d8 1,2,3,8,1,2,3,8½ �
L2~(I26Mc)Mr(I26Mr)EdW½2�~d8 1,4,1,4,7,8,7,8½ �
L3~(I26Mr)EdW½4,2�~d8 1,4,1,4,5,8,5,8½ �
L1,2~Md (I46Mc)W½2,4�(I46M2

r )~d8 1,4,1,8,3,4,3,8½ �
L1,3~MdW½4�M

2
r Ed~d8 1,1,4,8,1,1,4,8½ �

L2,3~(I26Mc)Mr(I26W½2�)~d8 1,3,2,4,7,7,8,8½ �
L1,2,3~Md (I46Mc)W½2,4�(I46Mr)(I46W½2�)(I26Mr)

~d8 1,3,2,8,3,3,4,8½ �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

And all of network transition matrices compose a set

T~ L1,L2,L3,L1,2,L1,3,L2,3,L1,2,3f g.
It should be noted that matrix operations are involved in

quantity during the above calculations. Fortunately, the related

matrices are typically sparse and many efficient algorithms can be

applied to optimize the calculation procedure.

The asynchronous network transition table
In order to present the algorithm to find the attractors and

basins of ARBNs, we first provide the following definition.

Definition 2. For a random Boolean network with N nodes

under asynchronous stochastic update, T~ A1,A2, . . . ,A2N{1f g is

the set of network transition matrices, where Ai~d2N ai
1,ai

2, . . . ,
�

ai
2N �, i[ 1, . . . ,2N{1

� �
. The asynchronous network transition

table, briefly called transition table, is defined as

I~

a1
1 a1

2 � � � a1
2N

a2
1 a2

2 � � � a2
2N

..

. ..
.

P
..
.

a2N {1
1 a2N {1

2 � � � a2N {1
2N

�����������

�����������
: ð8Þ

Example 2. Recall Example 1. The transition table of system

(7) is as follows

I~

1 2 3 8 1 2 3 8

1 4 1 4 7 8 7 8

1 4 1 4 5 8 5 8

1 4 1 8 3 4 3 8

1 1 4 8 1 1 4 8

1 3 2 4 7 7 8 8

1 3 2 8 3 3 4 8

�����������������

�����������������

ð9Þ

It should be noted that the asynchronous network transition table

is specially designed for ARBNs. As mentioned above, more than

one network transition matrix exists in ARBNs, which is different

from RBNs. Therefore, there is a question: how to organize these

network transition matrices can provide an efficient way for

applications. For the above consideration, the asynchronous

network transition table is presented, by means of which

algorithms to find attractors and basins of ARBNs can be achieved

completely based on set operations, which are shown later in

Algorithms 1 and 2.

Fixed Points (point attractors)
Proposition 1. For a given ARBN with N nodes, when

C(I)i~ if g, the state x~di
2N is a fixed point, where I is the

asynchronous network transition table.

Proof. Assume T is the set of network transition matrices.

When C(I)i~ if g, we can obtain H(Col(L)i)~ if g,VL[T, i.e. the

i-th column of L is equal to di
2N , which holds for any network

transition matrices in T. And, it’s easily verified that Ldi
2N ~di

2N ,

VL[T, which completes the proof.

Note that Col(.)i represents the i-th column of a matrix.

Example 3. Recall Example 1. We get C(I)1~ 1f g and

C(I)8~ 8f g. So, two fixed points are d1
8*111 and d8

8*000, which

can be checked in the state space graph of Fig. 1.

Attractors (Loose attractors)
Fixed points can be seen as point attractors. In the following, we

focus on loose attractors in ARBNs.

Dynamics of Asynchronous Random Boolean Networks
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Theorem 2. For a given ARBN with N nodes and I is the

asynchronous network transition table, a state set of

C~ di1
2N ,di2

2N , . . . ,dis
2N

� �
(s§2) is an attractor of length s, iff

H(C)~C(I)H(C), ð10Þ
and

C(I)H(C{C’)\H(C’)=W, VC’5C, ð11Þ

Proof. (Necessity) Assume T is the set of network transition

matrices. When C~ di1
2N ,di2

2N , . . . ,dis
2N

� �
is an attractor of length s,

one can obtain Ld
ij
2N[C, VL[T , Vj[ 1,2, . . . ,sf g, which implies

C(I)H(C)(H(C). Since all of states in C can be reached, that is, for

each element p in set H(C), one can find q[H(C) and L’[T to

satisfy L’dq

2N ~d
p

2N , i.e. p[C(I)H(C), which implies H(C)(C(I)H(C).

So, one can obtain H(C)~C(I)H(C) and Eq. (10) holds.

Assume there exists a set C’5C, which satisfy C(I)H(C{C’)\
H(C’)~W. For Vx[C’ and Vx’[C{C’, we can’t find a path from

x’ to x, which is contradiction to the definition of attractor. So Eq.

(11) holds.

(Sufficiency) Firstly, we should prove that each state in set C can

find a way to reach all of the other states. Assume there exists a state

d
p

2N[C and all of states that d
p

2N can’t reach compose a non-empty set

C’. Since d
p

2N can reach each state in set C{C’, so any states in set

C{C’ also can’t reach states in C’, i.e. C(I)H(C{C’)\H(C’)~W,

which is a contradiction to Eq. (11). So, each state in C can

reach the other states.

Secondly, we should prove each state in set C can’t reach any

states out of set C.

We assume there exist dq

2N[C and L’[T which satisfy L’dq

2N ~

da
2N 6[C. Then a[C(I)H(C) and a6[H(C), which is a contradiction to

Eq. (10).

The proof is complete.

As a consequence, we develop a procedure to find all of attrac-

tors of ARBNs based on the above result, that is shown later in

Algorithm 1.

Basins of attractors
Definition 3. For ARBNs with N nodes, T and I are the set of

network transition matrices and transition table, respectively. Let

x,x’[D2N and L[T, when Lx’~x, x’ is called the parent state of x.

All of parent states of x are denoted by the set L{1(x). And, for a

set S(D2N , L{1(S)~
S

x[S

L{1(x). For simplicity,

L{1L{1 . . . L{1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
t

%hbrace(x) is denoted by L{t(x).

For nondeterministic systems, a partition can’t be found to

separate the whole state space of ARBNs into several disjointed

sets. As mentioned in Ref. [31], basins of attractors in

asynchronous random Boolean networks involve two kinds: the

definite basins and possible basins. Then, the overlapping parts of

basins of different attractors as common phenomena exist the state

space of ARBNs, which mean certain transient states can jump

from one basin of attractors into another. More studies related to

basins in ARBNs can refer to Refs. [32–34].

Generally, by a backstepping manner, one can find the basin of

a given attractor C. Starting from the state set of attractor C, we

can determine parent states of each state in C, which compose a

new set C’. Repeat to find the parent states of each state in C’ and

add them into C’ until there aren’t any new states involved. The

set C’|C is the basin of attractor C. The above procedure is

shown in Algorithm 2.

Example 4. Recall Examples 2. The attractors of system (7)

include the fixed points 000 and 111. For the fixed point d1
8, by

checking the transition table I in (9), we can get L{1(d1
8)~

d1
8,d2

8,d3
8,d5

8,d6
8

� �
, L{1(d1

8)|L{2(d1
8)~ d1

8,d2
8,d3

8,d5
8,d6

8,d7
8

� �
. Since

|
2

i~1
L{i(d1

8)~ |
3

i~1
L{i(d1

8), the basin of the fixed point d1
8 is

composed of six states d1
8*111,d2

8*110,d3
8*101,d5

8*011,

d6
8*010,d7

8*001. Similarly, for the fixed point d8
8, one can get

the basin d2
8,d3

8,d4
8,d5

8,d6
8,d7

8,d8
8

� �
. The above results can be verified

in Fig. 1.

In the above example, except state d4
8 is the definite basin of

fixed point d8
8, all the rest transient states are the overlapping part

between the basins of two fixed points.

Algorithms for detecting the attractors and basins of
ARBNs

Given a specific logical dynamics under asynchronous update,

all of the network transition matrices could be calculated based on

Theorem 1. Consequently, the asynchronous network transition

table can also be achieved. By means of the transition table, we

formulate the following algorithms to find attractors and basins of

ARBNs.

Figure 1. An asynchronous Boolean network with 3 nodes and its state space graph.
doi:10.1371/journal.pone.0066491.g001
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Algorithm 1: An algorithm for finding attractors in ARBNs with

n nodes and the asynchronous network transition table I.

Begin: Algorithm 1
F~ d1

2n , . . . ,d2n

2n

� �
,s~1 /* F is a feasible state set and s is the

length of attractor. */

for (i~1; iv~2n; izz) do /*find the fixed points in ARBNs */

if C(I)i~ if g then /* di
2n is a fixed point */

Find the basin of state di
2n ; /* the procedure to find basin of

a particular attractor refers to Algorithm 2*/

Remove the state di
2n and its basin from set F ;

end if
end for
while Nonempty (F ) do

s~sz1

F ’~ di
2n card(C(I)i)v~s and di

2n[
�� F

� �
/* card(.) is the num-

ber of elements in set. */

Update F ’ by removing states whose successors aren’t in

F ’.
while Nonempty (F ’) do

Randomly pick up one state di
2n from F ’ and all reachable

states from di
2n compose a set C.

if card(C)~s and H(C)~C(I)H(C) then /* C is an

attractor of length s */

Find the basin of attractor C and remove the

corresponding states from sets F and F ’.
else remove state di

2n from F ’
end if
end while
end while
End: Algorithm 1

Since, according to the length, the attractors are found

successively from small to large, so it isn’t necessary to check the

condition of Eq. (11) to determine attractors.

Algorithm 2: An algorithm for finding basin of a particular

attractor C in ARBNs with n nodes.

Begin: Algorithm 2
C’~C /* C is the set of a particular attractor. */

while C’=L{1(C’) do

C’~C’|L{1(C’)

end while
End: Algorithm 2
In Ref. [39], Cheng’s approach to find the attractors of length s

in RBNs needs the computation of Ls, where L is the network

transition matrix. Moreover, Cheng’s algorithm is based on a

prerequisite that RBNs are deterministic systems and a state on a

cycle of length s will be back afters steps. However, this

prerequisite can’t hold for ARBNs. Therefore, we propose a novel

way to detect attractors and basins of ARBNs by means of the

transition table.

Examples
In this section, some examples are presented to illustrate the

main results of this article. Firstly, an idealized example is shown

as follows, which is a model of phosphorylation/dephosphoryla-

tion cycles considered by Gonze et. al [44] and re-investigated in

[45].

Example 5. A logical dynamics is described as

x1(tz1)~x2(t)

x2(tz1)~x3(t)

x3(tz1)~x4(t)

x4(tz1)~x1(t)

8>>><
>>>:

ð12Þ

where xi(t) represents the state of node i at time t. System (12)

presents a model of protein–protein interactions. As shown in [45],

there are three cycles of length four, one cycle of length two, and

two fixed points under synchronous update. Here, we study the

attractors and basins of system under asynchronous stochastic

update.

The algebraic form of Eq. (12) as

x1(tz1)~Ed (I26Ed )(I46Ed )(I26W½2,4�)x(t)

x2(tz1)~Ed (I26Ed )(I46Ed )(I46W½2�)x(t)

x3(tz1)~Ed (I26Ed )(I46Ed )x(t)

x4(tz1)~Ed (I26Ed )(I46Ed )W½2,8�x(t)

8>>><
>>>:

ð13Þ

where x(t)~ D|4
i~1xi(t).

Then, the structure matrices of logical functions are as follows

M1~Ed (I26Ed )(I46Ed )(I26W½2,4�)~

d2½1,1,1,1,2,2,2,2,1,1,1,1,2,2,2,2�
M2~Ed (I26Ed )(I46Ed )(I46W½2�)~

d2½1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2�
M3~Ed (I26Ed )(I46Ed )~

d2½1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2�
M4~Ed (I26Ed )(I46Ed )W½2,8�)~

d2½1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

By Theorem 1, all of network transition matrices can be

calculated and the asynchronous network transition table is

constructed as follows.

I~

1 2 3 4 13 14 15 16 1 2 3 4 13 14 15 16

1 2 7 8 1 2 7 8 9 10 15 16 9 10 15 16

1 4 1 4 5 8 5 8 9 12 9 12 13 16 13 16

1 1 3 3 5 5 7 7 10 10 12 12 14 14 16 16

1 2 7 8 9 10 15 16 1 2 7 8 9 10 15 16

1 4 1 4 13 16 13 16 1 4 1 4 13 16 13 16

1 1 3 3 13 13 15 15 2 2 4 4 14 14 16 16

1 4 5 8 1 4 5 8 9 12 13 16 9 12 13 16

1 1 7 7 1 1 7 7 10 10 16 16 10 10 16 16

1 3 1 3 5 7 5 7 10 12 10 12 14 16 14 16

1 4 5 8 9 12 13 16 1 4 5 8 9 12 13 16

1 1 7 7 9 9 15 15 2 2 8 8 10 10 16 16

1 3 1 3 13 15 13 15 2 4 2 4 14 16 14 16

1 3 5 7 1 3 5 7 10 12 14 16 10 12 14 16

1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16

�������������������������������������

�������������������������������������
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By means of Algorithm 1, since C(I)1~ 1f g and C(I)16~ 16f g in

the transition table I, it’s easy to get two fixed points fd1
16*1111g

and fd16
16*0000g. Before finding the attractors of system, we first

determine the basins of fixed points by Algorithm 2 to reduce the

search scope in state space. For the fixed point C~fd1
16g, one can

get L{1(C)~ d1
16,d2

16,d3
16,d5

16,d6
16,d9

16,d11
16

� �
and L{1(C)|

L{2(C)~ di
16 i~1, . . . ,15j

� �
. So far, we can know the basin of

the fixed point d1
16 includes all of the states in state space except for

the other fixed point d16
16. Therefore, we can conclude that there

aren’t any attractors in this system. Similarly, the basin of the fixed

point d16
16 involves all of the states except for d1

16. A big overlapping

part exists between the basins of two fixed points.

One can verify, under synchronous update, System (12) has two

fixed points as fd1
16g and fd16

16g, three cycles of length four as

d2
16,d3

16,d5
16,d9

16

� �
, d8

16,d15
16,d14

16,d12
16

� �
and d4

16,d7
16,d13

16,d10
16

� �
, one

cycle of length two as d6
16,d11

16

� �
. Without ambiguity, we call

these cycles under synchronous update as ‘‘former cycles’’. When

system (12) is under asynchronous update, all of former cycles turn

into the overlapping part of the basins of two fixed points, say, they

can jump from one basin of attractor into another. Furthermore,

we also can observe some interesting phenomena. Each state in

former cycle d2
16,d3

16,d5
16,d9

16

� �
has a direct link pointing to the

fixed point d1
16, at the same time, all of in-edges of the fixed point

d1
16 come from this former cycle. The same case occurs between

the former cycle d8
16,d15

16,d14
16,d12

16

� �
and the fixed point d16

16. As

to the third former cycle d4
16,d7

16,d13
16,d10

16

� �
, it plays a role of

bridge between the rest former cycles of length four, but it

hasn’t any direct links pointing to either of fixed points. The

related state transfers are depicted in Fig. 2. Former cycle

d6
16,d11

16

� �
is more special, each state of which has links pointing

to all of states in state space except for itself, which is shown in

Fig. 3.

Under synchronous update, all of attractors present similar

dynamics, e.g. stability, and it’s difficult to determine whether

there is difference among them. However, some divergences

among these attractors can be observed under asynchronous

update. Such as the above example in Fig. 2, two former cycles of

length four are close to the fixed points, which have greater

possibility to flow into the corresponding fixed points. So, we can

reasonably consider that the states of the two cycles would be faster

into stable states. Yet, the remaining period-4 cycle is in the

intermediate position, statistically, whose location determines it

would take more time to converge into stability. As to the former

period-2 cycle in Fig. 3, to some extent, its characteristic is more

unstable under asynchronous update.

Example 6. Consider an ARBN with N~5,K~2, where a

random number of nodes can be updated at each time step

described as

Figure 2. State transfers (Including two fixed points and the former cycles of length four).
doi:10.1371/journal.pone.0066491.g002
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x1(tz1)~x1(t) ^ x3(t)

x2(tz1)~x2(t)?x4(t)

x3(tz1)~:(x2(t) ^ x5(t))

x4(tz1)~x3(t)?x4(t)

x5(tz1)~x1(t)<x5(t)

8>>>>>><
>>>>>>:

ð14Þ

where :, ? and < represent the logical functions of negation,

implication and equivalence, respectively. One can obtain

:*Mn~d2 1,2½ �,?*Mi~d2 1,2,1,1½ � and <*Me~d2 1,2,2,1½ �.
The algebraic form of Eq. (14) as

x1(tz1)~McEdW½4,2�EdW½4,2�Ed W½2�x(t)

x2(tz1)~MiEd W½4,2�EdW½2�Edx(t)

x3(tz1)~MnMcEdW½2�EdW½2�Ed x(t)

x4(tz1)~MiEd W½4,2�EdEdx(t)

x5(tz1)~MiEd W½2�EdW½2�EdW½2�x(t)

8>>>>>><
>>>>>>:

ð15Þ

where x(t)~5
i~1xi(t).

Then, the structure matrices of logical functions are as follows.

M1~McEdW½4,2�EdW½4,2�EdW½2�~d2½1,1,1,1,2,2,2,2,1,1,1,1,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2�
M2~MiEdW½4,2�Ed W½2�Ed~d2½1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,

1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1�
M3~MnMcEdW½2�EdW½2�Ed~d2½2,1,2,1,2,1,2,1,1,1,1,1,1,1,

1,1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,1,1�
M4~MiEdW½4,2�Ed Ed~d2½1,1,2,2,1,1,1,1,1,1,2,2,1,1,1,1,1,

1,2,2,1,1,1,1,1,1,2,2,1,1,1,1�
M5~MiEdW½2�EdW½2�EdW½2�~d2½1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1�

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

By Theorem 1, all of network transition networks can be

calculated and the asynchronous network transition table is as

follows.

Figure 3. State transfers (The basin of the former cycle of length two).
doi:10.1371/journal.pone.0066491.g003
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Construct the feasible set F~fdi
32 i~1,2, . . . ,32j g. According to

Algorithm 1, since C(I)2~ 2f g, the fixed point d2
32 can firstly be

found. Consequently, the basin of this fixed point can be detected

as d6
32,d8

32,d10
32,d14

32,d16
32

� �
by Algorithm 2. Remove the fixed point

and its basin from feasible set F . Next, to find the attractors of

length s~2, one could obtain F ’~fd1
32,d4

32,d5
32,d9

32,d11
32,d12

32,

d18
32,d21

32g. Since d11
32?d3

32,d18
32?d17

32 and d9
32?d1

32?d5
32?d21

32?d22
32,

these states should be removed from F ’ because their successors

aren’t involved in set F ’. After updating, set F ’~fd4
32,d12

32g. Pick

up state d4
32 and form the reachable set C2~fd4

32,d12
32g. It’s easy

to check card(C2)~2 and H(C2)~C(I)H(C2)~f4,12g, so C2~

fd4
32,d12

32g is an attractor of length 2. And, we can find the basin of

C2 is fd8
32,d16

32g. Remove C2 and its basins from F ,F ’ and

continue to the above procedure. Similarly, we can find a loose

attractor of length s~4 as C4~fd17
32,d18

32,d21
32,d22

32g and its basin is

fdi
32 i[j f1,3,5,6,7,8,9,11,13,14,15,16,19,20,23,24,25,26,27,28,29,

30,31,32gg. After removing the states C4 and its basin from F , the

feasible set F is empty and the procedure is terminated. The state

transfer graph is shown in Fig. 4.

In Fig. 4, we can find one fixed point d2
32, one attractor of length

two C2~fd4
32,d12

32g and one attractor of length four

C4~fd17
32,d18

32,d21
32,d22

32g. Correspondingly, the basin of each attrac-

tor is also depicted. As to fixed point d2
32, there exist one state d10

32

as definite basin and four states fd6
32,d8

32,d14
32,d16

32g as possible basin.

For attractor fd4
32,d12

32g, there are total two states fd8
32,d16

32g in its

basin. Similarly, as to attractor fd17
32,d18

32,d21
32,d22

32g, one can find a

definite basin fd1
32,d5

32,d9
32g and the rest of transient states in its

basin form the possible basin. For simplicity, here, we just show

part of state transfers of states in attractors’ possible basins.

Example 7. A Boolean model of cAMP signaling in

Dictyostelium [45–47] as follows

A(tz1)~1zC(t)

B(tz1)~1zA(t)

C(tz1)~H(t)zB(t):H(t)

D(tz1)~C(t)

E(tz1)~D(t)

F (tz1)~1zE(t)

G(tz1)~D(t)zE(t)zD(t):E(t)

H(tz1)~G(t)zF (t):G(t)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð16Þ

Where the symbols A,B, . . . ,H represent PDI, PDE, cAMP(out-

side the cell), cAR1/3, Erk-2, RegA, ACA and cAMP (inside the

cell), respectively. z*Mp~d2 2,1,1,2½ � and :*Mc~d2 1,2,2,2½ �.
The above biochemical system is known for producing cyclic

aggregation signals. In [45], researchers studied the attractors of

system under synchronous update and found one fixed point and

two cycles of length five. Here, we re-investigate this well-studied

I~

1 2 3 4 21 22 23 24 9 10 11 12 29 30 31 32

1 2 11 12 5 6 15 16 1 2 3 4 5 6 7 8

5 2 7 4 5 2 7 4 9 10 11 12 9 10 11 12

1 2 3 4 5 6 5 6 9 10 11 12 13 14 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 11 12 21 22 31 32 1 2 3 4 21 22 23 24

5 2 7 4 21 18 23 20 9 10 11 12 25 26 27 28

1 2 3 4 21 22 21 22 9 10 11 12 29 30 29 30

1 2 3 4 21 22 23 24 9 10 11 12 29 30 31 32

5 2 15 12 5 2 15 12 1 2 3 4 1 2 3 4

1 2 11 12 5 6 13 14 1 2 3 4 5 6 5 6

1 2 11 12 5 6 15 16 1 2 3 4 5 6 7 8

5 2 7 4 5 2 5 2 9 10 11 12 9 10 9 10

5 2 7 4 5 2 7 4 9 10 11 12 9 10 11 12

1 2 3 4 5 6 5 6 9 10 11 12 13 14 13 14

5 2 15 12 21 18 31 28 1 2 3 4 17 18 19 20

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

17 18 27 28 21 22 31 32 17 18 19 20 21 22 23 24

21 18 23 20 21 18 23 20 25 26 27 28 25 26 27 28

17 18 19 20 21 22 21 22 25 26 27 28 29 30 29 30

18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31

17 18 27 28 21 22 31 32 17 18 19 20 21 22 23 24

21 18 23 20 21 18 23 20 25 26 27 28 25 26 27 28

17 18 19 20 21 22 21 22 25 26 27 28 29 30 29 30

18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31

21 18 31 28 21 18 31 28 17 18 19 20 17 18 19 20

17 18 27 28 21 22 29 30 17 18 19 20 21 22 21 22

18 17 28 27 22 21 32 31 18 17 20 19 22 21 24 23

21 18 23 20 21 18 21 18 25 26 27 28 25 26 25 26

22 17 24 19 22 17 24 19 26 25 28 27 26 25 28 27

18 17 20 19 22 21 22 21 26 25 28 27 30 29 30 29

21 18 31 28 21 18 31 28 17 18 19 20 17 18 19 20

1 2 11 12 21 22 29 30 1 2 3 4 21 22 21 22

1 2 11 12 21 22 31 32 1 2 3 4 21 22 23 24

5 2 7 4 21 18 21 18 9 10 11 12 25 26 25 26

5 2 7 4 21 18 23 20 9 10 11 12 25 26 27 28

1 2 3 4 21 22 21 22 9 10 11 12 29 30 29 30

5 2 15 12 5 2 13 10 1 2 3 4 1 2 1 2

5 2 15 12 5 2 15 12 1 2 3 4 1 2 3 4

1 2 11 12 5 6 13 14 1 2 3 4 5 6 5 6

5 2 7 4 5 2 5 2 9 10 11 12 9 10 9 10

5 2 15 12 21 28 29 26 1 2 3 4 17 18 17 18

5 2 15 12 21 18 31 28 1 2 3 4 17 18 19 20

1 2 11 12 21 22 29 30 1 2 3 4 21 22 21 22

5 2 7 4 21 18 21 18 9 10 11 12 25 26 25 26

5 2 15 12 5 2 13 10 1 2 3 4 1 2 1 2

5 2 15 12 21 18 29 26 1 2 3 4 17 18 17 18

17 18 27 28 21 22 29 30 17 18 19 20 21 22 21 22

18 17 28 27 22 21 32 31 18 17 20 19 22 21 24 23

21 18 23 20 21 18 21 18 25 26 27 28 25 26 25 26

22 17 24 19 22 17 24 19 26 25 28 27 26 25 28 27

18 17 20 19 22 21 22 21 26 25 28 27 30 29 30 29

21 18 31 28 21 18 29 26 17 18 19 20 17 18 17 18

22 17 32 27 22 17 32 27 18 17 20 19 18 17 20 19

18 17 28 27 22 21 30 29 18 17 20 19 22 21 22 21

22 17 24 19 22 17 22 17 26 25 28 27 26 25 26 25

21 18 31 28 21 18 29 26 17 18 19 20 17 18 17 18

22 17 32 27 22 17 32 27 18 17 20 19 18 17 20 19

18 17 28 27 22 21 30 29 18 17 20 19 22 21 22 21

22 17 24 19 22 17 22 17 26 25 28 27 26 25 26 25

22 17 32 27 22 17 30 25 18 17 20 19 18 17 18 17

22 17 32 27 22 17 30 25 18 17 20 19 18 17 18 17

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������
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system under asynchronous update. Considering the interactions

of the elements in the actual model, one element is randomly

chosen for update at each time step.

The algebraic form of Eq. (16) is represented as

A(tz1)~L6(I1286Mn)(I46W½2,32�)K(t)

B(tz1)~L6(I1286Mn)W½2,128�K(t)

C(tz1)~L5(I646Mp)(I1286Mc)(I26W½2,64�)(I1286Mr)K(t)

D(tz1)~L6(I46W½2,32�)K(t)

E(tz1)~L6(I86W½2,16�)K(t)

F (tz1)~L6(I1286Mn)(I166W½2,8�)K(t)

G(tz1)~L5(I646Mp)(I1286Mp)(I2566Mc)(I1286W½2�)

(I646Mr)(I1286Mr)(I86W½4,8�)K(t)

H(tz1)~L5(I646Mp)(I1286Mc)(I326W½2,4�)(I1286Mr)

(I646W½2�)K(t)

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

where La~ P
a

i~0
(I2i6Ed )

	 

and K(t)~A(t)B(t)C(t)D(t)E(t)F (t)

G(t)H(t).

Based on the above discussions, one can calculate the

asynchronous network transition table of system. The detailed

computations are skipped and the results are presented as follows.

It can be verified that only one fixed point d124
256*(10000100)

exists in system (16) under asynchronous update, which is the same

as the one under synchronous update. Fig. 5 and Fig. 6 show the

basins of the fixed point under asynchronous and synchronous

update, respectively.

Comparing Fig. 5 with Fig. 6, under asynchronous update, the

basin of the fixed point contains fewer states but has more complex

interconnections. There are 11 transient states in Fig. 5 and the

farthest distance from one transient state to the fixed point is 3

steps, for instance, d186
256(01000110)?d58

256

(11000110)?d60
256(11000100)?d124

256(10000100). However, in

Fig. 6, there are more states directly flowing to the fixed point,

furthermore, any states can reach the fixed point though at most 2

steps. There are no attractors in system (16) under asynchronous

update, or from another perspective, the remaining states together

construct a complicated and big loose attractor.

Conclusions

In this article, we have presented a new approach to study the

dynamics of random Boolean networks under asynchronous

stochastic update. By semi-tensor product of matrix, the logic of

ARBN is converted into linear representation. A general formula

Figure 4. Attractors and basins of system (14).
doi:10.1371/journal.pone.0066491.g004
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of network transition matrices is presented, by which one can

obtain all of network transition matrices of a given logical

dynamics whether under synchronous update or under asynchro-

nous update. A necessary and sufficient algebraic criterion has

been proved to determine whether a given group of states compose

attractor of length s on a particular ARBN. Asynchronous network

transition table as a transformed set of network transition matrices

is presented. Based on the above results, algorithms to detect the

Figure 5. The basin of the fixed point under asynchronous update.
doi:10.1371/journal.pone.0066491.g005

Figure 6. The basin of the fixed point under synchronous update.
doi:10.1371/journal.pone.0066491.g006
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attractors and basins of ARBNs are achieved. Examples are shown

to demonstrate the validity of results. As a preparation, results in

this article can be applied in the investigation of Boolean control

problems under asynchronous update, which would be the work in

the future.
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