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Abstract

Gliadin triggers T-cell mediated immunity in celiac disease, and has cytotoxic effects on enterocytes mediated through
obscure mechanisms. In addition, gliadin transport mechanisms, potential cell surface receptors and gliadin-activated
downstream signaling pathways are not completely understood. In order to screen for novel downstream gliadin target
genes we performed a systematic whole genome expression study on intestinal epithelial cells. Undifferentiated Caco-2
cells were exposed to pepsin- and trypsin- digested gliadin (PT-G), a blank pepsin-trypsin control (PT) and to a synthetic
peptide corresponding to gliadin p31-43 peptide for six hours. RNA from four different experiments was used for
hybridization on Agilent one color human whole genome DNA microarray chips. The microarray data were analyzed using
the Bioconductor package LIMMA. Genes with nominal p<<0.01 were considered statistically significant. Compared to the
untreated cells 1705, 1755 and 211 probes were affected by PT-G, PT and p31-43 respectively. 46 probes were significantly
different between PT and PT-G treated cells. Among the p31-43 peptide affected probes, 10 and 21 probes were affected by
PT-G and PT respectively. Only PT-G affected genes could be validated by quantitative real-time polymerase chain reaction.
All the genes were, nonetheless, also affected to a comparable level by PT treated negative controls. In conclusion, we could
not replicate previously reported direct effects of gliadin peptides on enterocytes. The results rather suggest that certain
epitopes derived from pepsin and trypsin may also affect epithelial cell gene transcription. Our study suggests novel non-
enzymatic effects of pepsin and trypsin on cells and calls for proper controls in pepsin and trypsin digested gliadin
experiments. It is conceivable that gliadin effects on enterocytes are secondary mediated through oxidative stress, NFkB
activation and IL-15 up-regulation.
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Introduction tides, such as p57-68, presented by the disease associated HLA-
DQ2 or DQ8 molecules on antigen presenting cells [10-12]. The
T cell activation and mucosal inflammation persists as long as
gluten is present in the lamina propria beneath the epithelial layer.

Celiac disease (CD) is an autoimmune disorder caused by the
ingestion of gluten present in wheat, barley and rye. It is the
alcohol soluble gliadin fraction in gluten which triggers CD in
genetically susceptible individuals, i.e. who are HLA-DQ2 or —
DQOS8 positive [1-3]. The screen detected prevalence of CD is
approximately 1% in Caucasians and so far the only cure is a strict
adherence to gluten-free diet (GFD) [4,5]. The two hallmarks of
CD are villous atrophy and crypt-cell hyperplasia in the small
intestine and individuals suffering from CD display a wide range of
symptoms, where diarrhoea and malabsorption are only a few to
mention [6-8].

Thus, the presence of gluten in the mucosa is a prerequisite for the
activation of gluten-reactive T cells and the ensuing inflammation.
Another subset of gliadin-derived peptides is termed cytotoxic and
these peptides activate the innate immune system which precedes
the activation of adaptive immune system in the lamina propria
[9,11,13,14].

The gliadin-derived cytotoxic peptides affect the gut in different
ways. In experiments on cultured epithelial cells, gliadin peptides
have been shown to induce oxidative stress, rearrangement of
actin cytoskeleton and impairment of epithelial tight-junction
assembly [14-17]. Studies by Barone et al. showed that gliadin
peptides interfere with endocytic vesicle maturation and also

The proteolytic cleavage of gliadin by digestive enzymes in the
stomach and intestine produces an array of distinct but
overlapping peptides [9]. Some of these peptides are termed
immunodominant, as they can activate the adaptive immune
system [9]. Pathogenesis in CD is driven by T-cells which
recognize selected immunodominant, deamidated gliadin pep-

promote cell proliferation by prolonging epidermal growth factor
receptor (EGFR) activation [18-20]. Furthermore, some toxic
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gliadin peptides (e.g. p31-43 or p31-49 peptides of gliadin) have
been reported to induce apoptosis in gut epithelial cells [21-23].
These effects are thought to be direct effects of gliadin peptides.
Interestingly, the immunodominant peptides (e.g. p57-68) have
been shown in these studies to be unable to mimic the effects that
the cytotoxic peptides (e.g. p31-43 or p31-49) have on enterocytes.
Gliadin peptides must cross the epithelial barrier and enter the
mucosa to activate T cells. Several mechanisms (paracellular and
transcellular) of gliadin transport across the intestinal epithelial
barrier have been suggested [19,24-27]. In addition, some gliadin
peptides have been shown to bind to the chemokine receptor
CXCR3 on the surface of epithelial cells and induce tight junction
permeability [27]. Enterocyte apoptosis caused by gliadin peptides
is also considered a potential mechanism of gliadin introduction
into the mucosa. The intestinal epithelial barrier is impaired in CD
and as luminal antigens are present in close proximity to
enterocytes, an interaction between the two is feasible. Despite a
multitude of documented effects attributed to cytotoxic gliadin
peptides, the molecular mechanisms through which these effects
are brought about remain obscure. No study has thus far been
undertaken to study the changes in enterocyte gene expression as a
result of their interaction with gliadin peptides. A transcription
profile of epithelial cells exposed to gliadin may not only help us
identify certain receptor-associated signalling pathways but may
also help us understand other gliadin mediated effects. Epithelial
cells form the first line of defence against environmental antigens.
Thus, understanding the exact mechanism by which gliadin
peptides affect enterocytes is crucial to our understanding of early
stages in CD onset and to the discovery of novel biomarkers for
improved diagnostics and therapy targets of CD.

In this study, we sought to answer whether gliadin peptides have
any direct effect on intestinal epithelial cell gene transcription, also
suggestive of potential cell surface receptor-dependent signalling
pathways. To answer these questions we exposed Caco-2 cells to
pepsin- and trypsin-digested gliadin (PT-G) and the cytotoxic p31-
43 peptide of gliadin for six hours. We used human whole genome
microarray chips to obtain a list of differentially expressed genes
after gliadin exposure.

Materials and Methods

Caco-2 Cell Cultures and Stimulations

Caco-2 cells (American Cell Type Collection, HTB-37, Rock-
ville, MD, USA) were kindly provided by Prof. M. Maiki
(University of Tampere, Tampere, Finland). Cells were main-
tained in minimum essential medium (MEM, 31095-029 GIBCO)
supplemented with 1X sodium pyruvate (NaPy 100X, 11360-039
GIBCO), 1% Pen-Strep (Pen-Strep, 15070-063 GIBCO), 1X non-
essential amino acids (NEAA 100X, 11140-035 GIBCO) and 10%
fetal calf serum (FCS, C-37350 PROMOCELL) in 75 cm? flasks
(353136 BD Biosciences) and were routinely split every 5 days. For
stimulations, 3x10° cells were seeded in 25 cm? flasks (156367,
nunc) in 3 ml MEM+1% FCS and incubated at 37°C with 5%
COy in the air. On the third day of seeding, the undifferentiated
Caco-2 cells were washed once with 1X phosphate-buffered saline
(PBS). Bovine serum albumin (BSA) was obtained from Sigma
Aldrich (Albumin, bovine fraction V powder, A8806-1G Sigma
Aldrich) and contained endotoxin at =0.1 ng/mg. Lactalbumin
was also obtained from Sigma Aldrich (Alpha-lactalbumin from
bovine milk, 61289-50MG Sigma Aldrich), however information
on endotoxin level in lactalbumin was not available. Pepsin- and
trypsin- digested BSA (PT-BSA), pepsin- and trypsin- digested
lactalbumin (PT-L), a blank pepsin- and trypsin- control (PT),
where no substrate was used for digestion, and PT-G were
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prepared as described earlier [28]. The pepsin and trypsin
enzymes were inactivated by heating after substrate digestion
and the inactivation was verified with enzyme activity assay using
fluorogenic trypsin substrate Z-Arg-AMC (data not shown). An
endotoxin test was performed on PT-G and PT-BSA using a
Limulus Amebocyte Lysate (LAL), Pyrogent plus single test kit (cat
no. N289-06, CAMBREX). No endotoxin was found in PT-G, but
PT-BSA tested positive for endotoxin. Lyophilised PT, PT-BSA,
PT-L and PT-G were dissolved in MEM+1% FCS and filter
sterilised by passing through 0.22 um pore filter (SLGS033SS,
Millipore).  Similarly ~ the  synthetic  peptides  p31-43
LGQOOQPFPPOOPY) and the immunogenic peptide p57-68
(QLQPFPQPQLPY) (New England Peptide LLC, USA) were
dissolved in MEM+1% FCS to achieve a final concentration of
150 ug/ml. PT, PT-BSA and PT-L were used as negative controls
for PT-G treatment. The immunogenic p57-68 peptide served as a
negative control for the p31-43 treatment as it has previously been
shown not to have any effect on epithelial cells [11,19,20,29]. The
cells were stimulated for six hours with a particular stimulant
dissolved in 2 ml MEM+1% FCS. The control cells MED-CTL)
were kept in MEM+1% FCS for six hours. In total, four identical
but independent experiments were performed with cells differing
in 1-2 passages between each experiment.

Cell Collection and RNA Extraction

The cells were collected by adding 1 ml 1X trypsin-EDTA
(Trypsin 10X, 15400-054 Invitrogen) to the flasks followed by 4—
5 min incubation at 37°C. Trypsin was inhibited by adding 1 ml
MEM+10% FCS and the cells were collected by centrifugation at
9.600 xg for 5 min. The pellet was washed with 500 ul 1X PBS
and RNA was extracted using RNeasy Plus Mini kit (74134,
QIAGEN).

Microarray Data Production and Analysis

RNA from PT-treated, PT-G-treated, MED-CTL and p31-43
stimulated cells was used for hybridisation on Agilent one colour
human whole genome DNA microarray chips (4 x44K) (Agilent
Technologies, Santa Clara, CA). RNA quality for these samples
was assessed by bioanalyzer (2100 Bioanalyzer, Agilent) and
600 ng of RNA was used for cDNA synthesis. The cDNA synthesis
and array hybridisations were carried out at Biomedicum
Genomics Support, Helsinki, Finland. Microarray raw data (.gpr
files) were imported into R v. 2.15 [30] and analyzed with the
BioConductor [31] package limma [32]. Briefly, after quality
check, the microarray probes were filtered and re-annotated
according to Gertz et al. [33] and their median foreground
intensity was normalized with the quantiles method without
applying any background correction, as previously suggested [34].
Finally, the probes were tested for differential expression using a
linear model followed by moderated t-test [32] for the compar-
1sons of interest. Genes with nominal p<<0.01 were considered to
be differentially expressed and further considered in the analysis.
Correction for multiple testing using Benjamini and Hochberg
method [35] resulted in only few statistically significant genes
(Figure 1) and therefore the study was mainly based on the
uncorrected gene lists. The microarray data has been submitted to
Gene Expression Omnibus (accession number: GSE45357).

Quantitative Real-time Polymerase Chain Reaction (qRT-
PCR)

Microarray results were validated by qRT-PCR and five genes
which were not affected by PT treatment were selected (Table 1).
The genes with high expression level (= log?2 9.0) and with a fold-
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PT vs. MED-CTL
N= 1755 (292)

PT-G vs. PT
N=46 (0)

508
(94)

PT-G vs. MED-CTL
N= 1705 (310)

PT vs. MED-CTL
N= 1755 (292)

p31-43 vs. MED-CTL
N=211 (0)

504
(94)

PT-G vs. MED-CTL
N= 1705 (310)

Figure 1b

Figure 1. Venn diagrams showing the number of probes differentially expressed in response to pepsin- and trypsin-digested
gliadin (PT-G) (Figure 1a) compared to medium control (MED-CTL) and the blank pepsin- and trypsin (PT) control. The probes that
were affected by PT treatment compared to MED-CTL are also displayed. Figure 1b shows the probes affected by PT, PT-G and p31-43 peptide
compared to MED-CTL. The numbers in parenthesis represent the number of probes obtained after multiple testing correction as described in

materials and methods.
doi:10.1371/journal.pone.0066307.g001

change (FC) =1.4 in either direction (up-regulation or down-
regulation) were prioritized (tables S1, S2, S3, S4). However,
RELA gene (FC =1.31) was an obvious exception to this rule and
was included for validation by ¢qRT-PCR because of its
involvement in the nuclear factor kappa B (NFkB) pathway. The
NFkB pathway has been shown to be activated in small-intestinal
mucosa of CD patients. [36] Primers for the selected genes were
designed using the primer designing software Primer express
(Applied Biosystems) (Table 1). 300 ng of RNA was used to
synthesise cDNA using TagMan Reverse Transcription Reagents
(N808-0234, Applied Biosystems) as recommended by the vendor.
Microarray results for selected genes were verified using Power
SYBR Green PCR Master Mix (4367659, Applied Biosystems, 1X
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SybrGreen PCR mix, 0.6 UM forward and reverse primer each)
on 7500 Fast Real-Time PCR System (Applied Biosystems). The
gene expression levels were normalised against beta-2 microglobulin
(B2M) gene expression.

Results

Differentially Expressed Probes in Caco-2 Cells after
Stimulation with PT-G and the p31-43 Peptide

Many of the differentially expressed genes are represented by
multiple probes on the Agilent microarrays utilized in this study,
hence the term probes, instead of genes, is used. The expression of
1705 probes was affected by PT-G treatment compared to the
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Table 1. Primers used for qRT-PCR.

Gliadin Effects on Enterocyte Gene Transcription

Gene Forward (5'-3') Reverse (5'-3)

CEBPa GACCCTCAGCCTTGTTTGTACTG CTGATCGTGCTTCGTGTTCCT

KLF4 ACCAGGCACTACCGTAAACACA GCTCGGTCGCATTTTTGG

SPRED1 TGAATGCTGCTACAACAGATGATC GAAAGTTAACAGTCTATTCTAGGAAACCAA
MNF1 CACAGACACCTTGGAAGAGCTTAA GGGCAAACTTCTCCTGCAGTT

RELA CAGGCGAGAGGAGCACAGA TGTGTAGCCATTGATCTTGATGGT

B2M GTGCTCGCGCTACTCTCTC GTCAACTTCAATGTCGGAT

doi:10.1371/journal.pone.0066307.t001

untreated cells (MED-C'TL) that were kept in medium for the
duration of the stimulation (Figure la). However, 1755 probes
were also affected by PT-only treatment. In a comparison between
PT-G treated cells and PT treated cells, 46 probes were found to
be differentially expressed. In cells which were exposed to the
cytotoxic p31-43 peptide, 211 probes were differentially expressed
compared to the untreated cells (Figure 1b). Of these, 21 probes
were also affected by the blank PT treatment and ten probes were
affected by PT-G treatment and 46 probes were affected by PT,
PT-G and p31-43 treatments compared to MED-CTL. All the
probes, along with their expression data, affected by PT, PT-G or
p31-43 are listed in tables S1, S2, S3, S4.

Validation of Differentially Expressed Genes by gqRT-PCR

Five genes were selected for validation using criteria described
in materials and methods. Fold change (FC) values greater than
one indicate up-regulation and those less than one indicate down-
regulation. Rruppel-like factor 4 (KLF$) (FC PT-G vs. MED-CTL:
2.0), sprouty-related, EVHI domain containing 1 (SPREDI) (FC PT-G
vs. MED-CTL: 1.66) and CCAAT/enhancer binding protein alpha
(CEBPa) (FC PT-G vs. MED-CTL: 0.71) were affected by PT-G
treatment, whereas mitochondrial nucleoid factor 1 (MNFI) (FC p31-43
vs. MED-CTL: 1.91) and v-rel reticuloendotheliosis viral oncogene homolog
4 (RELA) (FC p31-43 vs. MED-CTL: 1.31) were affected by
treatment with the gliadin p31-43 peptide. The qRT-PCR results
are shown in Table 2. The average expression of the PT-G
affected genes in the qRT-PCR assay was similar to that of
microarrays, thus validating the results. However, similar expres-
sion values were also obtained for PT, PT-BSA and PT-L treated
cells, which were used as negative controls for PT-G treatment.
The microarray results of the p31-43 treatment could not be
validated by qRT-PCR. The average expression of MNFI/ and
REL-A in p31-43 cells was comparable to that of untreated (MED-
CTL) and p57-68 peptide treated cells.

Comparison of Microarray Results with Previous Studies

Several differentially expressed genes in our study were also
reported in previously published expression studies performed
either on biopsy specimens or enterocytes isolated from biopsies
[37-39]. These genes together with their expression values are
tabulated in Table 3. 13 out of 19 genes were affected by PT
treatment, five genes (CD59 antigen, CD59; Ephrin B2, EFNB2;
Mpyosin VI, MYOG; ETS-domain protein, ELK4; Prion protein, PRNP)
were affected by PT-G only, whereas only one gene (RNA-binding
protein, RALY) was affected by p31-43 treatment. RALY, EFNB2,
MYO6 and ELR4 were up-regulated to a similar degree in our
microarray experiment and another previously reported study,
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CEBPa: CCAAT/enhancer binding protein alpha, KLF4: Kruppel-like factor 4, SPRED1: Sprouty-related, EVH1 domain containing 1, MNF1: Mitochondrial nucleoid factor 1,
REL-A: v-rel reticuloendotheliosis viral oncogene homolog A, B2M: Beta-2 microglobulin.

whereas (D59 and PRNP were up-regulated in our study but were
shown to be down-regulated previously.

Discussion

In the current study, the microarray data suggested multiple
effects of PT-G on Caco-2 cell gene transcription. However, an
effect similar in size was also evident by PT treatment. Our data
also suggest that genes which seemed unaffected by PT in the
microarray are in fact affected by negative controls, PT-BSA, PT-
L and PT, in qRT-PCR. This study was unable to identify genes in
epithelial cells which are affected by gliadin. Potential explanations
for this outcome may be that the effects exerted by gliadin on
epithelial cells are secondary effects, the presence of other cells of
the immune system is required for gliadin induced activation of
enterocytes, the gliadin effects are so small that very sensitive
methods are required to detect them or six hours stimulation time
was not optimal.

Nevertheless, multiple effects of gliadin on enterocytes have
been shown. Previously, Giovannini e al., showed that gliadin
peptides induce enterocyte apoptosis via Fas-Fas ligand (FasL)
pathway [21,40]. The authors reported that after PT-G exposure,
the cells increased their mRNA expression of Fas and FasL by
450% and 170% respectively compared to the controls. This
increase in Fas/FasL transcription was observed at 6 h, 18 h and
24 h after PT-G exposure. However, neither Fas nor FasL
transcription was affected in our experiment after 6 h, but in cells
treated with PT, the expression of a Fas-activated serine/threonine
kinase (FASTK) was marginally repressed. FASTK is rapidly
activated during Fas-mediated apoptosis [41]. Furthermore, FAST
kinase domains 2 (FASTRD?2) gene, which is believed to be a pro-
apoptotic gene [42], was down-regulated by both PT and PT-G
treatments. PT treatment also repressed the expression of caspase &
(CASP8) whose product has been implicated in PT-G mediated
apoptosis in enterocytes [21]. This may suggest that PT/PT-G
inhibits apoptosis in Caco-2 cells. Nonetheless, several other
apoptosis-related genes were affected by both PT and PT-G
treatments (tables S1, S3 and S4). Thus the effect of PT/PT-G on
Caco-2 cells with regard to apoptosis is not clear. Difference in our
results and those of Giovannini e al. may depend on different cell
culturing conditions.

On the contrary, studies on biopsy specimens from treated/
untreated CD patients demonstrate that exposure to interleukin
(L)-15 induces enterocyte expression of transferrin receptor
(TFR), proliferation marker Ki67 and FAS in treated CD and
also apoptosis in untreated CD biopsy specimens [43]. Further-
more, lamina propria mononuclear cells (LMNPs) in biopsy
specimens of treated CD patients become IL-15 positive after PT-
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Table 2. Validation of microarray results for selected genes by qRT-PCR.

Gliadin Effects on Enterocyte Gene Transcription

qRT-PCR Microarray

Gene MED-CTL PT PT-BSA PT-L PT-G p57-68 p31-43 PT-G p31-43
CEBPa 1.01 0.80 0.73 0.66 0.66 0.71

KLF4 1.06 1.71 1.91 1.72 1.78 2.0

SPRED1 1.04 148 1.38 1.16 1.50 1.66

MNF1 1.00 0.93 0.84 1.91
RELA 1.05 0.99 1.05 1.31

The gRT-PCR results for CCAAT/enhancer binding protein alpha (CEBPa), Kruppel-like factor 4 (KLF4), SPRED1: Sprouty-related, EVH1 domain containing 1 (SPRED1) are
based on eight independent experiments. The gRT-PCR results for Mitochondrial nucleoid factor 1 (MNF1), REL-A: v-rel reticuloendotheliosis viral oncogene homolog A
(REL-A), are based on five independent experiments. The expression of genes was normalised against Beta-2 microglobulin (B2M) gene The values expressed for

different treatments are the average expression values.
doi:10.1371/journal.pone.0066307.t002

G treatment and also induced enterocyte apoptosis in a Fas-FasL
dependent manner [23,43]. Similar results have been reported for
the cytotoxic p31-43 peptide. PT-G and p31-43 peptide were
reported to induce proliferation in epithelial cells which is
dependent on both IL-15 and epidermal growth factor receptor
(EGFR) activity [18,20]. Furthermore, p31-43 induces IL-15
dependent enterocyte apoptosis in biopsy samples obtained from
untreated CD patients [11]. IL-15 has also been shown to induce
enterocyte MICA expression in CD patients [44] and in triggering

anti-apoptotic pathway in human intraepithelial lymphocytes
(IELs) which can kill IECs [12,45]. These studies suggest a central
for IL-15 in CD pathogenesis. Recently, it was reported that in
Caco-2 cells, p31-43-mediated increase in /L-75 mRNA was
detectable only after over-night (ON) treatment [20]. In agree-
ment with this observation, we did not see an enhanced [IL-15
transcription after PT, PT-G or p31-43 treatment for six hours.
Gliadin induces oxidative stress in epithelial cells and oxidative
stress is known to activate NFkB transcription factor [14,46-48].

Table 3. Comparison of microarray data with previous studies.
Microarrays Previous studies
PT-G PT p31-43  Juuti-Uusitalo et al. 2004 Diosdado et al. 2008 Bracken et al. 2008 Condition
DLX4 1.60 1.50 1.95 UCD vs. HC
DLX4 1.60 1.50 142 UCD vs. TCD
DLX4 1.60 1.50 1.37 TCD vs. HC
JUNB 3.40 2.90 0.75 UCD vs. HC
NAB2 2.00 1.90 0.54 UCD vs. HC
PROCR 1.40 1.43 TCD vs. HC
SLC25A6 1.80 1.70 1.40 UCD vs. HC
SLC25A6 1.80 1.70 1.45 UCD vs. TCD
RALY 1.60 1.43 TCD vs. HC
CD59 1.40 0.66 UCD vs. HC
EFNB2 1.40 141 UCD vs. TCD
MYO6 1.27 127 TCD vs. HC
HSPA6 2.60 2.90 1.32 MIll-G+/G-*
MSI2 0.75 0.72 0.78 MIlI-G+/G-?
POLD3 0.66 0.61 0.63 MIlI-G+/G-*
RGS16 2.70 2.57 0.81 MIll-G+/G-?
ELK4 137 1.45 Ent. CD vs. Ent. HC
UBE3A 0.82 0.77 Ent. CD vs. Ent. HC
NUDT2 0.72 0.74 221 Ent. CD vs. Ent. HC
PRNP 1.31 0.54 Ent. CD vs. Ent. HC
Expression values >1 indicate up-regulation and <1 indicate down-regulation. Condition refer to the experimental condition used in the original study. UCD: Biopsy
from untreated CD, TCD: Biopsy from treated CD, HC: Biopsy from healthy control, Mill-G+: Biopsy from Marsh-Ill stage CD patient on gluten containing diet, Mill-G-:
Biopsy from Marsh-Ill stage CD patient on gluten-free diet, Ent. CD: Epithelial cells isolated form duodenal biopsies of CD patients, Ent. HC: Epithelial cells isolated from
duodenal biopsies of healthy controls.
?In the original study, the expression values were given for MIIl-G—/G+ and comparable values for MIll-G+/G- have been obtained (1/MIll-G—/G+).
doi:10.1371/journal.pone.0066307.t003
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Furthermore, it has been shown that NFkB activation is required
for IL-15 induction in rhinovirus infected macrophages [49,50].
Increased NFkB activity is present in small-intestinal mucosa of
CD patients [36]. It is conceivable that enhanced IL-15
transcription after ON treatment with gliadin peptides is a
secondary effect which operates through gliadin induced oxidative
stress leading to NFkB activation and subsequent /L-15 transcrip-
tion.

Binding to the chemokine receptor CXCR3 by some gliadin
peptides was suggested to induce an increase In intestinal
permeability [27]. Recently, Caputo et al. reported that gliadin
peptides p31-43 and p57-68 induce intracellular calcium ion
mobilization leading to endoplasmic reticulum (ER)-stress [51].
Whether these effects were mediated by binding of gliadin peptides
to a cell surface receptor or by some other mechanism was not
addressed. Other non-receptor mediated effects of gliadin on tight
junction (I]) protein disassembly have also been reported
[15,16,52]. It is possible that gliadin transported through leaky
TJs does not affect epithelial cells directly but activate cells of the
immune system in the underlying mucosa.

As shown in Table 3, several differentially expressed genes in
our study have previously been reported by others [37-39]. Our
study is not directly comparable to these studies as these studies
were performed either on CD biopsy specimens or on enterocytes
obtained from biopsy specimens. Interestingly, the biopsy speci-
mens or enterocytes used in these studies were not exposed to PT
or PT-G i vitro. Some of the genes reported in these studies are
affected by PT and PT-G to a comparable degree in our study.
This observation suggests that endogenous pepsin and trypsin may
affect enterocytes under physiological conditions and warrants
further investigation. Nonetheless, these studies suggest that small
changes (less than two-fold) in gene expression are likely. Despite
the fact that some genes have comparable expression value in our
study and these studies, these genes must be independently
validated.

Pepsin and trypsin are key digestive enzymes acting in stomach
(pH 1.5-2.0) and duodenum (pH 7.5-8.5), respectively. In addi-
tion to their role in degrading food proteins into peptides, some
other non-digestive functions have also been reported. In a
microarray study on laryngeal and pharyngeal epithelial cells, non-
acidic pepsin (pH =7.0) affected the expression of cancer-related
genes and also promoted their proliferation [53]. Trypsin is an
endogenous activator of protease-activated receptor-2 (PAR2). In
another microarray study, the human embryonic kidney cells
(HEK293) were exposed to trypsin [54]. Several genes involved in
cell cycle regulation, metabolism and mitogen-activated protein
kinase (MAPK) pathway were reported to be affected. Of these,
two pepsin affected genes and 16 trypsin affected genes were also
differentially expressed in our study (data not shown). For all, but
two trypsin-affected genes, these changes were in the same
direction and of comparable magnitude. This observation suggests
that pepsin and trypsin may be enzymatically active in our PT-
preparations. This is, however, unlikely as pepsin and trypsin were
inactivated by heating after substrate digestion. The inactivation of
these proteases was verified with enzyme activity assay using
fluorogenic trypsin substrate Z-Arg-AMC (data not shown).
Nevertheless, it is possible that these are non-enzymatic effects of
pepsin and trypsin and are caused by some epitopes that are
generated or left intact during deactivation process. Thus, assays to
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determine the activation potential of such epitopes prior to their
use in experiments may be necessary.

PT is the common denominator between PT and PT-G and a
majority of the affected genes were shared between the two
treatments, but not by p31-43 treatment. The changes observed in
gene transcription cannot be attributed to endotoxin as PT-G
tested negative for endotoxin. PT is unlikely to be endotoxin-
positive as it did not contain any substrate and was prepared at the
same time as PT-G, PT-BSA and PT-L. Another possible reason is
that, perhaps, PT-G does not affect enterocyte gene transcription.
The changes in transcription we observed could be non-specific
generic effects, as they were produced by PT, PT-G, PT-BSA and
PT-L alike. However, this study does not provide conclusive
evidence for that and other studies with a similar design are highly
recommended. Furthermore, mechanisms by which gliadin is
transported across the epithelial layer may also have an impact on
their effect on enterocyte gene transcription. If gliadin peptides are
trapped in endocytic vesicles or complexed with other molecules,
they may be unable to affect gene expression [25,26]. However,
cells may respond to oxidative stress caused by the accumulation of
gliadin peptides in lysosomes [14].

In conclusion, this study does not lend support to previous
studies (performed under similar conditions) which reported direct
effects of gliadin peptides on epithelial cells. We cannot conclude
from our data that gliadin peptides do not effect Caco-2 gene
transcription since it is practically impossible to replicate and verify
by qRT-PCR all genes suggested by the microarray. There may be
other genes with lower fold-changes that are true positive genes.
The provided lists of PT-G and PT-affected gene list may be
helpful in selecting genes for further validation. This study
highlights potentially novel non-enzymatic roles of pepsin and
trypsin and warrants further studies. Nonetheless, this study
outlines the need for proper controls for pepsin and trypsin in
experiments with digested gliadin or other substrates of these
enzymes, similar to the PT-only control used in this study. A PT-
only control will be helpful in identifying false positive results and
in drawing wrong conclusions in any future studies with digested
gliadin.
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