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Abstract

Many studies have shown that missense mutations might play an important role in carcinogenesis. However, the extent to
which cancer mutations might affect biomolecular interactions remains unclear. Here, we map glioblastoma missense
mutations on the human protein interactome, model the structures of affected protein complexes and decipher the effect
of mutations on protein-protein, protein-nucleic acid and protein-ion binding interfaces. Although some missense
mutations over-stabilize protein complexes, we found that the overall effect of mutations is destabilizing, mostly affecting
the electrostatic component of binding energy. We also showed that mutations on interfaces resulted in more drastic
changes of amino acid physico-chemical properties than mutations occurring outside the interfaces. Analysis of
glioblastoma mutations on interfaces allowed us to stratify cancer-related interactions, identify potential driver genes, and
propose two dozen additional cancer biomarkers, including those specific to functions of the nervous system. Such an
analysis also offered insight into the molecular mechanism of the phenotypic outcomes of mutations, including effects on
complex stability, activity, binding and turnover rate. As a result of mutated protein and gene network analysis, we
observed that interactions of proteins with mutations mapped on interfaces had higher bottleneck properties compared to
interactions with mutations elsewhere on the protein or unaffected interactions. Such observations suggest that genes with
mutations directly affecting protein binding properties are preferably located in central network positions and may
influence critical nodes and edges in signal transduction networks.
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Introduction

Most cancers are characterized by genomic instability which is

considered to be one of the important factors driving tumor

development [1]. These genetic perturbations potentially lead to

abnormal oncogene activation and/or tumor suppressor gene

inactivation. According to the concept of ‘‘oncogene addiction’’,

cancer cells depend on the activity of a single or a few oncogenes

for their proliferation and survival [2]. Altered activity of

oncogenes and tumor suppressors may be caused by gene

amplifications, enhanced or decreased transcription or translation.

At the same time, missense mutations might also play a very

important role in carcinogenesis [3]. While contributing signifi-

cantly to tumorigenesis, majority of mutations are considered

neutral (i.e. ‘‘passenger’’ mutations), and only a few are under

positive selection in cancer cells (i.e. ‘‘driver’’ mutations) [3,4].

Various methods have been applied to predict the deleterious

effects of mutations [5,6], to find positively selected mutants and to

distinguish driver from passenger mutations [7,8]. However, their

predictive power remains limited, largely depends on the level of

evolutionary conservation [9] and the background mutation rate

which is difficult to determine for each sample [10]. Moreover,

recent results suggest that a large majority of single nucleotide

variations predicted to be functionally important are rare (with

minor allele frequency less than 0.5%) [11], making such rare

disease-associated variants difficult to detect.

Many signaling networks are deregulated in cancer and involve

a dense network of protein-protein interactions. Therefore, the

characterization of cancer-related protein interaction networks is

essential for our understanding of the molecular mechanisms of

carcinogenesis. Recently, new strategies were proposed to identify

key network modules and driver oncogenes by combining copy

number variations, missense mutations and mapping potential

oncogenic driver genes onto high-throughput protein-protein

interaction networks [12,13,14]. As a result of these studies, novel

cancer-related genes and functionally-related gene modules

targeted by driver cancer mutations were identified [13,14,15].
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Moreover, proteins recognize and bind their specific targets in a

highly regular manner and the specificity of these interactions is

largely determined by structural and physico–chemical properties

of binding interfaces. Recently, structural complexes of disease-

and cancer-related proteins were analyzed [16,17,18,19], showing

that disease-related protein complexes have distinct binding

properties; in particular, they contain multiple interface patches,

enabling interactions with many other proteins [16], and

mutations on different patches might have caused pleiotropic

disease effects [20]. In addition, many disease mutations are

located on protein-protein interfaces [21,22,23], a tendency that is

especially pronounced for cancer missense mutations [20]. Such

observations generally emphasize the importance of studying the

effects of cancer mutations on protein interactions and on their

binding interfaces in particular.

Many oncogenes, tumor suppressors and their mutations have

been identified as key players in cancer signaling events. However,

only a few have been found in different types of cancer

simultaneously. Such heterogeneity complicates the identification

of key players that provide selective advantages to tumor cells. In

our study we utilized a set of mutations derived from glioblastoma

patients, allowing us to narrow down the heterogeneity of

phenotypic response to better understand genotype-phenotype

relationships. Glioblastoma is the most malignant form of brain

tumors according to WHO classification [24]. Recently, The

Cancer Genome Atlas (TCGA) and other projects provided

mutation data of glioblastoma patients on a large scale [25,26].

Eight potential driver genes were identified in glioblastomas, and

mapping mutated genes on biochemical pathways indicated

several prevalent pathways that contained mutated driver genes

[25,26,27]. Specifically, genome alterations that were found in

several key pathways were observed to be mutually exclusive to

each pathway, pointing to the sufficient selective advantage of

these few alterations for cancer cells [25].

Recently, we mapped the human protein interactome using

structural complexes which allowed us to decipher the effect of

glioblastoma missense mutations on protein-protein, protein-

nucleic acid, protein-ion binding interfaces and phosphorylation

sites in this study (Figure 1). Here, we show that mutations on

binding interfaces result in more drastic changes of amino acid

physico-chemical properties than mutations that cannot be

mapped on interfaces. Moreover, we found that mutations on

protein-protein interfaces have overall destabilizing effects and

mostly affect the electrostatic component of binding energy as well

as the topology of protein-protein interaction networks. Impor-

tantly, we identify possible driver mutations and genes, some of

which are specific to nervous system functioning. We complement

our findings by suggesting the molecular mechanisms of the

phenotypic effect of mutations.

Results and Discussion

Cancer Mutations might Affect Phosphorylation Sites
Many proteins that play an important role in cancer may also

participate in signaling pathways, typically mediating signals

through phosphorylation events. Previously, somatic cancer

mutations were shown to potentially cause gain or loss of

phosphorylation sites [29]. Therefore, we hypothesized that

glioblastoma mutations may also affect phosphorylation sites,

potentially disrupting the flow of signals through the loss of sites.

We collected 2,825 phosphorylation sites from the PhosphoSite-

Plus [30], Phospho.ELM [31] and PHOSIDA [32] databases

which were further verified by GPS software [33]. While 94

mutation sites in Ser/Thr/Tyr residues could be potentially

phosphorylated, we found that 6 out of 94 sites significantly

overlapped with phosphorylation sites (Fisher exact test p-

value = 0.028, Table S1 in File S1). Indeed, phosphorylation

may be accompanied by the changes in local site environment or

global conformation, lead to protein activation or inactivation and

modulate the strength of protein or DNA interactions [34].

Therefore, mutation of a phosphorylation site may result in the

loss of these important functional properties, as exemplified by the

loss of phosphorylation site Ser 313 in P53 that regulates binding

to DNA.

Effect of Glioblastoma Mutations on Protein Binding
We integrated mutated genes in a structurally inferred protein

interaction network and estimated the effect of these mutations on

such a network. Specifically, we constructed mutant structural

models (see Methods) and calculated the differences of binding

energies that were caused by the corresponding amino acid

substitutions. We found a negative average binding energy

difference of DDDG = 22.54 kcal/mol, pointing to an overall

destabilizing effect of mutations on protein-protein complexes in

glioblastomas (Figure 2A, Table 1). Furthermore, the electrostatic

component of binding energy was shifted towards negative values

compared to zero (p-value = 0.007) and compared to the van-der-

Waals component (p-value = 0.0013). Meanwhile, the van-der-

Waals component itself did not show an overall de- or over-

stabilizing effect. While several applications have been developed

to predict the effect of mutations on protein stability, we compared

our results to FoldX, allowing us to observe a significant, although

not very high, correlation between the DDDG values of both

approaches (Figure S1B in File S1, Pearson’s rP = 0.440.77, p-

value ,0.01). These differences may arise from the fact that FoldX

uses an empirical potential calibrated on the set of experimental

changes of unfolding energy in the presence of mutations.

Furthermore, FoldX is not explicitly trained on disease mutations

and binding energy changes and does not account for the

mutation induced conformational changes of the protein back-

bone.

In general, substitutions with amino acids that have similar

physico-chemical properties may not drastically alter the stability

of a single protein or a complex. We calculated physico-chemical

distances between wild-type and substituted residues and com-

pared it with the binding energy difference for all protein

complexes and their models (see Methods). The physico-chemical

distance was defined as the Euclidean distance using ten different

physico-chemical properties of amino acids [28]. As indicated by

its corresponding DDDG, the effect of substitutions was statistically

significantly correlated with the physico-chemical distance (Figure

S1B in File S1, Pearson rP = 20.50, p-value = 0.015). Specifically,

large distances corresponded to large negative DDDG and vice versa,

suggesting that substitutions of amino acids with very different

properties are usually destabilizing. In turn, small changes in

amino acid properties may result in additional stabilization of

complexes. All the data about physico-chemical distances and

effects on binding energy are available at ftp://ftp.ncbi.nih.gov/

pub/panch/GBM/.

Such results also prompted us to estimate the potential

amplitude of the effect of mutations even if structures or models

were unavailable. Therefore, we calculated physico-chemical

distances for all 695 mutations from 598 genes. We observed that

distributions of physico-chemical distances that referred to amino

acid substitutions on all types of interfaces, and protein-protein

interfaces in particular, had significantly larger distances compared

to non-interface regions (Figure 2B, p-value = 0.011, Wilcoxon

test). For example, we observed that the first peak in Figure 2B

Cancer Mutations, Protein Binding and Networks
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Figure 1. Mapping the human interactome and glioblastoma mutations on binding interfaces. In step 1 we mapped 695 missense
mutations from 598 human genes to protein sequences. Subsequently, query protein sequences were aligned to homologous, experimentally
determined structural complexes (step 2), allowing us to infer query-specific interactions with other proteins, nucleic acids and ions (step 3). For
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around 0.5 mostly referred to substitutions of aliphatic residues

into each other or aliphatic into polar residues with Val-.Met

being the most frequent. The substitutions of arginine and cysteine

were among the most frequent, had physico-chemical distances of

about 141.5 and corresponded to the second peak of the

distribution in Figure 2B. In addition, we found that mutations

often affected arginine on binding interfaces. Arginine has unique

binding properties originating from strong stabilization of its

protonated form due to its high pKa. Furthermore, Arg forms salt

bridges, strong cation-p interactions and is enriched in binding hot

spots [35,36,37].

Interface Analysis Complements Machine-learning
Methods and Helps to Decipher Molecular Mechanisms

Several machine-learning methods were recently developed to

predict the phenotypic effect of disease mutations on proteins and

were successfully used for monogenic diseases [5,6]. Most of these

methods utilize evolutionary conservation, residue mutability and

accessible surface area as their main predictive features. We

predicted the effect for 581 glioblastoma mutations using

PolyPhen2, performing quite well in comparison to other

prediction methods [38]. Our results showed that PolyPhen

predicted 69% of all mutations on interfaces as ‘‘probably

damaging’’ (Table S2 in File S1, tables at ftp://ftp.ncbi.nih.gov/

pub/panch/GBM/). Such an agreement is noteworthy, given that

our protocol is not trained on a known set of disease mutations

while methods like PolyPhen do not use interface features in their

training. Interestingly, we also found a limited but still significant

correlation between the largest absolute value of the energetic

effect of mutations on protein binding DDDG (as obtained by our

approach) and the corresponding PolyPhen2 score (Spearman

rank correlation, rS = 0.5, p-value = 0.03). Since 23% of all

mutations that PolyPhen predicted as ‘‘probably damaging’’ were

located on interfaces, our approach may suggest the possible

mechanism of their damaging effect through their impact on

protein interactions.

As previously noted, many machine learning methods assessing

the effects of mutations erroneously predict a ‘benign’ effect when

the mutation occurs in an evolutionarily non-conserved position or

is solvent accessible [9]. Yet, when a protein complex is formed, a

mutation which was previously solvent accessible in a monomer

(and possibly non-conserved) may be buried on the binding

interface and very damaging for protein interactions. We show

that 18% of interface mutations were predicted by Polyphen2 as

‘‘benign’’; we analyze their possible driver effect and mechanism of

action in the next two sections. Therefore, the necessity to develop

approaches which complement machine learning methods with

more detailed biophysical analyses is evident and should be the

subject of future endeavors.

Mechanisms of Effects of Mutations on Protein-protein
Interactions

Here, we analyze the effect of mutations on protein-protein

complexes and suggest the underlying mechanisms which include

inactivation of wild-type enzymatic activity, destabilization of a

functional multimeric complex and alteration of the protein

turnover rate. All analyzed mutations were predicted to be benign

by PolyPhen2. The first case represents the IDH1 R132H

mutation potentially inactivating the wild type conversion of

isocitrate to a-ketoglutarate (a-KG) and/or resulting in a neo-

enzymatic activity and production of D-2-hydroxyglutarate [39].

Since IDH1 mutations are heterozygous we first analyzed the

heterodimer containing one mutated and one wild type chain.

Specifically, we found that heterodimers in the inactive state of

IDH1 (PDB code 1T09) were considerably stabilized by 8.6 kcal/

mol. In addition, we performed calculations for a double mutant

where both chains contained the R132H mutation, and showed

that its inactive dimer is further stabilized by 11.3 kcal/mol. Our

results are consistent with former studies suggesting that IDH1

heterodimers are stable with a considerably lowered isocitrate

dehydrogenase activity while R132H:R132H homodimers were

almost completely inactive [40]. In accordance with other

experimental studies, we suggest that such inactive dimer over-

stabilization might prevent the conformational cooperative move-

ments of dimer subunits required to form the active state [41].

Neuroligins (NLs) are transmembrane proteins on the postsyn-

aptic cell surface and serve as receptors for neurexins that are

synaptic cell adhesion proteins on the presynaptic cell surface.

Since the formation of proper synapses is crucial for normal brain

function we investigated the model of neuroligin2 (NLGN2) based

protein-protein interactions, we mapped interaction partners to their corresponding human proteins (step 4a), allowing us to find 160 protein
interactions between 150 genes with mutations affecting their interaction interfaces. In step 4b, we compared the structures of the unperturbed
wild-type protein and the mutated protein by performing energy minimization calculations and determining binding energy differences.
doi:10.1371/journal.pone.0066273.g001

Figure 2. The effect of mutations on protein binding. (A) Distribution of binding energy difference upon mutation for electrostatic and van-
der-Waals components. The electrostatic component of binding energy was significantly shifted toward negative values compared to the van-der-
Waals component (p-value = 1.361023) (B) Distributions of physico-chemical distances between amino acids that correspond to glioblastoma
mutations on protein-protein interfaces and non-interface regions. Distributions that referred to amino acid substitutions on protein-protein
interfaces had significantly larger distances compared to non-interface regions (p-value = 0.011).
doi:10.1371/journal.pone.0066273.g002
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on the neuroligin-1/neurexin-1 beta complex [42] (PDB code

3BIW, 75% identity between NLGN2 and structural template).

Earlier it was determined that the synaptogenic activity strongly

depended on the formation of stable neuroligin-1 multimers [43].

We observed that glioblastoma mutation E577K was located on

Table 1. List of representative genes with mutation sites located on different types of protein binding interfaces.

Gene Protein GI Orig AA Mut Pos New AA
Structure of
homolog

Structure of
binding partner Dist. Phys dddG

Protein-protein

ABL2 6382062 P 487 L 2RF9_A 2RF9_C 1.17 0.695

EPHA2 32967311 G 111 D 3MBW_A 3MBW_B 1.28 0.14

IDH1 28178825 R 132 H 1T09_A 1T09_B 1.03 8.64

NLGN2 30840978 E 577 K 3BIW_A 3BIW_D 1.54 21.24

NRAS 4505451 G 12 D 1NVU_R 1NVU_S 1.28 24.24

RAB3C 19923985 R 49 H 2P5S_B 2P5S_A 1.03 21.48

RAC2 4506381 D 47 Y 2V55_B 2V55_A 1.40 22.14

RAD52 109637798 R 46 K 1KN0_A 1KN0_K 0.57 9.04

TP53 120407068 P 177 S 1YCS_A 1YCS_B 1.19 21.29

TP53 120407068 R 248 Q,W 1YCS_A 1YCS_B 1.14,1.75 224.31, 229.69

TP53 120407068 R 273 H,C 1YCS_A 1YCS_B 1.03,1.78 23.44, 213.45

TP53 120407068 D 281 A 1YCS_A 1YCS_B 1.16 9.03

Protein-DNA

BCL11A 20336305 R 740 C 2DRP_A DNA 1.78 20.02

PAX9 7242167 R 26 W 6PAX_A DNA 1.75 20.05

TP53 120407068 R 248 Q,W 3KMD_A DNA 1.14,1.75 0.36, 1.27

TP53 120407068 R 273 H,C 3KMD_A DNA 1.03,1.78 20.84, 20.54

TP53 120407068 A 276 V 3KMD_A DNA 0.573 0.28

ZIK1 77736604 T 393 A 2I13_A DNA 0.55 20.40

ZNF339 40807463 T 222 M 1MEY_C DNA 0.81 20.11

Protein-RNA

ELAVL2 115511032 G 167 D 1FXL_A RNA 1.28 –

KLK9 29366812 Y 240 D 3DD2_H RNA 1.40 –

RBMS3 51317353 I 166 V 1FXL_A RNA 0.42 –

RPL11 15431290 R 75 X 3KCR_F RNA - –

Protein-ion

ADAMTS17 110611170 D 434 G 1KUG_A Cd2+ 1.28 –

DSG4 29789445 V 262 I 3Q2V_B Ca2+ 0.42 0.00

GZMH 15529990 V 207 M 1XXF_B Na+ 0.41 0.11

HPCAL4 7705419 P 10 H 1G8I_B Na+ 1.17 0.00

LCT 32481206 V 565 E 2ZOX_A Mg2+ 1.27 2.72

LMX1A 28893581 C 62 Y 2XJY_A Zn2+ 0.82 23.23

MAPK9 21237736 G 35 R 1JNK_A Mg2+ 2.02 21.06, 21.38

NELL2 5453766 D 602 N 1UZJ_B Ca2+ 0.78 0.27

SGK2 20127541 R 152 G 3KGA_A Mg2+ 2.02 0.01

TP53 120407068 C 176 Y,F 1TSR_A Zn2+ 0.82,0.61 24.72, 24.67

TP53 120407068 H 178 Q 1TSR_A Zn2+ 0.732 0.00

TP53 120407068 H 179 Y 1TSR_A Zn2+ 1.037 25.25

ZIK1 77736604 T 393 A 1MEY_G Zn2+ 0.55 0.60

ZNF497 333033771 D 278 N 1U85_A Zn2+ 0.78 20.02

ZNF497 333033771 Q 433 L 1NJQ_A Zn2+ 1.26 20.84

Gene and protein identifiers are shown together with the PDB code of structural evidence of interactions (structure of homologous complex), physico-chemical
distances between substituted amino scids (‘‘Dist Phys’’) and difference in binding energy (‘‘dddG’’). Several multiple substitutions of the same site are listed on the
same line.
doi:10.1371/journal.pone.0066273.t001
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the dimer interface of two neuroligin monomers and contributed

to a destabilization of this dimer by 1.2 kcal/mol [43].

The third example represents Rad52 playing a critical role in

DNA double-strand-break repair. This protein is characterized by

a very rapid turnover that is tightly regulated in the cell.

Specifically, we observed that mutation R46K was located on

the multimeric interface in the model of RAD52 N-terminal half of

the protein (pdb code 1KN0) and considerably over-stabilized

each dimer in the undecameric complex by 9 kcal/mol. Such a

result might suggest that this mutation may considerably affect the

Rad52 turnover rate. Indeed, it was previously shown that some

mutants extend the half-life of Rad52 and dysregulate their

turnover in a cell [44].

Mechanisms of Effects of Mutations on Protein-nucleic
Acid and Protein-ion Interfaces

Other than protein-protein interactions, cancer mutations may

affect other types of protein interactions as well. Altogether we

found 16 and 13 mutations mapped to protein-ion and protein-

nucleic acid binding interfaces, respectively. Table 1 shows

representative examples with mutations located on binding

interfaces and lists candidates for cancer biomarkers. As indicated

in Table 1, mutations on five genes that correspond to protein-

DNA or protein-ion interactions (BCL11A, ZIK1, ZNF497,

ZNF339, and TP53) are located within C2H2-type zinc finger

motifs. The zinc ion is essential for the stabilization of the local

structure required for DNA binding. The disruption of Zn ion

coordination may potentially lead to deregulation of correspond-

ing proteins. Specifically, we found a C62Y substitution in LIM

homeobox transcription factor 1 alpha (LMX1A), an important

factor for the development of the nervous system. This transcrip-

tion factor harbors two LIM zinc-binding domains, and the C62Y

substitution occurs at one of the zinc-binding cysteine residues in

the structure of its homolog LMO-2 and leads to decreased Zn-

binding by 3.2 kcal/mol (see tables on ftp site) (Figure 3A). Indeed,

a recent study suggested that LMX1A might play a tumor

suppressive role and may be targeted for therapeutic intervention

in human [45].

Paired box protein PAX9 is another example originating from

the transcription factor Pax family that regulates the expression of

target genes involved in proliferation, stem-cell self-renewal,

resistance to apoptosis and cell migration. PAX9 expression is

associated with favorable outcome in several cancers although its

role in tumorigenesis is not well understood [46]. We studied the

substitution R26W which, according to the crystal structure of its

homolog PAX6 (75% identical to PAX9), directly interacts with the

DNA molecule [47] (Figure 3B). Although the substitution with

tryptophan may have rather drastic consequences for the

maintenance of the networks of electrostatic interactions between

arginine and DNA phosphates, we did not find considerable

differences in protein-DNA binding affinity (DDDG = –0.05 kcal/

mol) although the mutation destabilizes an overall complex by

2.15 kcal/mol.

Cancer mutations may also directly affect enzymatic activity.

Being involved in proliferation, differentiation and apoptosis

pathways, mitogen-activated protein kinase 9 (MAPK9) blocks

the ubiquitination of tumor suppressor p53 leading to an increase

of suppressor stability. Similar to other phosphate transferring

enzymes, MAPK9 uses magnesium as a cofactor for phosphory-

lation. We studied G35R substitution in MAPK9 and hypothesized

that it might disrupt its tumor suppressor properties. The crystal

structure of its homolog MAPK10 (with 85% sequence identity to

MAPK9) shows that Gly35 is located at the edge of the ATP

binding pocket and participates in an ATP-binding loop [48].

According to FoldX calculations the substitution of glycine into

positively charged arginine compromises magnesium cation

binding by 1.38 kcal/mol, supporting the deregulation of MAPK9

kinase activity and cancer cell development (Figure 3C).

Properties of Mutated Interaction Network
Topological network analysis facilitates the interpretation of

interaction data and may allow the inference of cellular functions

from the underlying proteins [49]. By mapping mutations and

corresponding substitutions on protein-protein interfaces using our

IBIS structural inference approach [50,51], we identified 160

protein-protein interactions between 150 proteins with mutations

that were located directly on binding interfaces (‘‘mutant

interactions’’, MI). Furthermore, we embedded these interactions

in a web of 4,073 interactions between 2,928 human proteins

where each interaction was obtained by high-throughput methods

as well as confirmed by the IBIS structural inference approach. In

such a ‘confirmed interaction network’ we considered interactions

that involved a protein with a mutation anywhere in a protein,

allowing us to collect 444 ‘‘all mutant interactions’’ (AI).

Therefore, the set of MI interactions is a subset of the AI set.

To determine the role that ‘‘MI’’ and ‘‘AI’’ interactions play in a

large human interaction network we determined the topological

characteristics of such affected interaction networks. While we

observed that the confirmed interaction network breaks into many

connected components, we carried out our topological investiga-

tions on the largest connected component of 1,960 interactions

(Figure 4A).

Figure 3. Examples of mutations on protein-nucleic acid and protein-ion interactions. Residues at mutated sites on homologous proteins
are shown in red (wild type) and blue (mutant) stick models. (A) Zinc binding motif of LMO-2, homologous protein of LMX1A (PDB: 2XJY chain A,
sequence identity 35%). A zinc ion is shown as a dark blue sphere. Zinc binding residues are shown in yellow stick models. (B) DNA binding site of
Pax-6, homolog of Pax-9 (PDB: 6PAX chain A, sequence identity: 74%). (C) MAPK10, homolog of MAPK9, with Mg-ANP (ATP analog) (PDB: 1JNK chain A,
sequence identity: 85%). Mg ions are shown as green spheres and ANP is shown using a white sphere representation.
doi:10.1371/journal.pone.0066273.g003
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As a measure of clustering around a given interaction, we

defined the edge clustering coefficient [52]. Assuming that MI

interactions play a critical role in the flow of biological information

in an interaction network, we hypothesized that such interactions

may not be necessarily clustered but tend to bridge clustered areas.

Indeed, we observed that MI and AI interactions generally tend to

be placed in less clustered areas compared to the remaining

unaffected interactions in Figure 4B (Wilcoxon test, p-val-

ue = 561028). Notably, we also observed a significant shift to

lower clustering of MI interactions compared to AI interactions (p-

value = 0.01). A measure of an interaction’s centrality in a network

is its edge betweenness centrality. Specifically, edge betweenness

centrality determines the number of shortest paths through a given

edge, therefore corresponding to potential ‘‘bottlenecks’’. In the

inset of Figure 4B, we show that interactions between proteins with

mutations on binding interfaces (MI) had a significantly higher

betweenness centrality than interactions involving non-mutant

proteins (p-value = 0.005). We also found that such interactions

had significantly higher betweenness than interactions between

mutant proteins where mutation did not necessarily affect the

binding interface (AI) (p-value = 0.01).

Conclusions
Many studies have shown that missense mutations might play a

very important role in causing different diseases. However, causal

variants and phenotypic effects of these mutations are very difficult

to predict, especially for polygenic diseases [53]. Although

mutations of monogenic diseases might prefer the core of the

protein [54], cancer related mutations exhibit quite a different

pattern. Specifically, such mutations are less likely to occur in the

protein core and prefer binding interfaces [20,23]. Nevertheless

the extent to which mutations might affect biomolecular interac-

tions remains largely unknown. With this goal in mind we

addressed the molecular mechanism of carcinogenic effects of

glioblastoma mutations. The actual placement of cancer mutations

on binding interfaces allowed us to stratify cancer-related

interactions and potential driver genes and address the ways such

mutations may affect binding and the underlying protein

interaction network’s topology.

First, we found that overall missense mutations had a

significantly destabilizing effect on protein-protein interactions

although some mutations over-stabilized protein complexes. This

effect was mostly driven by the electrostatic component of binding

energy and such observations are consistent with previous

investigations, focusing on the effects of OMIM mutations on

protein complexes [22]. Indeed, the charge complementarity may

determine specific binding while its disruption can be accompa-

nied by the loss of specific interactions. The contribution of a given

charged pair of amino acids to the electrostatic component of

binding energy depends on the balance of two large terms:

desolvation penalty and electrostatic pairwise interactions. While

the desolvation penalty of a group mostly depends on its net

charge, the pairwise electrostatic interaction energy is also sensitive

to the geometry of the side chains. Previous results indicated that

electrostatic interactions on protein-protein binding interfaces are

almost always favorable [55]. Therefore, amino acid substitutions

might result in dramatic changes of the magnitude of the favorable

pairwise electrostatic interactions, while having little impact on the

desolvation penalty [56].

Furthermore, we calculated changes in physico-chemical

properties between wild-type and substituted residues and found

that amino acid substitutions on binding interfaces were associated

with significantly larger physico-chemical distances compared to

non-interface mutations. The most drastic amino acid changes

were observed for mutations on protein-protein binding interfaces.

Such observations point to the possible damaging effect of many

glioblastoma mutations on interfaces. We expect that such

mutations are unlikely passenger mutations but rather may drive

the disease phenotype. Such an argument appears plausible given

that genetic alterations in cancer generally affect signaling

pathways, compromising many protein-protein interaction events.

Specifically, we detected a group of potential cancer biomarkers,

some of them specific to nervous system development, which

Figure 4. Network analysis of protein interactions that are affected by mutations. (A) By mapping all structurally inferred interactions that
suffer from a mutation on their interfaces in a human interaction network (MI) we obtained a largest component capturing 1,960 interactions.
Furthermore, we indicated all interactions that involved a mutated protein (AI). (B) Calculating edge clustering of MI and AI interactions in the largest
component, we observed that interactions affected by a mutation generally tend to appear in less clustered areas. Compared to the remaining
interactions, such differences were significant for both MI and AI interactions (p-value = 561028, Wilcoxon test). Comparing MI and AI interactions, we
observed a significant shift of MI interactions toward lower clustering (p-value = 0.01). In the inset, we determined edge betweenness of MI and AI
interactions as a measure of their centrality in the network. Compared to the remaining interactions, we found that differences between both sets of
interactions affected by mutations were statistically significant (p-value = 561023). Furthermore, MI showed significantly lower betweenness than AI
interactions (p-value = 0.01).
doi:10.1371/journal.pone.0066273.g004
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might be deregulated by mutations affecting protein-protein,

protein-nucleic acid and protein-ion binding.

Since many factors influence the topology of protein interaction

networks and the role of a given protein in cancer development, a

debate about the topological properties of disease and cancer-

related networks has emerged. Although the vast majority of

disease genes were found to be nonessential and did not encode

hub proteins, cancer related genes, however, suggested an opposite

trend [16,57,58]. High betweenness of proteins that translates into

being a ‘‘bottleneck’’ indicated another important characteristic

that distinguished essential and non-essential genes especially in

regulatory networks [59]. Hub-bottlenecks, for example, defined

as frequently interacting proteins connecting different clustered

areas, were indicated as good predictors of gene essentiality [16].

Here we found that interactions involving proteins with mutations

generally tend to occur in less clustered areas and are character-

ized by higher edge betweenness compared to the remaining

unaffected interactions from the same network. Importantly, we

also show that our stratification of cancer-relevant interactions had

a significant impact by focusing on glioblastoma mutations

observed directly on binding interfaces (MI). In particular, MI

interactions were placed in areas of lower clustering and higher

edge betweenness compared to AI interactions that did not

account for the mutated position with respect to protein binding.

Still, AI interactions had higher bottleneck properties compared to

the remaining, unaffected interactions.

Indeed, although oncogenes were reported to have a certain

tendency to cluster into a small number of modules and pathways

[60,61], other reports did not confirm such characteristics [16].

Here, we show that genes with mutations affecting their binding

interfaces were preferably located in central network positions

which might influence critical nodes/edges in signal transduction

networks mediated by protein-protein interactions. Our observa-

tion is consistent with two previous studies, indicating that proteins

extensively involved in signal transduction activity, actively

sending and receiving signals, are more frequently mutated in

cancer [60].

Materials and Methods

Constructing Human Interactome and Mapping
Mutations on Binding Interfaces

We used our recently developed framework to map the human

interactome [18]. Selecting the longest protein isoforms of a

human query sequence, we retrieved their protein interaction

partners and binding sites using the IBIS server (http://www.ncbi.

nlm.nih.gov/Structure/ibis/ibis.cgi) [50,51]. IBIS predicts protein

interaction partners and provides the locations of their binding

sites on a query protein using a set of homologous structural

complexes as evidence of an interaction. Along with different types

of protein interaction partners (protein, ion, DNA, RNA, peptide,

and small molecule), IBIS ensures the biological relevance of

binding sites. Utilizing structural complexes, IBIS collects

experimentally ‘observed’ protein interactions if a protein has a

certain number of residues that ‘contact’ its partner. Two residues

are considered to be in contact if any of the heavy-atom inter-

atomic distances is less than 6 Å for protein-protein (4 Å for

protein-nucleic acid and 3 Å for protein-ion) interaction partners.

Such a group of residues that is in contact to an interaction partner

is called a ‘‘binding site’’. Demanding that the sequence similarity

between the query protein and a homologous structural complex is

high enough (see Supporting Information for details), homologous

complexes were subsequently grouped according to their binding

site similarity. In the case of protein-protein interactions we

mapped interaction partners from complexes of other organisms to

their most similar human proteins that had more than 80%

sequence identity and 80% protein sequence coverage. As a result

of this procedure we obtained 54,861 protein-protein interactions

between 9,265 human proteins, a network we refer to as

‘structurally inferred’. In addition, we used IBIS to determine

protein-nucleic acids and protein-ion interactions, procedures that

did not require additional mapping of the interactions partners to

human proteins.

We also pooled 61,240 interactions between 11,446 proteins

from high-throughput experiments found in Reactome [62],

MINT [63] and HPRD [64]. We confirmed these interactions

by using structurally inferred interactions, allowing us to obtain

4,073 interactions between 2,928 human proteins, a network that

we refer to as the ‘‘confirmed interaction network’’. We compiled

missense mutations from genes in glioblastoma multiform patients

from two previous studies [25,26] that identified mutations in the

tumor sequences that were not present in the reference sequences

of each gene. Mutations present in the normal control samples and

in single nucleotide polymorphism (SNP) databases were then

removed from further analyses. We additionally verified interac-

tion interfaces in complexes using the PISA algorithm. Using

chemical thermodynamics, PISA computes a set of macromolec-

ular assemblies that are expected to be stable in solution and are

assumed to represent the biological form of a protein in the cell

[65]. In the end, we mapped 695 missense mutations from 598

genes on different types of proteins and protein binding interfaces

as shown in Figure 1. Altogether 97 mutations from 68 genes were

mapped on protein-protein interfaces affecting 160 protein-protein

interactions, whereas 16 and 13 mutations were found on protein-

ion and protein-nucleic acid interfaces respectively (ftp://ftp.ncbi.

nih.gov/pub/panch/GBM/). Among those mutations mapped on

interfaces, 33% mutations were observed in more than one cancer

sample according to the COSMIC database [66] compared to

15% of mutations which could not be mapped on interfaces.

Modeling of Protein Complexes
Based on templates identified in IBIS we built 3D structural

models of protein-protein complexes using a homology modeling

approach. In particular, we applied the Profix and Nest programs

provided by the Jackal package [67] to fix missing atoms or

residues of the templates and to build homology models of

complexes based on their sequence alignments. The models were

submitted to the TINKER package for energy minimization

utilizing the Limited Memory BFGS Quasi-Newton Optimization

algorithm [68]. Energy minimization was performed with the

Amber98 force field. The convergence criterion was set to the root

mean-squared (RMS) gradient per atom = 0.01. The Scap

program [69] as provided by the Jackal package was applied to

computationally generate the corresponding mutant structures

using the minimized wild-type models, and the mutations were

introduced by side-chain replacements. The wild-type and mutant

structures were minimized again using TINKER to assure that

both structures were subjected to the same refinement protocol

after introducing the mutation. It was previously shown that state-

of-the-art algorithms can always build high-quality models for

proteins with sequence identity higher than 35,40% to the

homologous protein structures [70]. Checking the quality of the

models, we removed models with large van-der-Waals clashes

based on calculated energies and selected only those models that

were based on protein-protein structural complexes with more

than 40% identity to both the query human protein and its

interaction partner which resulted in 21 high quality models of

protein-protein complexes. Protein-DNA and protein-ion com-
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plexes were modeled using Modeller [71] ‘‘automodel’’ function.

Mutations were introduced using FoldX ‘‘buildmodel’’ module.

DNA molecules were treated as non-flexible during the modeling

processes.

Binding Energy Calculation
Binding energy was calculated using the rigid body approach

described in previous studies [22,72,73]. We assumed that the

internal mechanical energies of the (un-)bound monomers remain

unchanged so that the energy terms of the unfolded state can be

excluded in the binding energy calculation. The total potential

energy and its two components, van der Waals energy and

electrostatic energy, for protein-protein complexes were computed

with the ANALYZE program as provided by the TINKER

package [68]. The electrostatic component of total potential

energy was defined as the sum of charge-charge interaction energy

and continuum solvation energy obtained from the TINKER

results. The binding energy was defined as the difference between

the potential energy of the dimer and the individual monomers.

DDG(binding)~DG(folding : complex){DG(folding : A)

{DG(folding : B)
ð1Þ

where DG(folding: complex), DG(folding: A) and DG(folding: B) were the

potential energies of the dimer complex, monomer A and

monomer B, respectively.

The effect of a mutation on binding affinity was assessed by

using the binding energy difference between the wild-type (WT)

and mutant structure (MU):

DDDG(binding)~DDG(binding : WT)

{DDG(binding : MU)
ð2Þ

where DDG(binding: WT) and DDG(binding: MU) were the

binding energies of the wild-type (WT) complex and the mutant

complex (MU) calculated using equation (1). The difference of

total potential energy (DDDGtot), van der Waals energy (DDDGvdW)

and electrostatic energy (DDDGel) were calculated and analyzed

separately. A negative value of DDDG binding indicated that the

mutation decreased the binding affinity, destabilizing the complex.

In turn, a positive value of DDDG binding suggested that the mutation

stabilized the complex.

We also used the ‘‘AnalyseComplex’’ function of the FoldX

program [74] which calculates the stability of protein complexes

using an empirical force field to estimate the effect of mutations on

binding. The change in binding energy was approximated by

impairing the selected targets, determining the stability of the

separated molecules and then subtracting the sum of the individual

energies from the global energy of the complex. Binding energy

differences for protein-DNA interactions were calculated similarly.

In these cases DG(folding: complex) refers to the stability of the

protein-DNA complex and DG(folding: A) refers to the stability of

the monomer without DNA. Binding energy of protein-ion

interactions were calculated by ‘‘MetalBindingEnergy’’ function

of FoldX. The best five models (with the highest Modeller molpdf

score) were analyzed and the mean values of DDDG calculated. All

protein-DNA and protein-ion models were preprocessed by the

RepairPDB function of FoldX before any energy calculation to

optimize side chain conformation.

Topological Measures of Interaction Networks
As a global measure of a protein-protein interaction’s centrality,

we calculated edge betweenness, reflecting an edge’s appearance

in shortest paths through the whole network. In particular, we

defined edge betweenness centrality of an interaction v as

cB(v)~
P

s,t[V

s(s,tDv)
s(s,t)

. s(s,t) was the number of shortest paths between

proteins s and t while s(s,t|v) was the number of shortest paths

through edge v. Furthermore, we normalized edge betweenness

values by CB(v)~ CB(v)
(N{2)(N{1)

where N was the number of proteins

in the connected component in which the underlying edge

appeared. The edge clustering coefficient of interacting proteins

i and j was defined as ECij~
DNi\Nj D

min (DNi D{1,DNj D{1)
, where Ni and Nj

were the sets of interaction partners of i and j, respectively [52].

Statistical Analysis
To perform statistical tests we used Splus and R packages. To

compare mean values of two distributions (or compare the mean

value to zero), we used the Wilcoxon rank test and reported one-

sided p-values. To test the independence between the rows and

columns in a contingency table, we used Fisher’s exact test and

reported two-sided p-values. We also calculated Pearson and

Spearman correlation coefficients to test the null hypothesis about

the independence of two variables and reported two-sided p-

values.
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