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Abstract

Because many animal species are undescribed, and because the identification of known species is often difficult, interim
taxonomic nomenclature has often been used in biodiversity analysis. By assigning individuals to presumptive species,
called operational taxonomic units (OTUs), these systems speed investigations into the patterning of biodiversity and
enable studies that would otherwise be impossible. Although OTUs have conventionally been separated through their
morphological divergence, DNA-based delineations are not only feasible, but have important advantages. OTU designation
can be automated, data can be readily archived, and results can be easily compared among investigations. This study
exploits these attributes to develop a persistent, species-level taxonomic registry for the animal kingdom based on the
analysis of patterns of nucleotide variation in the barcode region of the cytochrome c oxidase I (COI) gene. It begins by
examining the correspondence between groups of specimens identified to a species through prior taxonomic work and
those inferred from the analysis of COI sequence variation using one new (RESL) and four established (ABGD, CROP, GMYC,
jMOTU) algorithms. It subsequently describes the implementation, and structural attributes of the Barcode Index Number
(BIN) system. Aside from a pragmatic role in biodiversity assessments, BINs will aid revisionary taxonomy by flagging
possible cases of synonymy, and by collating geographical information, descriptive metadata, and images for specimens
that are likely to belong to the same species, even if it is undescribed. More than 274,000 BIN web pages are now available,
creating a biodiversity resource that is positioned for rapid growth.
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Introduction

Most animal species await description [1] and many named

taxa actually represent a species complex [2]. It has been estimated

that the cost of describing all animal species will exceed

US$270 billion and require centuries [3,4]. Given this situation,

it is clear that new approaches are needed to support biodiversity

assessments in advance of fully developed species-level taxonomy.

Biodiversity researchers have often attempted to address the

taxonomic impediment in a local or regional context by assigning

specimens to operational taxonomic units (OTUs) using morpho-

logical differences perceived to be indicators of species boundaries.

However, it is very difficult to codify morphology-based OTUs in

a format which allows their comparison among studies. The

adoption of DNA sequences as a basis for OTU classification

escapes this constraint; their digital nature aids the application of

standardized protocols for OTU designation, the comparison of

results among studies, and data preservation.

Molecular Approaches to OTU Designation
Automated DNA-based approaches for OTU designation first

saw application in ‘taxonomy-free’ groups such as bacteria [5,6]

and fungi [7,8], but they have also proven useful for probing

biodiversity patterns in animal lineages where morphology-based

taxonomy is difficult [9,10]. Although molecular analyses enable

initial biodiversity evaluation in such taxa, there is no objective

way to select the algorithm or input parameters that best recover

actual species boundaries [11]. Instead, the microbial genomics

community operates by convention; bacterial lineages with more

than 3% sequence divergence at 16S rDNA are recognized as

distinct OTUs [5], while the fungal community employs a 2%

divergence criterion for the intergenic spacer region [8].

Because past studies of molecular biodiversity have focused on

groups with incomplete taxonomy, the concordance between

species diversity estimates gauged from morphology and molecules

has rarely been quantitatively tested on a large scale (e.g. above the

family level). Additionally, there has not been an effort to

standardize protocols for the delineation of animal OTUs or to

develop the registration system needed to support the comparison

of results among studies. These matters are critical for any large-

scale implementation of an interim taxonomic system based on

DNA sequence data, but there is another requirement. For the

system to support broad application, it must be based upon

sequence diversity in a standard gene region(s). DNA barcoding

studies on animals provide an ideal source of data because more

than two million records are currently available for this 648 bp

region of the cytochrome c oxidase I (COI) gene. Prior analysis of

these data have established two important patterns: 1) More than
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95% of animal species examined possess a diagnostic COI

sequence array, and 2) COI divergences rarely exceed 2% within

a named species, while members of different species typically show

higher divergence [12,13]. Although exceptions do occur, the

presence of this ‘barcode gap’ [14] has been observed in many

animal taxa [15–18]. Because prior studies have shown that these

patterns of sequence divergence are remarkably congruent across

phyla, groups with robust taxonomy can provide test sets to

identify the algorithmic approach that best recognizes sequence

clusters corresponding to species. The resultant algorithm can

subsequently be used to analyze sequence data from groups which

have seen little taxonomic investigation, illuminating species

diversity in these dark taxa [19].

Algorithms for OTU Recognition
Algorithms based on single linkage clustering [20–23] have been

widely used to quantify microbial diversity. Blaxter et al. [24] were

the first to apply this method to DNA barcode data for OTU

recognition in animals, examining the impact of partitioning

sequences at differing levels of sequence divergence. This

approach discriminated 150 OTUs among 295 tardigrade

specimens when the threshold for recognition was set at two or

more nucleotide substitutions, and 121 OTUs when the criterion

was raised to four or more differences. Because these tardigrades

lacked species identifications, it was impossible to select the

threshold that led to the strongest correspondence between OTU

boundaries and actual species. Jones et al. [25] extended this

approach, developing an analytical package (jMOTU) that

generates OTUs using single linkage clustering with a sequence

divergence threshold selected by the user. Although single linkage

clustering performs well, and is computationally inexpensive, it

lacks sensitivity due to chaining [26], a factor which has motivated

a search for alternate approaches to OTU recognition.

Puillandre et al. [27] developed a statistical method, Automatic

Barcode Gap Discovery (ABGD), to generate OTUs based on

features in sequence distance distributions that indicate the

presence of a ‘barcode gap’. Their method calculates distances

among all pairs of sequences in a dataset and clusters them by

creating a division at points where the change in slope of the

distribution is highest. Partitions are recursively evaluated for

division points, and splitting is sustained until all partitions possess

a unimodal distribution. ABGD produces multiple possible

partitioning schemes, but it is difficult to select the outcome which

best recovers true species diversity without prior knowledge of the

species count or without posterior examination of the alternative

hypotheses with independent data. However, selection of the

scheme that generated the median number of clusters has

produced good correspondence in studies of real data [27].

Hao et al. [28) proposed another analytical option. Their

method, Clustering 16S rRNA for OTU Prediction (CROP),

employs unsupervised Bayesian clustering. Despite its name, it can

be applied to sequence data from any gene through the application

of a Markov Chain Monte Carlo (MCMC) search to identify

partitions by optimizing a posterior probability function. Multiple

parameters are available to control cluster granularity and the

extent of the search for optimality. CROP uses an optimized

Needleman-Wunsch [29] algorithm to perform pairwise align-

ments and the Quickdist [30] algorithm to generate distances. Its

workflow is heavily optimized using pre-clustering and heuristics to

avoid unnecessary computation.

Pons et al. [31] proposed a model-based solution, one based in

phylogenetic approaches using the General Mixed Yule Coales-

cent (GMYC) model that represents independently evolving

entities. This strategy uses a maximum likelihood approach to

detect the transition of branching patterns in the gene tree from

interspecific branches, following the Yule model, to intraspecific

branches, following the neutral coalescent. The model optimizes

the maximum likelihood value of a threshold, such that nodes in

the tree above it are classified as species diversification events,

following the Yule model, while those below the threshold are

determined to be following the coalescent process. As such,

GMYC requires prior phylogenetic reconstruction using statisti-

cally robust methods. Although GMYC has gained popularity due

to its statistical robustness and accuracy [32–34], the high

computational cost of phylogeny reconstruction and GMYC

computation is a barrier to the analysis of large datasets.

OTU Designation Through Refined Single Linkage (RESL)
Analysis

The study introduces RESL, an algorithm whose design was

primarily driven by the need for rapid computation to process the

current 1.8 M barcode sequence records and to enable ongoing

adjustments in OTU boundaries linked to the incorporation of

over 10,000 new records each week. This requirement for speed

and scalability set limits on the analytical options that could be

considered for adoption. After reviewing prospects, RESL was

developed as a staged clustering process which employs single

linkage clustering as a tool for the preliminary assignment of

records to an OTU and a subsequent finishing step that employs

Markov Clustering (MCL), a graph analytical approach. MCL

employs topological information in the similarity network along

with distance values to partition a graph. It clusters records with

high sequence similarity and connectivity, and separates those with

lower similarity and sparse connectivity. Connectivity is explored

through random walks of the network [35], a process that exposes

regions of low traffic as potential cluster boundaries. True random

walks are computationally expensive, but MCL [36] uses

simulated walks to produce similar results at a much lower cost.

The MCL method analyzes weighted graph representations of

similarity networks where the graph summarizes pairwise

relationships among any set of objects. Sequence data are analyzed

by calculating distances between every pair of records and then

constructing graphs by defining each sequence as a node and

creating links between pairs of sequences whose distance is below a

certain threshold. The speed of MCL and its capacity to resolve

cluster boundaries beyond those achievable solely through single

linkage clustering makes it a useful ‘refinement step’ in OTU

designation. RESL defines the boundaries of each OTU selected

for analysis by generating clusters using a range of values for the

inflation parameter in MCL and then selects that which

maximizes the Silhouette index [37].

Species Recognition Through Sequence Analysis
Any algorithmic approach based on the analysis of sequence

diversity in a single gene region will be an imperfect tool for the

discrimination of closely related species as they will be overlooked

because of their low sequence divergence. Detailed morphological,

ecological, and genetic analysis can reveal such species (e.g. [38]),

but these additional sources of information are not required to

recognize the many species which possess deep sequence

divergence from their nearest neighbour. For example, Homo

sapiens shows 11% COI divergence from its nearest neighbour

species, and most other animal species have more than 4% COI

divergence from their closest relative [13,15,16]. Although species,

such as these, with deep divergence are readily discriminated,

more algorithmic finesse is required to optimize the discrimination

of divergences involving young species from those resulting from

The Barcode Index Number (BIN) System

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 8 | e66213



intraspecific variation. Although no algorithm will be perfect,

variation in performance is probable.

Benchmarking Algorithms for the Recognition of Animal
Species

This study evaluates the performance of five algorithms (ABGD,

CROP, GMYC, jMOTU, RESL) from two perspectives – their

speed, and their effectiveness in recovering species boundaries.

The speed of each algorithm was evaluated by determining the

time it required to process eight trial datasets. The efficiency of

each algorithm in recovering species boundaries was evaluated by

examining the correspondence between the OTUs recovered by it

and species memberships for each dataset. One statistical metric,

F-Measure [39], was employed to quantify the ability of each

algorithm to reproduce the reference groups (species in this case).

Although mathematically concise, this metric has the disadvantage

of being abstract and lacks a fixed scale of measurement (i.e. it can

only be compared within a single dataset). As a result, performance

was also evaluated by direct examination of the concordance

between the OTUs established by each algorithm and recognized

species boundaries. This comparison was implemented by

examining the correspondence between species and OTU

boundaries by placing each taxon into one of four categories:

MATCH, SPLIT, MERGE, or MIXTURE. A species joined the

MATCH category when all of its specimens were placed in an

OTU that had no other members, while it joined the SPLIT

category when it was assigned to more than one OTU that had no

other members. By contrast, a species placed in a single OTU

together with individuals of another species was assigned to the

MERGE category. Finally, each species showing a more complex

partition involving both a merge and a split was scored as a

MIXTURE (Figure 1).

Mapping Animal Diversity: the Barcode Index Number
(BIN) System

Although the selection of an effective, rapid algorithm for OTU

recognition is a key step in building a DNA-based registry for

animal species, it needs to be coupled with a persistent informatics

platform which maps each newly acquired sequence to an existing

OTU or recognizes it as a founder. Ideally, each OTU should also

be assigned a uniform resource identifier (URI) to enable the

indexation of information on its members and integration with

other data sources [40]. Finally, the system should be responsive to

input from users, allowing community validation and annotation

of the data associated with each OTU. The BIN system not only

meets these design criteria; it also incorporates three features

recognized as desirable in an interim taxonomic system – global

uniqueness of names, stability of the name assigned to each

specimen (or a clean audit trail), and the use of a distinctive lexicon

to avoid confusion with Linnaean names [41].

This paper begins by examining the concordance between

species inferred from prior morphological taxonomy and the

OTUs recognized by RESL. Its speed and capacity to recover

OTUs corresponding to known species are subsequently evaluated

against four other algorithms. The final section of the paper

describes varied aspects of the Barcode Index Number System

developed within BOLD [42] to register the OTUs delineated by

RESL.

Materials and Methods

RESL Methodology
RESL employs a staged process to assign DNA barcode

sequences to OTUs. The first step involves sequence alignment;

the second generates initial OTU boundaries based on single

linkage clustering, and the third evaluates opportunities for

refinement of OTU boundaries using Markov clustering. The

final step selects the optimal partitions for OTUs based on the

Silhouette index, a cluster validation method that measures how

tightly clusters are integrated [37]. Uncorrected pairwise distance

(p-distance) is employed for all distance calculations to avoid

assumptions about the model of sequence evolution, and to

maximize speed.

1. Alignment. A profile Hidden Markov Model [43] of the

COI protein [44] aligns the input sequences. Unlike pairwise or

multiple sequence alignment methods, this approach is computa-

tionally efficient and scales linearly with the number of sequences.

2. Initial Clustering. Single linkage clustering is performed

on the aligned sequence data. This approach ordinarily requires

the generation of a distance matrix for all pairs of sequences

followed by a clustering step where sequences are grouped based

on a pre-selected distance threshold [45,46]. RESL performs

distance calculations and clustering concurrently, employing the

transitive property to avoid distance determinations for sequences

that are certain to possess a divergence above the threshold. This

strategy is implemented by flushing all clusters to disk, and

retaining one or more representative sequences, depending on the

diameter of the cluster, for each cluster and inter-cluster distance

statistics in active memory, excepting those clusters whose

members show high variability (max intra-cluster distance

.2.2%, see below). The sequence divergence between each new

sequence and the representative(s) of all existing clusters is then

calculated. If its distance to any existing cluster is more than twice

the threshold [.4.4%], it is recognized as the founder of a new

cluster. If, on the other hand, it shows lower divergence, all

members of the closest cluster(s) are retrieved from disk to enable

more detailed analysis of sequence variation. This approach

considerably reduces computational requirements without com-

promising accuracy, and analysis is further expedited by moving

clusters to disk when they have seen no activity ( = gained new

members) for a number of cycles.

The implementation of single linkage clustering requires the

selection of a threshold parameter, t, which represents the level of

sequence divergence for the designation of OTUs. Early work [13]

suggested that a threshold value of 2% was effective because most

specimens showing more than this level of divergence represented

different species, while those with less divergence were usually

conspecific. However, this issue was examined in more detail by

inspecting the patterning of OTU recovery with variance in the

distance threshold for eight datasets (Table 1). Sixty single linkage

cluster analyses were generated for each dataset by stepping the

distance threshold parameter by an increment of 0.1% across the

range from 0.1%–6.0%. The OTUs recovered at each threshold

were subsequently evaluated for their concordance with recog-
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Figure 1. Possible patterns of association between species and
BINs. Although just two species are considered, they enable illustration
of the four possible patterns of association.
doi:10.1371/journal.pone.0066213.g001
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nized species boundaries (Figure 2). These analyses revealed that

maximal concordance was achieved by thresholds that varied from

a low of t = 0.7% (in North American birds) to a high of t = 1.8%

(in Bavarian moths). It also showed that performance, as measured

by the number of correctly recognized species, dropped steeply

when the threshold deviated on either side of optimality.

Thresholds higher than optimal inflated the number of cases

where members of different species were merged in a single OTU,

while thresholds lower than the optimal value increased the cases

where members of what are thought by current taxonomy to be a

single species were split into two or more OTUs. Based on these

analyses, a threshold (t) of 2.2% was adopted as it represents the

upper 99% confidence limit for the optimal thresholds in the eight

test datasets (�xx~1:26), SD = 0.40). Its adoption will lead to the

merger of some distinct clusters, but such cases are addressed in

the third step of the analysis.

3. Cluster Refinement. RESL employs Markov clustering

with an optimality criterion to verify and, where necessary, refine

the structure of any OTU with three or more members showing

some sequence variation. OTUs whose members lack sequence

variation and those with just one or two members cannot be

further partitioned through MCL so they are not reconsidered

until their membership grows. In essence, this step examines each

OTU selected for secondary analysis to determine if the MCL

algorithm [36] places its members in two or more discrete

sequence clusters. Under this approach, clusters whose members

show high sequence variation, but lack discontinuity remain as a

single OTU, while those whose sequence variation shows clear

internal partitions are assigned to two or more OTUs, even if their

separation is less than 2.2%. The MCL step enables the separation

of sequence clusters that would be overlooked by a fixed threshold,

but does not produce rampant amalgamation or fragmentation of

clusters. Clusters are not at risk of merger unless they sit close to

the sequence threshold. For example, if a cluster is founded by a

single individual with 6.0% sequence divergence from its nearest-

neighbour, there is no chance of amalgamation unless further

sampling reveals an extraordinary level of variation that bridges

the sequence divide. Cases do occur where specimens originally

assigned to the same cluster are separated when further sampling

reveals two distinct sequence clusters. In this case, the founder of

the first cluster retains its membership, while an audit trail tracks

information on the original cluster designation for those records

that move.

The MCL algorithm delineates clusters through simulated

random walks in the section of the graph surrounding each OTU

selected for analysis. This walk is achieved through the repeated

application of two functions, expansion and inflation, to a

stochastic matrix, M, representing the probability of a random

walker moving from one node ( = sequence) in the graph to

another. Expansion enhances traffic between nodes, while inflation

raises the probability of walks within highly connected regions.

The iteration of expansion and inflation ultimately results in stable

segmentation of the graph. The segments present at this

equilibrium point are treated as separate OTUs. Mathematical

details follow:

M is a non-negative matrix with the property that each of its

columns sums to 1. Each column j in the stochastic matrix

corresponds with node j ( = sequence j) of the graph. Row entry i

in column j (i.e. matrix cell Mij) corresponds to the probability of

walking from node j to node i (i.e. from sequence j to i). The

stochastic matrix is initialized by normalizing the edge weights ( =

sequence similarity) associated with each node in the graph such

that the probability of walking from node j to node i is defined by

both the similarity of the two sequences and the similarity between

node j and all other nodes.

Expansion involves taking the power of the stochastic matrix

using the normal matrix product; in this case, squaring the matrix.

Inflation generates the Hadamard power of the matrix, followed

by a scaling step to return matrix elements, which represent

probability values, to the range of 0–1. An inflation parameter, r, is

employed to tune the coarseness of the clusters. It can range from

1.0–10.0 with higher values producing finer-grained clusters.
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Figure 2. The correspondence between the species present in eight datasets and OTUs recognized through single linkage
clustering with sequence divergence thresholds ranging from 0.1–6.0%. Green indicates the number of OTUs whose members perfectly
match species; yellow shows those that merge members of two or more species; orange indicates cases where a species was split into two or more
OTUs and red represents a mixture of splits and merges.
doi:10.1371/journal.pone.0066213.g002
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RESL optimizes the inflation parameter for each of the single

linkage OTUs selected for refinement. It does this by analyzing

each using MCL with r values ranging from 1.0–2.4 at 0.2

increments before selecting the value producing the highest

Silhouette index.

OTU Pipeline On BOLD
A five-stage workflow on BOLD employs RESL to cluster

sequences and to assign each newly collected sequence to an OTU

(Figure 3).

1. Quality Checks. Each new sequence is first filtered for

quality, a process that excludes any record with less than 500 bp

coverage for the barcode region of COI or with more than 1%

ambiguous bases. If a sequence meets these quality requirements,

it is then checked for reading frame shifts as indicated by stop

codons or improbable peptides given the COI profile [44].

Because sequences showing these attributes are likely to derive

from pseudogenes, they are excluded. Sequences are then screened

to ensure that they do not derive from bacterial (e.g. Wolbachia) or

certain external (e.g. human, mouse) contaminants by matching

the sequence recovered from each specimen against a reference

library of bacterial and selected vertebrate sequences. Finally,

when a sequence record originates from the assembly of two or

more shorter sequences, the Bellerophon package [47] is utilized

to check for possible chimeras that would arise if the component

sequences inadvertently (e.g. contamination, laboratory error)

derived from two different taxa.

2. Sequence Alignment. Each sequence that passes all

quality checks is translated to amino acids and aligned to a

Hidden Markov Model (HMM) of the COI protein [43]. The

aligned amino acids are back translated to nucleotides to produce

a multiple sequence alignment.

3. Single Linkage Clustering. The next stage of analysis

groups all sequences with a pairwise distance less than 2.2%,

merging previously established groups when sequences are

encountered that bridge a former sequence gap. The outcome is

deterministic for any set of sequences, and the resulting clusters are

not affected by their order of entry. Under this analytical regime,

no member of any cluster is closer than the threshold (t = 2.2%) to

any sequence in another cluster, but cluster diameters may be

greater than the threshold.

4. Markov Clustering. The cluster refinement stage takes

the OTUs identified by single linkage clustering as input. When an

OTU shows low distance (,4.4%) from another OTU(s), these

neighbors are collapsed into a single unit before MCL clustering is

used to allow more rigorous validation of their separation. MCL is

run on the targeted OTUs, using inflation parameters ranging

from 1.0–2.4 at intervals of 0.2, producing 8 refinement options

for each OTU analyzed.

5. Silhouette Criterion. The final stage takes the candidate

clustering schemes generated by the 8 inflation parameter values

with Markov clustering and generates a Silhouette score for each.

The scheme with the maximum score is selected and reported

while alternate schemes are discarded.

Performance Comparison
Eight datasets were employed to test the performance of the five

algorithms available for OTU recognition (Table 1). These

datasets include four taxonomic groups (birds, fishes, moths and

butterflies, bees) from two climatic regimes (temperate, tropics).

Global barcode coverage is not available for any major taxonomic

group, but these datasets examine taxon assemblages at both

regional and continental scales. Each dataset only includes records

that were associated with a valid taxonomic name; sequences

associated with interim names were excluded. Seven of the

datasets derive from a published study and have been placed in

datasets on BOLD (Table 1), while the eighth includes new records

which provide comprehensive coverage for the North American

representatives of the Plusiinae, a moth subfamily (dx.doi.org/

10.5883/DS-PLUSNA1 or GenBank accessions in Table 1).

These eight datasets have varying sampling densities, with the

average number of specimens per species ranging from 2.2 to 17.3

(Table 2). Mean intraspecific variation and nearest-neighbour

distances also show substantial heterogeneity among the species in

each dataset. In testing the performance of the algorithms, the

taxonomic assignment for each record in these trial datasets was

treated as a ‘truth’. However, it is important to recognize that

these assignments may be imperfect, even for these well-studied

groups.

The results generated by RESL were compared with those

obtained through analysis of the same test datasets with the other

four algorithms although GMYC was not examined for the largest

Table 1. Eight datasets used to test the performance of algorithms for OTU delineation.

Datasets GenBank Accessions Records on BOLD Source Publication

Birds (Argentina) Subset of 1589 from [FJ027014: FJ028607;
HM37669:HQ955631]

dx.doi.org/10.5883/DS-AVESNT1 [63]

Birds (North America) Subset of 1936 from [DQ432694: DQ434845] dx.doi.org/10.5883/DS-AVESNA1 [64]

Bees (Ireland) Subset of 231 from [JQ909638: JQ909880] dx.doi.org/10.5883/DS-BEEIRE1 [65]

Fishes (Australia) Subset of 753 from [DQ107581:DQ108334] dx.doi.org/10.5883/DS-FISHAUS1 [15]

Fishes (Canada) Subset of 1359 from [EU522398: EU525162] dx.doi.org/10.5883/DS-FISHCAN1 [66]

Geometrid Moths (Bavaria) Subset of 649 from [GU654862:GU707400;
HM37669:HQ955631]

dx.doi.org/10.5883/DS-GEOBAV1 [52]

Moths and Butterflies (North
America)

Subset of 11144 from [AF549607AF549807;
EF380034:EF380093; GU087155: GU439197; HQ964351:
HQ964544]

dx.doi.org/10.5883/DS-LEPNA1 [67]

Plusiinae Moths (North
America)

Subset of 1191 from [JN276649: JN276703;
JF842288:JF860650; HQ682249:HQ971874;
HM375761:HM907009; GU087601:GU803711;
FJ412191:FJ412987; AF549706:AF549755;
KC846141:KC846779]

dx.doi.org/10.5883/DS-PLUSNA1 N/A

doi:10.1371/journal.pone.0066213.t001
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dataset (because of its long run time). CROP and jMOTU

incorporate sequence alignment into their clustering process, while

ABGD and the phylogeny reconstruction step for GMYC require

pre-aligned sequences which were generated with the MAFFT

package [48]. GMYC also requires the construction of a

bifurcating, ultrametric tree which was generated using BEAST

[49]. Prior to phylogeny reconstruction, the most appropriate

model of evolution was separately estimated for each dataset from

alignments using jModelTest [50]. A GTR model with gamma-

distributed substitution rates was selected for all datasets along

with an estimated proportion of invariant sites. A Yule prior was

used and the remaining model parameters were estimated from

the data. A Bayesian search was performed on each dataset for

10 M generations logging every 1 K. The resultant logs were

analyzed in TREEANNOTATER [49], selecting the tree with the

maximum clade credibility while retaining node heights. The

SPLITS package (http://r-forge.r-project.org/projects/splits) in R

was utilized for GMYC calculations. GMYC was performed using

the single-threshold strategy and default scaling parameters.

Clusters were extracted from GMYC data objects using the APE

package [51]. The other four algorithms require the specification

of input parameter values that control the granularity of clustering.

Parameters for ABGD, CROP, and jMOTU were selected to

maximize the number of clusters that matched existing species

(ABGD: p = 0.005, P = 0.1, n = 20, d = 1, s = 0.1; CROP: l = 0.36,

u = 0.6, m = 15; jMOTU: t = 12 bp). Parameter selection for

jMOTU, ABGD, and CROP was accomplished by testing a range

of parameter values for each method before selecting those values

that maximized the overall MATCHES across the eight test

datasets. When multiple parameter values resulted in the same

maximum, the values minimizing the number of MERGES,

SPLITS, and MIXTURES were selected, as the performance

criterion involved selection of the algorithm that best recovered

the species boundaries recognized by current taxonomy, a

condition that is satisfied by maximizing MATCHES and

minimizing the other categories.

Results

RESL Performance
Each of the eight test datasets was analyzed with RESL using

the standard parameters (Single linkage clustering t = 2.2%;

Markov clustering, r = 1.0–2.4). The OTU counts resulting from

this analysis showed extremely high correlation (R2 = 0.999) with

the number of species in the datasets (Figure 4). A more rigorous

evaluation of the performance of RESL was accomplished by
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Figure 3. BIN pipeline for OTU generation employing RESL.
OTUs initially generated through single linkage clustering are subse-
quently refined through Markov clustering.
doi:10.1371/journal.pone.0066213.g003

Table 2. Properties of the eight datasets used in testing performance of algorithms for OTU delineation.

Datasets Species Sequences
Sequences per
Species

Mean Max-Intraspecific
Distance Mean N-N Distance

Birds (Argentina) 497 1589 3.2 0.39 8.20

Birds (North America) 575 1936 3.4 0.43 6.70

Bees (Ireland) 56 231 4.1 0.48 8.87

Fishes (Australia) 212 753 3.6 0.50 8.73

Fishes (Canada) 190 1359 7.2 0.40 7.68

Geometrid Moths (Bavaria) 298 649 2.2 0.36 7.11

Moths and Butterflies (North America) 1327 11144 8.4 0.77 5.96

Plusiinae Moths (North America) 69 1182 17.3 0.52 3.53

doi:10.1371/journal.pone.0066213.t002
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mapping known species onto the OTUs (Figure 5), and placing

each species into one of the four categories (MATCHES, SPLITS,

MERGES, MIXTURES). For example 52 of the 56 bee species

from Ireland were assigned to a unique OTU (52 MATCHES),

two were merged into an OTU (2 MERGES) and two other

species were split into four OTUs (2 SPLITS). When viewed across

the eight datasets, RESL performed well, with 89.2% of species in

the MATCHES category, 2.7% in SPLITS, 7.9% in MERGES,

and 0.3% in MIXTURES. The relatively high incidence of

MERGES reflects the fact that RESL treats sequence divergences

conservatively, pooling taxa showing low divergence rather than

partitioning them. The low incidence of SPLITS in the Bavarian

geometrid study reflects the fact that 14 species with the deepest

intraspecific divergence were excluded from consideration in that

paper to await detailed taxonomic study [52].

Performance Comparison of Algorithms for OTU
Recognition

Taxonomic Concordance Trials. Figure 6 compares the

performance of ABGD, CROP, jMOTU, and RESL in analysis of

the largest dataset, the Lepidoptera of Eastern North America.

Results for GMYC are unavailable because analysis was incom-

plete after the established time limit of two weeks. However, the

performance of GMYC and RESL for other datasets is compared

later. CROP, jMOTU, and RESL produced an OTU count that

closely approximated the actual species number (1327), but the

ABGD algorithm inflated it by about 100 species, reflecting its

tendency to split sequence clusters. The tally of OTUs involved in

MERGES, MIXTURES and SPLITS provides a measure of the

departure of the OTUs recovered by each algorithm from

recognized taxonomy. Viewed from this perspective, RESL was

top performer (12.5% taxonomic discordance) for the Lepidoptera

of North America dataset, while CROP was weakest (27.4%).

When this comparison was extended to all eight test datasets,

RESL demonstrated the strongest performance as it either tied or

achieved top ranking in MATCHES for 6 of the 8 datasets

(Figure 7). On average, it scored 89.2% MATCHES versus 85.2%

for ABGD, 85.2% for CROP, and 74.3% for jMOTU. In the two

cases where it was not the top performer (Birds of the Argentina,

Birds of North America), it was a close second. RESL performed

considerably better than the other three approaches on the

Plusiinae, the dataset with the largest number of specimens per

species and the narrowest barcode gap (Table 2), reflecting its

capacity to effectively delineate cluster boundaries in groups with

low interspecific distances. RESL also showed more consistency in

MATCHES (range = 82.6–97.3%, SD = 4.8%) than the next best

result with CROP (range = 78.4–95.6%, SD = 6.9%). Finally,

RESL showed the lowest incidence of SPLITS (�xx~2:7%) and

MIXTURES (�xx~0:3%) with the next best option, CROP,

showing nearly twice as many SPLITS and over three times as

many MIXTURES.

The performance of the four algorithms was also compared

using the F-Measure [39] index which returns values from 0 to 1

with 1 indicating perfect reproduction of the ground-truth

partitions (Appendix S1). RESL performed best or tied for top

score in 7 of 8 datasets with this test (Table 3).

Time Trials. The run-time for RESL was compared with

those for the other three algorithms on a 2012 model iMac with an

i7 Intel processor and 8 gigabytes of memory. CROP, jMOTU,

and RESL could take advantage of the four CPU cores on this

system and were allowed to do so. This analysis revealed that run

times for all four algorithms rose in an almost linear fashion with

increasing size of the dataset (Figure 8). However, RESL was more

than 100 times faster than any of the other methods, completing

the largest dataset (11.1 K sequences) in less than 2 minutes versus

541 minutes for the next fastest option (ABGD). More important-

ly, it showed the closest approach to linear computational

complexity, a feature critical to the analyses of the barcode

sequences on BOLD (1.81 M circa April 2013).

Performance Comparison of GMYC and RESL. GMYC

differs from the other algorithms as it utilizes a model of speciation

to generate OTUs and requires a phylogeny rather than sequences

as input. In order to generate OTU assignments, GMYC requires

time for both phylogeny reconstruction and GMYC calculation.

When it was applied to the largest dataset (Lepidoptera of North

America), GMYC failed to complete the phylogeny reconstruction

OTU Count

Figure 4. Correspondence between OTUs generated by RESL and the number of species in eight datasets.
doi:10.1371/journal.pone.0066213.g004
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step within the two week limit set in the study design

(approximately another week would have been required to

complete this step). As such, the performance of GMYC and

RESL was only compared for 7 datasets.

GMYC and RESL showed similar overall taxonomic perfor-

mance (Figure 9), although RESL produced slightly more

MATCHES (+0.2%), fewer SPLITS (22.8%) and fewer MIX-

TURES (20.7%), while GMYC generated fewer MERGES

(22.2%). Additionally, both algorithms showed a similar level of

consistency in MATCHES (SD = 4.8%). Although their taxonom-

ic performance was congruent, there was a dramatic difference in

Figure 5. Comparison of BIN and species boundaries in eight datasets. Each inner ring partitions species, based on their assignment to BINs
as MATCHES (green), MERGES (yellow), SPLITS (orange) or MIXTURES (red). Each outer ring categorizes BINs into those that MATCHED species,
MERGED species, SPLIT species or MIXTURES using the same colour scheme. The number below each chart is the OTU count while the percentage
indicates the incidence of OTUs that were not MATCHES.
doi:10.1371/journal.pone.0066213.g005
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their run times; GMYC required 5000 times longer than RESL to

complete the OTU assignments for the 7 test datasets (Figure 10).

Implementation
Because of its strong taxonomic performance and speed, RESL

was adopted to generate OTUs for the barcode sequences on

BOLD [42]. Each of the OTUs resulting from this analysis was

subsequently assigned a unique alphanumeric code with a

standard structure (BOLD: 3 letters, 4 numbers). The overall

informatics system supporting the indexing, storage, and retrieval

of the OTUs produced through this application of RESL was

termed the Barcode Index Number (BIN) System. It provides an

index of unique identifiers, a database of specimens belonging to

each BIN with their associated metadata, and an interface

facilitating data access. The module employs Java for middleware,

PHP and Javascript for the interface, and MongoDB (mongod-

b.org) as the database engine. The BIN pipeline analyzes new

sequence data for the barcode region as they are uploaded to

BOLD. Sequences that establish a new BIN add an entry to the

BIN index, while sequences assigned to an existing BIN contribute

their metadata to it. Each BIN is presented as a single page that

exposes the aggregate data for its members. However, each BIN

page holds sequence information private until data release is

authorized by the submitter. Aside from revealing the gestalt of

BIN pages, Figure 11 provides a sense of RESL’s performance.

For example, specimens of Danaus plexippus show just 1.88%

divergence from their nearest neighbour, D. cleophile, but the two

taxa were assigned to different BINs because of the clear break

between intra- and interspecific divergence.

Because the BIN system gains power with increasing species

coverage, records have been analyzed which are not fully

compliant with the DNA barcode standard. Although all records

in the BIN registry meet the sequence standard (.500 bp, ,1%

n), some lack the specimen data required to qualify for formal

barcode designation. These non-compliant records are a minority

because 1.68 M of the 1.81 M records derives from BOLD and

nearly all (99.7%) have the required linkage to a voucher specimen

and geospatial data. However, many of the 0.12 M records from

GenBank lack connection to a voucher specimen and only 14.5%

possess country information. BIN pages that include one or more

fully compliant specimen records (sequence record .500 bp with

,1% n and with trace files available, voucher specimen with at

least country of origin) have been assigned a green flag, while those

only based on incomplete records are marked in yellow.

The full BIN database is available at http://www.boldsystems.

org/bin with an interface that supports four primary functions:

search, browse, download, and annotate. Any BIN can be

retrieved by its identifier or by features (geography, taxonomy,

attribution metadata, literature references) associated with its

members. Users can retrieve and download BIN data for any

taxonomic group, or for a particular geographic region(s). When a

search returns multiple BINs, users can browse the list, review

summary information (taxonomy, geography, number of mem-

bers) or obtain details on a particular BIN by selecting it.

BIN Data Model. Each BIN owes its initial establishment to

a single record, but this founder is often joined through time by

other sequences which match it or which show low divergence

from it. The addition of each new record increases the clarity of

the BIN boundaries in sequence space. BINs for common species

eventually gain many records, while those for rare species may

never be represented by more than one or two. As such, some

BINs inevitably gain far richer metadata than others. BINs are

defined by their member records and the data model reflects this

by aggregating information on taxonomic assignments, points of

collection, images, sequences, and attribution details for all

member specimens. Key data elements include the following:

N N Taxonomy: A summary of the formal and interim taxonomic

assignments for all members of each BIN including higher

taxonomic ranks. Each level in the taxonomic hierarchy

associated with a BIN shows the number of the records

attributed to a particular taxon. Cases of discordance are

highlighted. Linkages between taxon names and the associated

records are maintained so that taxonomic annotations made

on a BIN can also be linked to individual records. It is

important to emphasize that because BOLD is a workbench,

the taxonomic summary includes both published and unpub-

lished records. Users will encounter discordant taxonomic

assignments, especially among unpublished records, but

majority rule is a useful way to gauge the validity of a

particular identification. For example, if most specimens are

assigned to one species and these identifications derive from

several taxonomists, this assignment is more likely to be correct

than any ‘outlier’ identifications.

ABGD CROP jMOTU RESL

Figure 6. A comparison of the performance of four algorithms in OTU assignments for the Lepidoptera of eastern North America
dataset. Each inner ring partitions species, based on their assignment to BINs as MATCHES (green), MERGES (yellow), SPLITS (orange) or MIXTURES
(red). Each outer ring categorizes BINs into those that MATCHED species, SPLIT species, MERGED species or MIXTURES using the same colour scheme.
The number below each chart is the OTU count while the percentage indicates the incidence of OTUs that were not MATCHES.
doi:10.1371/journal.pone.0066213.g006
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N N Distribution: All unique sampling coordinates are gathered

together with a count of the number of specimens at each site.

Coordinates are linked to their original records to allow

annotation.

N N Images: Images for all member records are grouped by

taxonomy and by orientation (e.g. ventral, dorsal).

N N Sequences: Sequences are represented in three ways: 1) as a

histogram of distances generated from all pairwise compari-

sons within the BIN together with a representative of the

nearest neighbouring BIN, 2) as a neighbor-joining tree [53]

and as a haplotype similarity network diagram.

N N Micro-Attribution: Attribution details for each record are

provided with collector, identifier, photographer, sequencing

facility, and specimen depository as primary fields. Attribution

is tallied and sorted based on the number of records associated

with each individual or institution.

Because key elements of specimen records on BOLD, especially

taxonomic assignments, are frequently revised by data providers

and because of the high flow of new records, BIN metadata are

dynamic. MongoDB, a document database, was adopted because

of its strong ability to deal with complex, evolving data structures

where updates are frequent [54].

BIN Identifiers. Each BIN is assigned two identifiers upon its

establishment – a BOLD-generated URI and a Document Object

Identifier (DOI). The URI is an internally managed alphanumeric

identifier that is incremented with each new BIN. The BOLD

Figure 7. A comparison of the performance of the ABGD, CROP, jMOTU, and RESL algorithms in OTU assignments for eight
datasets. Each bar consists of four categories: green – percent of MATCHES, yellow – percent of MERGES, orange – percent of SPLITS, red – percent
of MIXTURES.
doi:10.1371/journal.pone.0066213.g007
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acronym is used as a prefix for the URIs to ensure their

discrimination from identifiers employed by other databases (e.g.

BOLD:AAA0001 is the BIN for Homo sapiens). The DOI for each

BIN is provided through the DataCite project (datacite.org),

ensuring long-term persistence and resolution through the global

registry hosted at dx.doi.org (e.g. DOI for H. sapiens is dx.doi.org/

10.5883/BOLD:AAA0001). The assignment of a DOI also

enables each BIN to gain citation through standard practices

[55]. Centralized resolution of identifiers is particularly important

in the case where two BINs are merged due to the submission of

new sequence data which bridge a former gap or where a single

BIN is split into two or more BINs when further sampling exposes

a divide. In the event of a merger, following conventional

taxonomic practice, the more recently registered BIN is synony-

mized. In the case of a SPLIT, a new BIN is established and a

disambiguation option is presented. In both cases, the DOI is

amended to resolve lookups to the merged BIN or to the new BIN,

ensuring that the original identifiers are never lost.

Community Annotation. Each BIN page incorporates

collateral data and metadata provided by the record providers.

As well, BIN metadata can gain third-party annotation through

tags which employ controlled vocabularies, and free text

commentary. Annotation is dynamically linked to the primary

data elements in the specimen records on BOLD, becoming a

permanent part of each record. This ensures that the annotation is

visible whenever the impacted data elements are displayed,

maximizing the value of each annotation. These tags can be

viewed as community voting tools which enable expert groups to

better evaluate the accuracy of taxonomic assignments and other

metadata.

BIN Partitions. As noted earlier, RESL merged 7.9% and

split 2.7% of the species in the eight test datasets. These cases of

discordance between BIN assignments and current taxonomy can

have four explanations. They may reflect taxonomic error,

sequence contamination, deficits in RESL, or the inability of

sequence variation at COI to diagnose species because of

introgression or their young age. Some discordances undoubtedly

arise from taxonomic error with MERGES representing cases of

overlooked synonymy, and SPLITS reflecting overlooked species.

However, many MERGES have another cause; RESL fails to

partition very young species because of their limited sequence

divergence. Because many of these species do possess diagnostic

nucleotide substitutions in the barcode region (e.g. 38), the BIN

system is being extended to incorporate expert decisions in such

cases. Where two or more species with diagnostic substitutions

have been merged in a BIN, an expert may divide this BIN by

specifying the position of the diagnostic nucleotides that allow their

discrimination. These new divisions are treated as partitions of the

existing BIN by extending the URI with a decimal value. For

example, BOLD:AAB2314.1 and BOLD:AAB2314.2 would

Table 3. A comparison of the performance of four clustering
algorithms with the F-Measure.

F-Measure

ABGD CROP jMOTU RESL

Birds (Argentina) 0.86 0.86 0.79 0.86

Birds (North America) 0.83 0.82 0.82 0.83

Bees (Ireland) 0.92 0.92 0.90 0.92

Fishes (Australia) 0.88 0.88 0.83 0.88

Fishes (Canada) 0.94 0.96 0.97 0.95

Geometrid Moths (Bavaria) 0.71 0.71 0.62 0.71

Moths & Butterflies (North America) 0.88 0.88 0.90 0.90

Plusiinae Moths (North America) 0.87 0.90 0.85 0.93

doi:10.1371/journal.pone.0066213.t003

(m=0.1)

(m=0.05)

(m=0.05)

RESL

Figure 8. Computational time required by the ABGD, CROP, jMOTU, and RESL algorithms to generate OTUs for eight datasets.
doi:10.1371/journal.pone.0066213.g008
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indicate two species of tuna, Thunnus, that only differ by a single

nucleotide substitution in the barcode region. The use of this

decimalized BIN notation has the advantage of providing a clear

signal that the results of the automated BIN workflow has gained

further resolution through the intervention of an expert. More-

over, each of the decimalized URIs does receive a unique DOI to

allow the retrieval of information on its members.

Discussion

This paper describes the establishment of the Barcode Index

Number (BIN) system as a persistent registry for animal OTUs

recognized through sequence variation in the COI DNA barcode

region. Its development had two primary motivations – to enable

evaluations of biodiversity patterns in advance of fully developed

taxonomy and to aid taxonomic progress. It builds on prior studies

which have established that most animal species show less than 2%

intraspecific variation at COI, but more than 4% divergence from

their nearest neighbour [13,56]. Several earlier studies have

capitalized on this pattern of sequence variation to develop

algorithms for the estimation of species numbers [25,27,28,31]. All

do a good job, but they were designed for a different purpose – to

analyze sequences resulting from a single study. As such, their

scalability has not been tested, and none developed the informatics

platform needed to store and compare the OTUs encountered in

different studies. By contrast, this study has developed a persistent

registry for OTUs, and an informatics platform enabling their

storage and retrieval by expanding the capabilities of BOLD [42].

The two-algorithm process used by RESL to delineate OTUs

(single linkage cluster analysis followed by Markov clustering)

performed strongly, delivering OTU counts with close concor-

dance to actual species numbers in eight datasets. However, this

congruence concealed a discrepancy – just 89% showed a perfect

match to a recognized species. The much closer correspondence

(99%) between the species and OTU counts was a product of the

merger of some species in a single OTU and the partitioning of

others. These results indicate that species counts can be estimated

Figure 9. A comparison of the performance of the GMYC and RESL algorithms in OTU assignments for eight datasets. Side by side
comparisons for MATCHES, LUMPS, SPLITS, and MIXTURES.
doi:10.1371/journal.pone.0066213.g009

Figure 10. Computational time required by the GMYC and RESL algorithms to generate OTUs for eight datasets.
doi:10.1371/journal.pone.0066213.g010
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Figure 11. BIN page for Danaus plexippus (Linnaeus, 1758), the monarch butterfly.
doi:10.1371/journal.pone.0066213.g011
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with high accuracy through RESL, but that OTUs and species

show lower overlap.

The taxonomic performance of RESL was stronger than that of

ABGD, CROP, and jMOTU, but similar to that of GMYC.

RESL delivered the highest incidence of MATCHES (89.2%)

across the eight test datasets versus 85.2% for its closest

competitor, CROP, and showed the least tendency to create

SPLITS or MIXTURES. The performance of ABGD was very

close to that of CROP and was slightly improved when the best

partitioning scheme, of the multiple schemes output by the

algorithm, was selected for each dataset, but it still delivered fewer

MATCHES (86.8%) than RESL. GMYC, which could only be

run on 7 of the 8 datasets, delivered a similar percentage of

MATCHES as RESL, but required over 5000 times the

computational effort to achieve this result. In fact, RESL

generated OTU assignments 100 times more rapidly than the

next fastest option. Its speed is a major advantage, enabling the

1.8 M COI sequences on BOLD to be reanalyzed every three days

(on an IBM 63650 server with 24 CPU cores and 36 gigabytes of

RAM), allowing rapid adjustments in the OTU array. Based on its

speed and taxonomic performance, RESL was adopted as the

algorithmic approach to underpin the Barcode Index Number

System, a new module on BOLD which provides a persistent

registry for the OTUs which, after gaining a DOI and URI, are

termed a BIN.

The eight test datasets included three that targeted a regional

fauna (Bavaria, Ireland, Argentina) and five that involved

continental-scale analysis. The incidence of discordances was

slightly higher in the latter studies, likely reflecting the impact of

regional variation in barcode sequences. Cases of discordance

between BINs and accepted species boundaries merit investigation

to ascertain their source. Taxonomic errors are undoubtedly

responsible for some conflicts – cases of unrecognized synonymy

explain some MERGES, while overlooked species create many

SPLITS. Prior work has shown that the incidence of SPLITS rises

with geographic scale. For example, in a study of 778 species of

European geometrid moths, Hausmann [57] found that 7% of the

taxa showed deep sequence divergence in local populations, but

that the frequency of such cases rose to 17% when analysis

spanned Europe. At least some, if not much, of this increase may

involve reproductively isolated lineages that are not currently

recognized as different species. Certainly, divergences at COI in

excess of 2% are usually associated with reproductive incompat-

ibility in freshwater fishes [58]. However, some SPLITS detected

in our analyses likely reflect situations where intraspecific

divergence is unusually high as a consequence of the inclusion of

two or more phylogeographic lineages [59]. In these cases,

sequence clusters assigned to different BINs actually represent a

single species. Such cases create no major difficulty – the BINs can

share a species name and an annotation indicating that they

represent a single species. While most SPLITS likely involve

overlooked species, many MERGES arise from the difficulty in

diagnosing closely allied species. Cases linked to mitochondrial

introgression will never be resolved through mtDNA analysis [60],

but might be partitioned through the analysis of one or more

nuclear genes, suggesting that one future improvement for BIN

delineation in these rare cases would involve the tactical

incorporation of nuclear gene information. BOLD is prepared to

support an identification service based on multiple markers as the

current version (v3.0) can store data on up to 150 gene regions.

Although additional sequencing will be required in cases of

introgression, many MERGES appear to have a simpler

explanation – they involve young species that show so little

sequence divergence that they cannot be separated algorithmical-

ly. However, many of these merged species do show diagnostic

nucleotide substitutions in the barcode region that are correlated

with the morphological or ecological traits used in species

diagnosis [38]. This fact motivated the development of a

decimalization option, which provides formal recognition for

those BIN partitions that separate species that are too similar to

gain algorithmic detection, but that possess diagnostic sequence

characters in the barcode region.

The BIN system does not stand in isolation. There is an ongoing

drive to improve the Linnaean taxonomic assignment for all

records on BOLD that lack species-level resolution. Table 4

reveals the extent of taxonomic uncertainty surrounding current

BINs; 46% lack a species designation and 8% lack a family. This

taxonomic uncertainty needs to be tackled strategically with initial

efforts focused on securing a family assignment for every BIN. This

work can be achieved with reasonable effort and the results will be

immediately useful because many biological insights accompany

this increased resolution. For example, an OTU assigned to the

order Diptera brings little insight beyond the fact that its members

are insects with two wings. By contrast, assignment to the family

Culicidae indicates an aquatic larval lifestyle, adult females which

bite, and a possible role in vectoring disease. Once every BIN has

been assigned to a family, efforts can be directed towards gaining

generic and finally species-level resolution. This work will create a

positive feedback loop because BOLD gains increasing power to

place new taxa within the Linnaean hierarchy as taxonomic

parameterization rises. For example, because nearly 50% of the

150 K described species of Lepidoptera now have a barcode

record, BOLD is able to correctly assign most newly encountered

specimens in this order to a family. Despite uncertainty in

Table 4. Taxonomic information associated with specimen records and BINs on BOLD. Of the 2 M sequence records on BOLD,
1.81 M met the quality standards for a BIN assignment and they include representatives of 274 K BINs.

BINs (274K) SPECIMENS (1.81M)

Rank Taxonomic Conflict Lacking Linnaean Name Lacking Linnaean Name

Phylum 0.0% 0.0% 0.0%

Class 0.0% 0.1% 0.3%

Order 0.1% 0.8% 1.1%

Family 1.6% 10.1% 11.7%

Genus 4.1% 23.7% 19.0%

Species 12.8% 46.0% 40.3%

doi:10.1371/journal.pone.0066213.t004
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taxonomic placement, the BIN system enables examination of

many issues that typically require species-level identifications. For

example, it provides a powerful tool to assess local biodiversity;

one recent study exploited BINs to reveal unprecedented diversity

in soil mites at an arctic site [61]. Aside from enabling estimates of

alpha diversity, BIN analysis permits examination of species

turnover in space and time, enabling biotic change to be tracked

with more precision than previously possible [62].

Future research will undoubtedly reveal analytical approaches

that are better at recognizing species boundaries from sequence

information than RESL, reflecting the benefits of increasing

sample sizes, and rising taxonomic and geographic coverage. Aside

from general algorithmic adjustments, we anticipate that RESL

will be ‘tuned’ to maximize its performance for particular

taxonomic groups or environments. For example, if patterns of

sequence divergence differ in systematic ways among species in

different taxonomic assemblages (phylum, class), in diverse

habitats (e.g. marine, freshwater, terrestrial) or among those with

differing capacities for dispersal (e.g. flight, no flight), the Markov

clustering step in RESL can be adjusted through modification of

the inflation parameter. The prospects for future analytical

improvements provide no reason to delay implementation of the

BIN registry – all sequence records remain available for reanalysis.

Moreover, many BIN assignments will be stable despite algorith-

mic adjustments because the species that they represent are deeply

divergent from allied taxa. Furthermore, when adjustments are

made, it will be straightforward to incorporate an audit trail

tracing the past history of each BIN.

By creating a structured registry for OTUs, the BIN system

provides the species-level information needed to empower

biodiversity science. It delivers a much-needed identification

service for the animal kingdom, breaking barriers created by the

lack of specialists available to carry out routine identifications. By

assigning specimens to OTUs that closely approximate species and

by aggregating collateral data, the BIN system also illuminates

dark taxa [19], revealing their distributions, morphologies and, as

taxonomic parameterization advances, their coordinates in Lin-

naean space.

Supporting Information

Appendix S1 Cluster Accuracy Measure. A description of

the F-Measure statistic which is used to produce a single measure

of concordance between the prior taxonomy and the OTUs

generated by ABGD, CROP, jMOTU, and RESL.
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