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Abstract

Gliadin triggers T-cell mediated immunity in celiac disease, and has cytotoxic effects on enterocytes mediated through
obscure mechanisms. In addition, gliadin transport mechanisms, potential cell surface receptors and gliadin-activated
downstream signaling pathways are not completely understood. In order to screen for novel downstream gliadin target
genes we performed a systematic whole genome expression study on intestinal epithelial cells. Undifferentiated Caco-2
cells were exposed to pepsin- and trypsin- digested gliadin (PT-G), a blank pepsin-trypsin control (PT) and to a synthetic
peptide corresponding to gliadin p31-43 peptide for six hours. RNA from four different experiments was used for
hybridization on Agilent one color human whole genome DNA microarray chips. The microarray data were analyzed using
the Bioconductor package LIMMA. Genes with nominal p,0.01 were considered statistically significant. Compared to the
untreated cells 1705, 1755 and 211 probes were affected by PT-G, PT and p31-43 respectively. 46 probes were significantly
different between PT and PT-G treated cells. Among the p31-43 peptide affected probes, 10 and 21 probes were affected by
PT-G and PT respectively. Only PT-G affected genes could be validated by quantitative real-time polymerase chain reaction.
All the genes were, nonetheless, also affected to a comparable level by PT treated negative controls. In conclusion, we could
not replicate previously reported direct effects of gliadin peptides on enterocytes. The results rather suggest that certain
epitopes derived from pepsin and trypsin may also affect epithelial cell gene transcription. Our study suggests novel non-
enzymatic effects of pepsin and trypsin on cells and calls for proper controls in pepsin and trypsin digested gliadin
experiments. It is conceivable that gliadin effects on enterocytes are secondary mediated through oxidative stress, NFkB
activation and IL-15 up-regulation.
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Introduction

Celiac disease (CD) is an autoimmune disorder caused by the

ingestion of gluten present in wheat, barley and rye. It is the

alcohol soluble gliadin fraction in gluten which triggers CD in

genetically susceptible individuals, i.e. who are HLA-DQ2 or –

DQ8 positive [1–3]. The screen detected prevalence of CD is

approximately 1% in Caucasians and so far the only cure is a strict

adherence to gluten-free diet (GFD) [4,5]. The two hallmarks of

CD are villous atrophy and crypt-cell hyperplasia in the small

intestine and individuals suffering from CD display a wide range of

symptoms, where diarrhoea and malabsorption are only a few to

mention [6–8].

The proteolytic cleavage of gliadin by digestive enzymes in the

stomach and intestine produces an array of distinct but

overlapping peptides [9]. Some of these peptides are termed

immunodominant, as they can activate the adaptive immune

system [9]. Pathogenesis in CD is driven by T-cells which

recognize selected immunodominant, deamidated gliadin pep-

tides, such as p57-68, presented by the disease associated HLA-

DQ2 or DQ8 molecules on antigen presenting cells [10–12]. The

T cell activation and mucosal inflammation persists as long as

gluten is present in the lamina propria beneath the epithelial layer.

Thus, the presence of gluten in the mucosa is a prerequisite for the

activation of gluten-reactive T cells and the ensuing inflammation.

Another subset of gliadin-derived peptides is termed cytotoxic and

these peptides activate the innate immune system which precedes

the activation of adaptive immune system in the lamina propria

[9,11,13,14].

The gliadin-derived cytotoxic peptides affect the gut in different

ways. In experiments on cultured epithelial cells, gliadin peptides

have been shown to induce oxidative stress, rearrangement of

actin cytoskeleton and impairment of epithelial tight-junction

assembly [14–17]. Studies by Barone et al. showed that gliadin

peptides interfere with endocytic vesicle maturation and also

promote cell proliferation by prolonging epidermal growth factor

receptor (EGFR) activation [18–20]. Furthermore, some toxic
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gliadin peptides (e.g. p31-43 or p31-49 peptides of gliadin) have

been reported to induce apoptosis in gut epithelial cells [21-23].

These effects are thought to be direct effects of gliadin peptides.

Interestingly, the immunodominant peptides (e.g. p57-68) have

been shown in these studies to be unable to mimic the effects that

the cytotoxic peptides (e.g. p31-43 or p31-49) have on enterocytes.

Gliadin peptides must cross the epithelial barrier and enter the

mucosa to activate T cells. Several mechanisms (paracellular and

transcellular) of gliadin transport across the intestinal epithelial

barrier have been suggested [19,24–27]. In addition, some gliadin

peptides have been shown to bind to the chemokine receptor

CXCR3 on the surface of epithelial cells and induce tight junction

permeability [27]. Enterocyte apoptosis caused by gliadin peptides

is also considered a potential mechanism of gliadin introduction

into the mucosa. The intestinal epithelial barrier is impaired in CD

and as luminal antigens are present in close proximity to

enterocytes, an interaction between the two is feasible. Despite a

multitude of documented effects attributed to cytotoxic gliadin

peptides, the molecular mechanisms through which these effects

are brought about remain obscure. No study has thus far been

undertaken to study the changes in enterocyte gene expression as a

result of their interaction with gliadin peptides. A transcription

profile of epithelial cells exposed to gliadin may not only help us

identify certain receptor-associated signalling pathways but may

also help us understand other gliadin mediated effects. Epithelial

cells form the first line of defence against environmental antigens.

Thus, understanding the exact mechanism by which gliadin

peptides affect enterocytes is crucial to our understanding of early

stages in CD onset and to the discovery of novel biomarkers for

improved diagnostics and therapy targets of CD.

In this study, we sought to answer whether gliadin peptides have

any direct effect on intestinal epithelial cell gene transcription, also

suggestive of potential cell surface receptor-dependent signalling

pathways. To answer these questions we exposed Caco-2 cells to

pepsin- and trypsin-digested gliadin (PT-G) and the cytotoxic p31-

43 peptide of gliadin for six hours. We used human whole genome

microarray chips to obtain a list of differentially expressed genes

after gliadin exposure.

Materials and Methods

Caco-2 Cell Cultures and Stimulations
Caco-2 cells (American Cell Type Collection, HTB-37, Rock-

ville, MD, USA) were kindly provided by Prof. M. Mäki

(University of Tampere, Tampere, Finland). Cells were main-

tained in minimum essential medium (MEM, 31095-029 GIBCO)

supplemented with 1X sodium pyruvate (NaPy 100X, 11360-039

GIBCO), 1% Pen-Strep (Pen-Strep, 15070-063 GIBCO), 1X non-

essential amino acids (NEAA 100X, 11140-035 GIBCO) and 10%

fetal calf serum (FCS, C-37350 PROMOCELL) in 75 cm2 flasks

(353136 BD Biosciences) and were routinely split every 5 days. For

stimulations, 36105 cells were seeded in 25 cm2 flasks (156367,

nunc) in 3 ml MEM+1% FCS and incubated at 37uC with 5%

CO2 in the air. On the third day of seeding, the undifferentiated

Caco-2 cells were washed once with 1X phosphate-buffered saline

(PBS). Bovine serum albumin (BSA) was obtained from Sigma

Aldrich (Albumin, bovine fraction V powder, A8806-1G Sigma

Aldrich) and contained endotoxin at #0.1 ng/mg. Lactalbumin

was also obtained from Sigma Aldrich (Alpha-lactalbumin from

bovine milk, 61289-50MG Sigma Aldrich), however information

on endotoxin level in lactalbumin was not available. Pepsin- and

trypsin- digested BSA (PT-BSA), pepsin- and trypsin- digested

lactalbumin (PT-L), a blank pepsin- and trypsin- control (PT),

where no substrate was used for digestion, and PT-G were

prepared as described earlier [28]. The pepsin and trypsin

enzymes were inactivated by heating after substrate digestion

and the inactivation was verified with enzyme activity assay using

fluorogenic trypsin substrate Z-Arg-AMC (data not shown). An

endotoxin test was performed on PT-G and PT-BSA using a

Limulus Amebocyte Lysate (LAL), Pyrogent plus single test kit (cat

no. N289-06, CAMBREX). No endotoxin was found in PT-G, but

PT-BSA tested positive for endotoxin. Lyophilised PT, PT-BSA,

PT-L and PT-G were dissolved in MEM+1% FCS and filter

sterilised by passing through 0.22 mm pore filter (SLGS033SS,

Millipore). Similarly the synthetic peptides p31-43

(LGQQQPFPPQQPY) and the immunogenic peptide p57-68

(QLQPFPQPQLPY) (New England Peptide LLC, USA) were

dissolved in MEM+1% FCS to achieve a final concentration of

150 mg/ml. PT, PT-BSA and PT-L were used as negative controls

for PT-G treatment. The immunogenic p57-68 peptide served as a

negative control for the p31-43 treatment as it has previously been

shown not to have any effect on epithelial cells [11,19,20,29]. The

cells were stimulated for six hours with a particular stimulant

dissolved in 2 ml MEM+1% FCS. The control cells (MED-CTL)

were kept in MEM+1% FCS for six hours. In total, four identical

but independent experiments were performed with cells differing

in 1–2 passages between each experiment.

Cell Collection and RNA Extraction
The cells were collected by adding 1 ml 1X trypsin-EDTA

(Trypsin 10X, 15400-054 Invitrogen) to the flasks followed by 4–

5 min incubation at 37uC. Trypsin was inhibited by adding 1 ml

MEM+10% FCS and the cells were collected by centrifugation at

9.6006g for 5 min. The pellet was washed with 500 ml 1X PBS

and RNA was extracted using RNeasy Plus Mini kit (74134,

QIAGEN).

Microarray Data Production and Analysis
RNA from PT-treated, PT-G-treated, MED-CTL and p31-43

stimulated cells was used for hybridisation on Agilent one colour

human whole genome DNA microarray chips (4644K) (Agilent

Technologies, Santa Clara, CA). RNA quality for these samples

was assessed by bioanalyzer (2100 Bioanalyzer, Agilent) and

600 ng of RNA was used for cDNA synthesis. The cDNA synthesis

and array hybridisations were carried out at Biomedicum

Genomics Support, Helsinki, Finland. Microarray raw data (.gpr

files) were imported into R v. 2.15 [30] and analyzed with the

BioConductor [31] package limma [32]. Briefly, after quality

check, the microarray probes were filtered and re-annotated

according to Gertz et al. [33] and their median foreground

intensity was normalized with the quantiles method without

applying any background correction, as previously suggested [34].

Finally, the probes were tested for differential expression using a

linear model followed by moderated t-test [32] for the compar-

isons of interest. Genes with nominal p,0.01 were considered to

be differentially expressed and further considered in the analysis.

Correction for multiple testing using Benjamini and Hochberg

method [35] resulted in only few statistically significant genes

(Figure 1) and therefore the study was mainly based on the

uncorrected gene lists. The microarray data has been submitted to

Gene Expression Omnibus (accession number: GSE45357).

Quantitative Real-time Polymerase Chain Reaction (qRT-
PCR)
Microarray results were validated by qRT-PCR and five genes

which were not affected by PT treatment were selected (Table 1).

The genes with high expression level ($ log2 9.0) and with a fold-

Gliadin Effects on Enterocyte Gene Transcription
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change (FC) $1.4 in either direction (up-regulation or down-

regulation) were prioritized (tables S1, S2, S3, S4). However,

RELA gene (FC=1.31) was an obvious exception to this rule and

was included for validation by qRT-PCR because of its

involvement in the nuclear factor kappa B (NFkB) pathway. The

NFkB pathway has been shown to be activated in small-intestinal

mucosa of CD patients. [36] Primers for the selected genes were

designed using the primer designing software Primer express

(Applied Biosystems) (Table 1). 300 ng of RNA was used to

synthesise cDNA using TaqMan Reverse Transcription Reagents

(N808-0234, Applied Biosystems) as recommended by the vendor.

Microarray results for selected genes were verified using Power

SYBR Green PCR Master Mix (4367659, Applied Biosystems, 1X

SybrGreen PCR mix, 0.6 mM forward and reverse primer each)

on 7500 Fast Real-Time PCR System (Applied Biosystems). The

gene expression levels were normalised against beta-2 microglobulin

(B2M) gene expression.

Results

Differentially Expressed Probes in Caco-2 Cells after
Stimulation with PT-G and the p31-43 Peptide
Many of the differentially expressed genes are represented by

multiple probes on the Agilent microarrays utilized in this study,

hence the term probes, instead of genes, is used. The expression of

1705 probes was affected by PT-G treatment compared to the

Figure 1. Venn diagrams showing the number of probes differentially expressed in response to pepsin- and trypsin-digested
gliadin (PT-G) (Figure 1a) compared to medium control (MED-CTL) and the blank pepsin- and trypsin (PT) control. The probes that
were affected by PT treatment compared to MED-CTL are also displayed. Figure 1b shows the probes affected by PT, PT-G and p31-43 peptide
compared to MED-CTL. The numbers in parenthesis represent the number of probes obtained after multiple testing correction as described in
materials and methods.
doi:10.1371/journal.pone.0066307.g001
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untreated cells (MED-CTL) that were kept in medium for the

duration of the stimulation (Figure 1a). However, 1755 probes

were also affected by PT-only treatment. In a comparison between

PT-G treated cells and PT treated cells, 46 probes were found to

be differentially expressed. In cells which were exposed to the

cytotoxic p31-43 peptide, 211 probes were differentially expressed

compared to the untreated cells (Figure 1b). Of these, 21 probes

were also affected by the blank PT treatment and ten probes were

affected by PT-G treatment and 46 probes were affected by PT,

PT-G and p31-43 treatments compared to MED-CTL. All the

probes, along with their expression data, affected by PT, PT-G or

p31-43 are listed in tables S1, S2, S3, S4.

Validation of Differentially Expressed Genes by qRT-PCR
Five genes were selected for validation using criteria described

in materials and methods. Fold change (FC) values greater than

one indicate up-regulation and those less than one indicate down-

regulation. Kruppel-like factor 4 (KLF4) (FC PT-G vs. MED-CTL:

2.0), sprouty-related, EVH1 domain containing 1 (SPRED1) (FC PT-G

vs. MED-CTL: 1.66) and CCAAT/enhancer binding protein alpha

(CEBPa) (FC PT-G vs. MED-CTL: 0.71) were affected by PT-G

treatment, whereas mitochondrial nucleoid factor 1 (MNF1) (FC p31-43

vs. MED-CTL: 1.91) and v-rel reticuloendotheliosis viral oncogene homolog

A (RELA) (FC p31-43 vs. MED-CTL: 1.31) were affected by

treatment with the gliadin p31-43 peptide. The qRT-PCR results

are shown in Table 2. The average expression of the PT-G

affected genes in the qRT-PCR assay was similar to that of

microarrays, thus validating the results. However, similar expres-

sion values were also obtained for PT, PT-BSA and PT-L treated

cells, which were used as negative controls for PT-G treatment.

The microarray results of the p31-43 treatment could not be

validated by qRT-PCR. The average expression of MNF1 and

REL-A in p31-43 cells was comparable to that of untreated (MED-

CTL) and p57-68 peptide treated cells.

Comparison of Microarray Results with Previous Studies
Several differentially expressed genes in our study were also

reported in previously published expression studies performed

either on biopsy specimens or enterocytes isolated from biopsies

[37-39]. These genes together with their expression values are

tabulated in Table 3. 13 out of 19 genes were affected by PT

treatment, five genes (CD59 antigen, CD59; Ephrin B2, EFNB2;

Myosin VI, MYO6; ETS-domain protein, ELK4; Prion protein, PRNP)

were affected by PT-G only, whereas only one gene (RNA-binding

protein, RALY) was affected by p31-43 treatment. RALY, EFNB2,

MYO6 and ELK4 were up-regulated to a similar degree in our

microarray experiment and another previously reported study,

whereas CD59 and PRNP were up-regulated in our study but were

shown to be down-regulated previously.

Discussion

In the current study, the microarray data suggested multiple

effects of PT-G on Caco-2 cell gene transcription. However, an

effect similar in size was also evident by PT treatment. Our data

also suggest that genes which seemed unaffected by PT in the

microarray are in fact affected by negative controls, PT-BSA, PT-

L and PT, in qRT-PCR. This study was unable to identify genes in

epithelial cells which are affected by gliadin. Potential explanations

for this outcome may be that the effects exerted by gliadin on

epithelial cells are secondary effects, the presence of other cells of

the immune system is required for gliadin induced activation of

enterocytes, the gliadin effects are so small that very sensitive

methods are required to detect them or six hours stimulation time

was not optimal.

Nevertheless, multiple effects of gliadin on enterocytes have

been shown. Previously, Giovannini et al., showed that gliadin

peptides induce enterocyte apoptosis via Fas-Fas ligand (FasL)

pathway [21,40]. The authors reported that after PT-G exposure,

the cells increased their mRNA expression of Fas and FasL by

450% and 170% respectively compared to the controls. This

increase in Fas/FasL transcription was observed at 6 h, 18 h and

24 h after PT-G exposure. However, neither Fas nor FasL

transcription was affected in our experiment after 6 h, but in cells

treated with PT, the expression of a Fas-activated serine/threonine

kinase (FASTK) was marginally repressed. FASTK is rapidly

activated during Fas-mediated apoptosis [41]. Furthermore, FAST

kinase domains 2 (FASTKD2) gene, which is believed to be a pro-

apoptotic gene [42], was down-regulated by both PT and PT-G

treatments. PT treatment also repressed the expression of caspase 8

(CASP8) whose product has been implicated in PT-G mediated

apoptosis in enterocytes [21]. This may suggest that PT/PT-G

inhibits apoptosis in Caco-2 cells. Nonetheless, several other

apoptosis-related genes were affected by both PT and PT-G

treatments (tables S1, S3 and S4). Thus the effect of PT/PT-G on

Caco-2 cells with regard to apoptosis is not clear. Difference in our

results and those of Giovannini et al. may depend on different cell

culturing conditions.

On the contrary, studies on biopsy specimens from treated/

untreated CD patients demonstrate that exposure to interleukin

(IL)-15 induces enterocyte expression of transferrin receptor

(TFR), proliferation marker Ki67 and FAS in treated CD and

also apoptosis in untreated CD biopsy specimens [43]. Further-

more, lamina propria mononuclear cells (LMNPs) in biopsy

specimens of treated CD patients become IL-15 positive after PT-

Table 1. Primers used for qRT-PCR.

Gene Forward (59-39) Reverse (59-39)

CEBPa GACCCTCAGCCTTGTTTGTACTG CTGATCGTGCTTCGTGTTCCT

KLF4 ACCAGGCACTACCGTAAACACA GCTCGGTCGCATTTTTGG

SPRED1 TGAATGCTGCTACAACAGATGATC GAAAGTTAACAGTCTATTCTAGGAAACCAA

MNF1 CACAGACACCTTGGAAGAGCTTAA GGGCAAACTTCTCCTGCAGTT

RELA CAGGCGAGAGGAGCACAGA TGTGTAGCCATTGATCTTGATGGT

B2M GTGCTCGCGCTACTCTCTC GTCAACTTCAATGTCGGAT

CEBPa: CCAAT/enhancer binding protein alpha, KLF4: Kruppel-like factor 4, SPRED1: Sprouty-related, EVH1 domain containing 1, MNF1: Mitochondrial nucleoid factor 1,
REL-A: v-rel reticuloendotheliosis viral oncogene homolog A, B2M: Beta-2 microglobulin.
doi:10.1371/journal.pone.0066307.t001
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G treatment and also induced enterocyte apoptosis in a Fas-FasL

dependent manner [23,43]. Similar results have been reported for

the cytotoxic p31-43 peptide. PT-G and p31-43 peptide were

reported to induce proliferation in epithelial cells which is

dependent on both IL-15 and epidermal growth factor receptor

(EGFR) activity [18,20]. Furthermore, p31-43 induces IL-15

dependent enterocyte apoptosis in biopsy samples obtained from

untreated CD patients [11]. IL-15 has also been shown to induce

enterocyte MICA expression in CD patients [44] and in triggering

anti-apoptotic pathway in human intraepithelial lymphocytes

(IELs) which can kill IECs [12,45]. These studies suggest a central

for IL-15 in CD pathogenesis. Recently, it was reported that in

Caco-2 cells, p31-43-mediated increase in IL-15 mRNA was

detectable only after over-night (ON) treatment [20]. In agree-

ment with this observation, we did not see an enhanced IL-15

transcription after PT, PT-G or p31-43 treatment for six hours.

Gliadin induces oxidative stress in epithelial cells and oxidative

stress is known to activate NFkB transcription factor [14,46–48].

Table 2. Validation of microarray results for selected genes by qRT-PCR.

qRT-PCR Microarray

Gene MED-CTL PT PT-BSA PT-L PT-G p57-68 p31-43 PT-G p31-43

CEBPa 1.01 0.80 0.73 0.66 0.66 0.71

KLF4 1.06 1.71 1.91 1.72 1.78 2.0

SPRED1 1.04 1.48 1.38 1.16 1.50 1.66

MNF1 1.00 0.93 0.84 1.91

RELA 1.05 0.99 1.05 1.31

The qRT-PCR results for CCAAT/enhancer binding protein alpha (CEBPa), Kruppel-like factor 4 (KLF4), SPRED1: Sprouty-related, EVH1 domain containing 1 (SPRED1) are
based on eight independent experiments. The qRT-PCR results for Mitochondrial nucleoid factor 1 (MNF1), REL-A: v-rel reticuloendotheliosis viral oncogene homolog A
(REL-A), are based on five independent experiments. The expression of genes was normalised against Beta-2 microglobulin (B2M) gene The values expressed for
different treatments are the average expression values.
doi:10.1371/journal.pone.0066307.t002

Table 3. Comparison of microarray data with previous studies.

Microarrays Previous studies

PT-G PT p31-43 Juuti-Uusitalo et al. 2004 Diosdado et al. 2008 Bracken et al. 2008 Condition

DLX4 1.60 1.50 1.95 UCD vs. HC

DLX4 1.60 1.50 1.42 UCD vs. TCD

DLX4 1.60 1.50 1.37 TCD vs. HC

JUNB 3.40 2.90 0.75 UCD vs. HC

NAB2 2.00 1.90 0.54 UCD vs. HC

PROCR 1.40 1.43 TCD vs. HC

SLC25A6 1.80 1.70 1.40 UCD vs. HC

SLC25A6 1.80 1.70 1.45 UCD vs. TCD

RALY 1.60 1.43 TCD vs. HC

CD59 1.40 0.66 UCD vs. HC

EFNB2 1.40 1.41 UCD vs. TCD

MYO6 1.27 1.27 TCD vs. HC

HSPA6 2.60 2.90 1.32 MIII-G+/G-a

MSI2 0.75 0.72 0.78 MIII-G+/G-a

POLD3 0.66 0.61 0.63 MIII-G+/G-a

RGS16 2.70 2.57 0.81 MIII-G+/G-a

ELK4 1.37 1.45 Ent. CD vs. Ent. HC

UBE3A 0.82 0.77 Ent. CD vs. Ent. HC

NUDT2 0.72 0.74 2.21 Ent. CD vs. Ent. HC

PRNP 1.31 0.54 Ent. CD vs. Ent. HC

Expression values .1 indicate up-regulation and ,1 indicate down-regulation. Condition refer to the experimental condition used in the original study. UCD: Biopsy
from untreated CD, TCD: Biopsy from treated CD, HC: Biopsy from healthy control, MIII-G+: Biopsy from Marsh-III stage CD patient on gluten containing diet, MIII-G-:
Biopsy from Marsh-III stage CD patient on gluten-free diet, Ent. CD: Epithelial cells isolated form duodenal biopsies of CD patients, Ent. HC: Epithelial cells isolated from
duodenal biopsies of healthy controls.
aIn the original study, the expression values were given for MIII-G2/G+ and comparable values for MIII-G+/G- have been obtained (1/MIII-G2/G+).
doi:10.1371/journal.pone.0066307.t003
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Furthermore, it has been shown that NFkB activation is required

for IL-15 induction in rhinovirus infected macrophages [49,50].

Increased NFkB activity is present in small-intestinal mucosa of

CD patients [36]. It is conceivable that enhanced IL-15

transcription after ON treatment with gliadin peptides is a

secondary effect which operates through gliadin induced oxidative

stress leading to NFkB activation and subsequent IL-15 transcrip-

tion.

Binding to the chemokine receptor CXCR3 by some gliadin

peptides was suggested to induce an increase in intestinal

permeability [27]. Recently, Caputo et al. reported that gliadin

peptides p31-43 and p57-68 induce intracellular calcium ion

mobilization leading to endoplasmic reticulum (ER)-stress [51].

Whether these effects were mediated by binding of gliadin peptides

to a cell surface receptor or by some other mechanism was not

addressed. Other non-receptor mediated effects of gliadin on tight

junction (TJ) protein disassembly have also been reported

[15,16,52]. It is possible that gliadin transported through leaky

TJs does not affect epithelial cells directly but activate cells of the

immune system in the underlying mucosa.

As shown in Table 3, several differentially expressed genes in

our study have previously been reported by others [37–39]. Our

study is not directly comparable to these studies as these studies

were performed either on CD biopsy specimens or on enterocytes

obtained from biopsy specimens. Interestingly, the biopsy speci-

mens or enterocytes used in these studies were not exposed to PT

or PT-G in vitro. Some of the genes reported in these studies are

affected by PT and PT-G to a comparable degree in our study.

This observation suggests that endogenous pepsin and trypsin may

affect enterocytes under physiological conditions and warrants

further investigation. Nonetheless, these studies suggest that small

changes (less than two-fold) in gene expression are likely. Despite

the fact that some genes have comparable expression value in our

study and these studies, these genes must be independently

validated.

Pepsin and trypsin are key digestive enzymes acting in stomach

(pH 1.5–2.0) and duodenum (pH 7.5–8.5), respectively. In addi-

tion to their role in degrading food proteins into peptides, some

other non-digestive functions have also been reported. In a

microarray study on laryngeal and pharyngeal epithelial cells, non-

acidic pepsin (pH=7.0) affected the expression of cancer-related

genes and also promoted their proliferation [53]. Trypsin is an

endogenous activator of protease-activated receptor-2 (PAR2). In

another microarray study, the human embryonic kidney cells

(HEK293) were exposed to trypsin [54]. Several genes involved in

cell cycle regulation, metabolism and mitogen-activated protein

kinase (MAPK) pathway were reported to be affected. Of these,

two pepsin affected genes and 16 trypsin affected genes were also

differentially expressed in our study (data not shown). For all, but

two trypsin-affected genes, these changes were in the same

direction and of comparable magnitude. This observation suggests

that pepsin and trypsin may be enzymatically active in our PT-

preparations. This is, however, unlikely as pepsin and trypsin were

inactivated by heating after substrate digestion. The inactivation of

these proteases was verified with enzyme activity assay using

fluorogenic trypsin substrate Z-Arg-AMC (data not shown).

Nevertheless, it is possible that these are non-enzymatic effects of

pepsin and trypsin and are caused by some epitopes that are

generated or left intact during deactivation process. Thus, assays to

determine the activation potential of such epitopes prior to their

use in experiments may be necessary.

PT is the common denominator between PT and PT-G and a

majority of the affected genes were shared between the two

treatments, but not by p31-43 treatment. The changes observed in

gene transcription cannot be attributed to endotoxin as PT-G

tested negative for endotoxin. PT is unlikely to be endotoxin-

positive as it did not contain any substrate and was prepared at the

same time as PT-G, PT-BSA and PT-L. Another possible reason is

that, perhaps, PT-G does not affect enterocyte gene transcription.

The changes in transcription we observed could be non-specific

generic effects, as they were produced by PT, PT-G, PT-BSA and

PT-L alike. However, this study does not provide conclusive

evidence for that and other studies with a similar design are highly

recommended. Furthermore, mechanisms by which gliadin is

transported across the epithelial layer may also have an impact on

their effect on enterocyte gene transcription. If gliadin peptides are

trapped in endocytic vesicles or complexed with other molecules,

they may be unable to affect gene expression [25,26]. However,

cells may respond to oxidative stress caused by the accumulation of

gliadin peptides in lysosomes [14].

In conclusion, this study does not lend support to previous

studies (performed under similar conditions) which reported direct

effects of gliadin peptides on epithelial cells. We cannot conclude

from our data that gliadin peptides do not effect Caco-2 gene

transcription since it is practically impossible to replicate and verify

by qRT-PCR all genes suggested by the microarray. There may be

other genes with lower fold-changes that are true positive genes.

The provided lists of PT-G and PT-affected gene list may be

helpful in selecting genes for further validation. This study

highlights potentially novel non-enzymatic roles of pepsin and

trypsin and warrants further studies. Nonetheless, this study

outlines the need for proper controls for pepsin and trypsin in

experiments with digested gliadin or other substrates of these

enzymes, similar to the PT-only control used in this study. A PT-

only control will be helpful in identifying false positive results and

in drawing wrong conclusions in any future studies with digested

gliadin.
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