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Abstract

Background: In natural populations, individuals are infected more often by several pathogens than by just one. In such a
context, pathogens can interact. This interaction could modify the probability of infection by subsequent pathogens.
Identifying when pathogen associations correspond to biological interactions is a challenge in cross-sectional studies where
the sequence of infection cannot be demonstrated.

Methodology/Principal Findings: Here we modelled the probability of an individual being infected by one and then
another pathogen, using a probabilistic model and maximum likelihood statistics. Our model was developed to apply to
cross-sectional data, vector-borne and persistent pathogens, and to take into account confounding factors. Our modelling
approach was more powerful than the commonly used Chi-square test of independence. Our model was applied to detect
potential interaction between Borrelia afzelii and Bartonella spp. that infected a bank vole population at 11% and 57%
respectively. No interaction was identified.

Conclusions/Significance: The modelling approach we proposed is powerful and can identify the direction of potential
interaction. Such an approach can be adapted to other types of pathogens, such as non-persistents. The model can be used
to identify when co-occurrence patterns correspond to pathogen interactions, which will contribute to understanding how
organism communities are assembled and structured. In the long term, the model’s capacity to better identify pathogen
interactions will improve understanding of infectious risk.
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Introduction

Many research disciplines in ecology seek to decipher processes

behind species co-occurrence (e.g. community ecology [1]; macro-

ecology [2,3]; parasitology [4]). In medicine and epidemiology, a

growing number of studies are reporting simultaneous infections

by microorganisms which can be pathogenic in many different

mammal hosts (wild and domestic animals and humans [5–8]).

Pathogen interactions are of crucial medical concern because they

can alter host susceptibility, infection length and clinical symp-

toms. From an epidemiological point of view, interactions may

modify infectious risk. For example, in Drosophila melanogaster,

infection with the bacterial symbiont Wolbachia increases resistance

to some natural pathogens of Drosophila, the RNA virus [9]. How

different taxa of microorganisms assemble can indicate their

interaction within individual hosts. However, positive or negative

co-occurrence of microorganisms that are due to interactions must

be distinguished from those merely due to confounding factors

such as environmental, behavioural and physiological host

susceptibility (e.g. age, sex, location, season [10,11]). For example,

apparent associations in humans between the agent of Malaria and

helminth infections may be due to common social or environ-

mental factors rather than a true biological interaction [12].

In host populations, interactions between two microorganisms

are suspected when the probability of coinfection is not random

once confounding factors have been taken into account. Longi-

tudinal studies, where host individuals are recaptured several

times, allow the sequence of infection to be investigated to test

whether infection by a given microparasite taxon modifies the

infection probability by a subsequent one. For example, Telfer

et al. [13] used a Generalised Linear Mixed Models (GLMM) to

quantify the statistical interactions between the occurrence of 12

pairs of microorganisms in field vole populations. Such an

approach is limited to infectious agents which can be detected
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without euthanizing the hosts, such as skin or blood microorgan-

isms [11]. In cross-sectional studies, where many microorganisms

can be detected, two main approaches are used. First, exploratory

statistics investigate whether associations between taxa are

statistically significant. The most popular method is the Chi-

square test [14] because no a priori knowledge on the biological

data studied is needed, and it is easy to implement [15]. To

discriminate real biologic interactions from statistic associations,

an improved Chi-square test has been further developed to take

into account confounding factors (see [10]). In this study, Hellard

et al. have applied their improved Chi-square test to four feline

viruses: the Feline Immunodeficiency Virus (FIV), the Feline

Herpesvirus (FHV), the Feline Calicivirus (FCV) and the Feline

Parvovirus (FPV). However, Chi-square tests are not very powerful

and do not give any details on the way an interaction works, i.e. the

direction of the interaction or its intensity. Other exploratory

approaches have been developed to detect statistical associations

such as multivariate analyses (PCA, FCA) [16] and the network

methods [17], which allow an overview of complex systems and

can account for the organization of species interactions with each

other. The second main approach used in cross sectional studies is

based on the explanatory modelling of processes. The most well-

known example of this type of approach is deterministic modelling

(e.g. SIR or Susceptible, Infected and Recovered models) which

allows several processes (demography, transmission, immunity) to

be studied and dynamic data to be explored. The main drawback

of is that such models require numerous parameters, many of

which are poorly known and difficult to obtain. The models

consequently are often associated with simulation models [18].

We propose a new modelling approach to identify potential

pairwise interactions in cross-sectional studies that combines a

probabilistic and a statistical model and allows testing counfouding

factors. The statistical model with observed data is used to estimate

the probabilistic model parameters. Our approach is built on the

biological characteristics of microorganisms regarding transmis-

sion, persistence and pathogenicity. We developed our model to

study two vector-borne pathogens that are considered persistent

and non-pathogenic for their reservoir host. We applied the model

to detect potential interactions between Borrelia afzelii and Bartonella

spp. [19] in bank voles (Myodes glareolus). These two bacteria are

borne by ticks (Borrelia afzelii) and fleas (Bartonella spp.), are

pathogenic for humans, and are carried asymptomatically by

rodents [20,21]. They first colonize the dermis of their host, which

is the interface between their host and flea and tick vectors [22,23].

The two bacteria then use similar strategies to circumvent host

defences, for example, stimulating an increase in the host’s

production of interleukin to weaken its immune system [24,25]). It

is therefore suspected that the bacteria directly interact at the level

of the dermis, and indirectly interact with each other through the

immune system.

Materials and Methods

Overall Strategy
We used a multi-step approach to model interactions between

the two vector-borne pathogens. First, we wrote a probabilistic

model based on explicit biological hypotheses regarding the

probability of infection by a microorganism, with or without the

presence of a second microorganism, in juvenile and adult

populations of the reservoir host. Second, we built a statistical

model to estimate and test different parameter sets. Third, we

compared the sensitivity of our model with a Chi-square test of

independence by simulation. Fourth, we applied our model to

cross-sectional data obtained in a reservoir population of bank

voles (Myodes glareolus) coinfected by Borrelia afzelii and Bartonella

spp.

Probabilistic Model
The probabilistic model set down the assumptions of a

biological model (Figure 1). The assumptions were as follows:

microorganisms (1) are detected correctly in hosts, i.e. the detection

is sensitive (all infected individuals are detected) and specific (all

non-infected individuals are found not infected); (2) are not

vertically nor directly transmitted among host populations; (3) are

persistent in reservoir hosts and (4) do not induce mortality. The

life of an individual host was modelled with a juvenile and an adult

age class. We assume that the studied population is in a dynamic

equilibrium (birth-death).

Infection probabilities of two microorganisms in juvenile and

adult populations were considered. The infectious states of

individuals were noted as follows: J
j

i
, A

j

i
, where J = Juvenile stage,

A = Adult stage, i for the microorganism number (i = 1 for

microorganism 1, i = 2 for microorganism 2) and j described the

infectious state of the animal (j = 0 for uninfected, j = 1 for

infected). There were thus four probabilities p to be in an

infectious state for each age stage, namely pJ
m and pA

m in juvenile

and adult populations respectively, with m corresponding to the

infectious state: p1 (0,0) not infected, p2 (1,0) infected by the first

microorganism, p3 (0,1) infected by the second, and p4 (1,1)

infected by both (Tables 1 and 2). We modelled the probability to

go from one infectious state to another. The probability of a

juvenile to become infected by only one of the parasites was pi

(Figure 2 and Table 3). Since we considered no vertical

transmission, the initial infectious state of juveniles was always

J
0

1
J

0

2
. Second, the probability of an adult becoming infected by

only one of the parasites was qi, knowing that it was non-infected

Figure 1. Schema of our approach to modelling interaction.
doi:10.1371/journal.pone.0066167.g001

Probabilistic Model to Identify Interactions
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by the other microorganism during the juvenile state (Figure 3 and

Table 4). Different infection probabilities between juveniles and

adults were considered because the infection probability may vary

due to such phenomena as maturation of the immune system (e.g.

[26]). Each probability of being infected was detailed through

conditional probabilities, i.e. the explicit equations of the model

(Figures 2 and 3, Tables 3 and 4).

To model the interactions between microorganisms, an

installation weight W was introduced that represents how the

presence of a microorganism may modify the probability of

infection by a subsequent microorganism. During the juvenile

state, Wa was the installation weight of parasite 1 on parasite 2
and Wb was installation weight of parasite 2 on parasite 1.

If both infection probabilities were independent, Wa = 1 and

Wb = 1. If Wa .1 and Wb .1, each parasite had a facilitating role

in the installation of the other. Conversely if Wa ,1 and Wb ,1,

each parasite had an inhibitory role in the installation of the other.

Thus, the closest W was to 1, the weakest the interaction was.

Through conditional probabilities, the complete probabilities

system of each event for juveniles was obtained (see Table 3).

The link that connects Wa and Wb was highlighted by the

equation (1) for the case of two microorganisms 1 and 2:

Wb~Wa: 1{p2ð Þ= 1{p1ð ÞzWa: p1{p2ð Þ½ � ð1Þ

In the same way, for adults WA was the installation weight of

parasite 1 on parasite 2, and WB the installation weight of parasite

2 on parasite 1. The system of conditional probabilities, as well as

the link between WA and WB, taking into account the infection

state of individuals as juveniles, is shown in Table 4.

Altogether, there are eight infection states (four for juveniles and

four for adults) in the model. The number of individuals studied,

nJ for juveniles, nJ~
Xm~4

m~1

nJ
m, and nA for adults, nA~

Xm~4

m~1

nA
m,

were considered as fixed because we worked with observed data.

Translating this idea into a probability, we got
Xm~4

m~1

pJ
m~1 and

Xm~4

m~1

pA
m~1. Since two parameters were known, six degrees of

freedom were available. Therefore, all eight numbers of individ-

uals nJ
m and nA

m or eight probabilities of infections pJ
m and pA

m could

be estimated with six parameters, p1,p2,q1,q2, Wa and WA (see

Tables 3 and 4).

In our model, the hypothesis of independence of both infections

from each other is similar to that of the Chi-square test of

independence hypothesis.

Statistical Model
The probabilistic model was translated into a statistical model so

that model parameters (pi,qi,Wa and WA) could be estimated, and

the significance of different parameter sets (i.e. submodel or SM)

and risk factors were tested (Figure 1). Different submodels were

compared with the general model (GM) through likelihood ratio

tests (Table 5). The general model was the model which gathered

all parameters together. Risk factors that could favour the infection

of both microorganisms were tested by writing submodels that

considered risk factors as parameters. The final model was

identified as the most parsimonious model via the AIC criteria

[27] and the parameters of the final model were estimated.

Likelihood of model. The general model was expressed as a

multinomial distribution. The probabilities of each of the eight

possible infection states depended on a vector of six parameters

h~ pi,qi,Wa,WAð Þ which were estimated by maximum likelihood.

The parameters were constrained since probabilities of infection

had to be between 0 and 1. Thus, pi and qi were defined in the

interval 0,1½ � and Wa applied to a prevalence pi was defined in the

interval 0,1=pi½ � (it was the same for adults). In order to make the

constraint implicit, the following transformations for parameters pi

and qi were performed: exp {exp(h)ð Þ which was included in 0,1½ �
and h[ {?,z?ð Þ. Similarly for Wa and WA, using exp(h) which

was a positive value, when h is in (–‘,+‘). In this way, the

parameter vector h was estimated.

Table 1. The four pm probabilities of infections between two
microorganisms for juvenile state.

J0
2 J1

2

i = 2, j = 0 i = 2, j = 1

J0
1

i = 1, j = 0 pJ
1 pJ

2

J1
1

i = 1, j = 1 pJ
3 pJ

4

The parasite studied is referenced by i and j which describe the infectious state
of the animal (0 = uninfected, 1 = infected), for more details see text.
doi:10.1371/journal.pone.0066167.t001

Table 2. The four pm probabilities of infections between two
microorganisms for adult state.

A0
2 A1

2

i = 2, j = 0 i = 2, j = 1

A0
1

i = 1, j = 0 pA
1 pA

2

A1
1

i = 1, j = 1 pA
3 pA

4

The parasite studied is referenced by i and j which describe the infectious state
of the animal (0 = uninfected, 1 = infected), for more details see text.
doi:10.1371/journal.pone.0066167.t002

Figure 2. Model of the probability of microorganism infection
of juvenile under independence hypothesis. J0

1 indicates state of

non-infection with microorganism 1 and J1
1 infected state with

microorganism 1. It is the same for the microorganism 2. The
probability of being infected with microorganism 1 (respectively 2)
was defined with p1 (respectively p2). We assume the independence
assumption of two microorganisms, the absence of vertical and direct
transmission absence (J0 is initial state: free of any infection), the
persistence of infection and the asymptomatic character of pathogens
for reservoir host.
doi:10.1371/journal.pone.0066167.g002
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Testing submodels. The general model with the six

parameters was a saturated model. In saturated models, estimated

data are expected to match exactly to observed data. If they do

not, then either some of the hypotheses are not relevant or an

important factor influencing infection probability has been

omitted. When this is the case, either a new model has to be

constructed with additional parameters that translate the new

hypotheses, or the missing factors have to be considered.

Since the different submodels were nested (see Table 5),

likelihood ratio tests were used to test the significance of different

submodels. The likelihoods of submodels were named LSM and

were compared to the general model whose likelihood was LGM

[28]. The test statistic wasDobs.

Dobs~z2 logLGM hGMð Þ{logLSM hSMð Þ½ �

Figure 3. Model of the probability of microorganism infection of adult under independence hypothesis. A0
1 indicates state of non-

infection with microorganism 1 and A1
1 state infected with microorganism 1. It is the same for the microorganism 2. The probability of being infected

with microorganism 1 (respectively 2) was defined with q1 (respectively q2). We assume the independence assumption of two microorganisms, from
the final state of the Juvenile model, the absence of vertical and direct transmission, the persistence of infection and the asymptomatic character of
pathogens for reservoir host.
doi:10.1371/journal.pone.0066167.g003

Table 3. Probabilities of each microorganism infection event under non-independence in juveniles.

J0
2 J1

2

J0
1 1{p1ð Þ: 1{p2ð Þzp1

:p2
:

1{Wbð Þ:Wa
: 1{p2ð Þ

� �
=KJ~pJ

1

1{p1ð Þ:p2zp2
2
:Wa 1{Wb

:p1ð Þ
{p2

2
:Wa

: 1{p1ð Þ

� �
=KJ~pJ

2

J1
1 1{p2ð Þ:p1zp2

1
:Wb 1{Wa

:p2ð Þ
{p2

1
:Wb

: 1{p2ð Þ

� �
=KJ~pJ

3

Wb
:p1
:p2zWb

:p2
1
:p2
:

Wa{Wb
:p2

1
:p2

� �
=KJ~pJ

4

With p1~P J1
1 DJ

0
2

� �
, Wb

:p1~P J1
1 DJ

1
2

� �
, p2~P J1

2 DJ
0
1

� �
, Wa

:p2~P J1
2 DJ

1
1

� �
and KJ~1{p1

:p2
: Wa{1ð Þ: Wb{1ð Þ, for more details see text and Table 1.

doi:10.1371/journal.pone.0066167.t003
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Under H0 (i.e. null hypothesis), the submodel should not be

significantly different from the general model. Thus, the Dobs

random variable followed a law of x2, with hGM{hSMð Þ degrees of

freedom, where hGM contained the parameter number of the

general model and hSM the parameter number of the submodel.

In the general model, none of the parameters were fixed, unlike

those in the submodels. In fact, submodels 1, 2, 3 and 4 (Table 5)

allowed us to test, by fixing the weights W of adults or juveniles to

1, whether the weights of infection were significantly different from

one, i.e. whether associations of microorganisms were random.

The possibility that the weight of infection varied according to the

state (juvenile or adult) also could be tested. For example, in

submodel 4 (see Table 5), microorganisms were randomly

associated, and all interaction weights were equal to one.

Microorganisms were randomly associated during the juvenile

stage (Wa = 1) in submodel 1 and during the adult stage in

submodel 2 (WA = 1). The weight of interaction was the same at

the juvenile and adult stages in submodel 3. If a different biological

model was used, other submodels could have been tested.

Estimating the final model confidence interval and

parameters. Once the appropriated submodel, i.e. the final

model, had been selected, the parameters of this model, i.e.

probabilities and estimated weight of interactions Wa and WA

could be estimated. To do so, the inverse transformation on

estimated parameters was performed. Thus p̂p~exp({exp(̂h)) and

Ŵ~exp(̂h).

With Hessian matrix inverse, the matrix of variance/covariance

S(̂h) was estimated. Given that estimates of maximum likelihood

(̂h) were Gaussian, the final confidence interval (CI) was calculated

from the estimates and standard errors of the parameters

CI0:95~ ĥ{1,96:ŝs(̂h); ĥz1,96:̂s(̂h)
h i

or CI0:95~ ĥmin ; ĥmax

h i
.

The parameter estimates and the 95% confidence intervals thus

associated: CI0:95~ p̂pmin ; p̂pmax½ � or CI0:95~ exp({exp(̂hmax));
h

exp({exp(̂hmin))� and CI0:95~ Ŵmin ; Ŵmax

h i
or CI0:95~

exp(̂hmin);exp(̂hmax)
h i

were estimated in the original scale.

Then pm probabilities (via Tables 1, 2, 3 and 4) and expected

values for the eight observed infection possibilities (four for

juveniles and four for adults) were estimated.

Estimating risk factors common to

microorganisms. Factors that may influence the risk and the

weight of the infection were tested in the final model. The number

of risk factors that can be tested depends on the degrees of freedom

available. The effect c of factors Fp, which can impact the

probabilities of infection, was integrated as follows:

p̂p~exp({exp(̂hpzĉFp
)), with

Xi~2

i~1

ĉFp
~0. Similarly, the effect c

of factors FW, which can impact the weight of interactions, was

integrated as follows: Ŵ~exp(̂hWzĉFW
), with

Xi~2

i~1

ĉFW
~0.

All of the programs used in the analysis were written using R

software (version 2.12.1) accessible on the site http://cran.r-

project.org/. We used in particular the nlm() minimization

function. We are in the process of developing a correctly

assembled package of programming codes to facilitate its future

use. All the functions that we used are available in a non-definitive

form in the supplementary information (Functions S1).

Simulation Study of Our Model versus Chi-square Test of
Independence

Our model was compared to the Chi-square test of indepen-

dence by simulating the sensitivity að Þ and power 1{bð Þ of both.

The a risk (or the error of second type) was the risk to conclude

that the interaction (alternative hypothesis H1) was significant

when in fact the association was random (null hypothesis H0). The

b risk was the risk to conclude that the association was random

(H0) when there was interaction (H1). The objectives were to

verify that the a risk was well controlled a priori and to evaluate the

influence of sample size on 1{bð Þ the power of tests. The statistic

Chi-square test of independence for two microorganisms infecting

juvenile and adult hosts, under the hypothesis H0, was considered.

The estimated number nJ
m or nA

m of each m modality of each state

must be greater than five to perform this test. The distribution of

the sensitivity að Þ and the power 1{bð Þ was simulated for both

Table 4. Probabilities of each microorganism infection event under non-independence in adults.

A0
2 A1

2

A0
1 1{q1ð Þ: 1{q2ð Þzq1

:q2
:

1{WBð Þ:WA
: 1{q2ð Þ

� �
=KA

� �
:pJ

1~pA
1

1{q1ð Þ:q2zq2
2
:

WA 1{WB
:q1ð Þ{

q2
2
:WA

: 1{q1ð Þ

2
4

3
5=KA

0
@

1
A:pJ

1z 1{WB
:q1ð Þ:pJ

2

� 	
~pA

2

A1
1 1{q2ð Þ:q1zq2

1
:

WB 1{WA
:q2ð Þ{

q2
1
:WB

: 1{q2ð Þ

2
4

3
5=KA

0
@

1
A:pJ

1z

1{WA
:q2ð Þ:pJ

3

� 	 ~pA
3

WB
:q1
:q2z

WB
:q2

1
:q2
:WA{

WB
:q2

1
:q2

2
4

3
5=KA

0
@

1
A:pJ

1z
WB

:q1
:pJ

2z

WA
:q2
:pJ

3zpJ
4

� �
~pA

4

With q1~P A1
1 D A0

2\ J0
1\J0

2

� �� 	� �
, WB

:q1~P A1
1 D A1

2\ J0
1\J0

2

� �� 	� �
, q2~P A1

2 D A0
1\ J0

1\J0
2

� �� 	� �
, WA

:q2~P A1
2 D A1

1\ J0
1\J0

2

� �� 	� �
and KA~1{q1

:q2
: WA{1ð Þ: WB{1ð Þ,

for more details see text and Table 2.
doi:10.1371/journal.pone.0066167.t004

Table 5. The different submodels compared to the general
model.

Model Name Parameter vector (number)

General Model hGM : p1, p2, q1, q2, Wa, WA (6 parameters)

Submodel 1 « Wa = 1 » hSM1
: p1, p2, q1, q2, WA (5 parameters)

Submodel 2 « WA = 1 » hSM2
: p1, p2, q1, q2, Wa (5 parameters)

Submodel 3 « Wa = WA » hSM3
: p1, p2, q1, q2, Wa (5 parameters)

Submodel 4 « Wa = WA = 1 » hSM4
: p1, p2, q1, q2 (4 parameters)

The probability of being infected by a microorganism for juveniles is noted p
and q for adult hosts. Wa is installation weight of parasite during an infection to
juvenile state and WA during an infection to adult state (for more details see
text).
doi:10.1371/journal.pone.0066167.t005
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models according to the parameters and sample size. The dataset

of h parameters and total sample size nJ and nA fixed a priori, were

considered with the probabilities of juveniles and adults to become

infected pi,qið Þ[ 0:10,0:20,0:30,0:40,0:50,0:60,0:70,0:80,0:90f g,
Wa and WA varied from 0.5 to 1.5 and the sample size varied

from 200 to 1000.

Biological model: application to infection of a bank vole
population by Borrelia afzelii and Bartonella spp

Ethic statement. All conducted experiments complied with

the current laws of France. Trapping and collection of rodents

conducted on the study site (Forêt de Sénart, Essonne, France,

48u399N, 2u299E) were carried out under the control of Laurent

TILLON (Office National des Forêts), Head of Research Group

mammals. The project was approved by the Ethics Committee in

Animal Experiment (CEMEA Auvergne). Steps were taken to

ameliorate suffering in accordance with the recommendations

[29]. Rodents were euthanized by cervical dislocation. Ear punch

biospsies were limited to the minimum size needed, the puncture

was disinfected with hydrogen peroxide and checked before

releasing the animal.

Biological model. A total of 443 bank voles were tested, 252

being infected by B. afzelii and 49 being infected by Bartonella spp.

PCRs were used to detect B. afzelii DNA on ear biopsies and

Bartonella spp. DNA on liver and spleen samples [19,30]. Both

pathogens are considered asymptomatic in their rodent hosts [31].

They are not transmitted vertically or directly, so individual

infections are considered to be independent [32,33]. The age of

the rodents was estimated according to their body mass. The

individuals weighing less than 18 g were considered as juveniles

(18 g being the smallest observed weight for a female in early

gestation, J.-L. Chapuis, pers. comm.).

For Borrelia afzelii, we took samples from the ear, which, with its

thin and highly vascularised epidermis, is highly appreciated by

ticks and thus a prime site of Borrelia afzelii infection [34]. For

Bartonella spp., we used a homogenate of liver and spleen. As the

infecting Bartonella spp. are intraerythrocytic, not haemolytic, and

these organs are ‘‘cemeteries of red blood cells’’, this method

confirmed our hypothesis of absence of false negatives [35]. The

PCRs carried out are considered to be a specific detection method

for both B. afzelii and Bartonella spp. [36,37].

Both pathogens can also be considered persistent. Indeed, for B.

afzelii, important mechanisms of immune escape in this bacteria

(e.g. proteins provide protection from innate and adaptive host

immune responses) seem to confirm the hypothesis of an on-going

infection in rodents [24,38,39]. For Bartonella spp., infection is

persistent in appearance. This intracellular bacterium is found

mainly in red blood cells which have an average life of 30 days in

rodents [40]. The bacterium is eliminated with the natural death

of the cell. However, reinfection from infected vectors occurs

constantly [41]. In addition, no resistance development (acquired

immunity) has been shown in vivo [42]. The duration of the

infection status is on average two months but infections overlap

[43].

Borrelia afzelii was identified as microorganism 1 and Bartonella

spp. as microorganism 2. Table 5 presents the first four submodels

tested. Based on results and data, we then built and tested a fifth

submodel in which « Wa = WA = 1 and q2 = 0 ». Only 3

parameters had to be estimated for submodel 5: hSM5
: p1,p2,q1.

This submodel was tested because, in the data, the proportion of

infected juvenile by Bartonella spp. seemed to be similar to that of

infected adults. The influence of two risk factors on the model

parameters pi,qið Þwas tested: the presence of ticks on each rodent

and the sex of the animal. These were chosen because both

pathogens can be transmitted by ticks even though ticks are not

the main vector for Bartonella spp. [44]. The sex of bank voles

furthermore induces differences in their physiology and behaviour

which have been shown to influence infectious risk probability

[45].

Results

Simulation Results
For both modelling approaches (the probabilistic model and the

Chi-square test of independence), the a risk, under H0, even with

a strong sample size gradient (N), varied little around the value of

0.05 (see respectively Table S1 and Table S2). In contrast, the

power of the test 1{bð Þ, under H1, increased with the sample

size. The more the infection weight (Wa or WA) departed from 1,

the lower the sample size could be for the power of the test to be

maximal, i.e. 1{bð Þ near 1 (Table S3 and Table S4). The

reliability of detection of weak interactions depended on the

sample size. In all cases, the probabilistic model was more

powerful than the Chi-square test of independence, particularly to

detect inhibition.

Parameters of the Model for Bartonella spp. and Borrelia
afzelii Coinfection in the Bank Voles

The general model, with the six parameters: p1,p2,q1,q2,WaWA,

described perfectly observed data (i.e. the numbers of individuals in

each infectious state are identical between estimated data and

observed data). None of the submodels were significantly different

from the general model (submodel 1, P-value = 0.064; submodel 2,

P-value = 0.403; submodel 3, P- value = 0.076; submodel 4, P-

value = 0.179, submodel 5 P-value = 0.328). However, with the AIC

criteria of the submodels were the following: submodel 1,

AIC = 904.305; submodel 2, AIC = 901.568; submodel 3,

AIC = 904.026; submodel 4, AIC = 902.314; submodel

5 AIC = 900.314. Thus, submodel 5 (with Wa = WA = 1 and

q2 = 0) was the model that best fit the observed data (i.e. the smaller

AIC criteria) and had the fewest parameters to estimate. As

submodel 5 was the most parsimonious model, it was chosen as the

final model.

In the final model, the values of different parameters describing

the infection probabilities for Borrelia afzelii were p1: 0.017 [0.003;

0.055] and q1: 0.130 [0.090; 0.179], and for Bartonella spp.p2:

0.569 [0.521; 0.614] and q2: 0.000. Interaction weights between

these two microorganisms were equal to 1 (Wa = WA =

Wb = WB = 1). Thus the probabilities of infection by both

microorganisms were independent. These parameters allowed us

to estimate the number of juveniles and adults for different

infection states (see Table S5).

The probabilities of being in one of the infectious state were not

significantly influenced by sex (P-value = 0.338) or tick carriage (P-

value = 0.105).

The Chi-square test of independence, with x2 = 2.71 (P-

value = 0.099) for juveniles and x2 = 0.01 (P-value = 0.920) for

adults, also indicated that both of the microorganisms’ distribu-

tions were independent.

Discussion

Identifying when pathogen associations correspond to biological

interactions is one of the challenges of multi-pathogen studies in

populations. We propose a probabilistic modelling approach to

identify potential pathogen interaction in cross-sectional studies.

Our approach is based on explicit biological hypotheses (micro-

organism transmission and persistence characteristics) and is more

Probabilistic Model to Identify Interactions
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powerful than the commonly used Chi-square test. The model we

propose has the advantage of describing the observed data

perfectly (i.e. the numbers of individuals in each infectious state are

identical between estimated data and observed data) by using a

probabilistic model with defined limits. We model the life of the

host individual by differentiating the juvenile state from the adult

state. Our model quantifies and characterises the direction of

potential interactions, providing that relevant confounding factors

are taken into account. This type of model can be used to describe

the distributions of different species of pathogens in a reservoir

host.

Development of Our Approach and Comparison with
Chi-square Test

Our modelling approach has been used little in epidemiology to

date (Figure 1) [46]. The approach is based on the transcription of

explicit biological hypotheses into a probabilistic model which is,

in turn, transcripted into a statistical model. This approach has

been used in plant [47] and medical research; for example,

Bergemann et al. [48] applied it to assess neurocognition in various

contexts. The main advantage of basing a study on a priori

knowledge drawn from a biological model is that more precise

conclusions can be obtained, and therefore mechanisms (e.g.

interaction) can be characterized better. In contrast, basic

statistical models such as Chi-square have fewer assumptions

and thus the amount of information given by the models is

reduced. With our method, if observed data did not correspond to

the estimated data, it meant that a biological hypothesis posed a

priori was not valid. Our approach thus involves a back and forth

process between hypotheses and models. When the observed data

correspond to the estimated data, the hypotheses cannot be

rejected.

The model has several other advantages compared to a

conventional Chi-square test. First, it is more powerful and the

alpha risk (or the error of second type) is well controlled whatever

the sample size (see Tables S2, S3, S4, S5). Second, the sample size

in each category of individuals can be smaller than five, which is

not the case for the Chi-square test. Third, our modelling strategy

is based on transmission modelling between two life stages,

juvenile and adult. That allows us to estimate the effect the

infection of the first microorganism has on the infection of the

second, and to quantify and describe the direction of potential

interactions. Furthermore, this mimics what can be done with

longitudinal studies using population data such as that conducted

by Telfer et al. [13], in which generalized linear mixed models

(GLMM) were employed. Finally, risk factors can be included

easily in the different parameters of the models to discriminate true

interactions from purely statistical interactions [10,13]. However,

the number of risk factors is limited since this number depends on

the available number of degrees of freedom. In the example we

provided, we could only study four categories of risk (male/female,

infested by ticks/not infested) to avoid the over-parameterization

of the model.

Our model has several limitations nonetheless. Our modelling

approach requires an important amount of data for the detection

of weak interactions, which is sometimes difficult to obtain (see

Table S3). Indeed, the power of detection of interaction increases

with the sample size, as is the case for other methods such as the

Chi-square test. Furthermore, the sensitivity study of our model

showed a better detection of facilitation than inhibition. This is

because the infection weight (Wa or WA), is bounded between

1,1=pið � during facilitation, while its range is smaller (0,1) during

inhibition.

Application to B. afzelii and Bartonella spp. Data in a Bank
Vole Population

Applying the model to B. afzelii and Bartonella spp. infection

probabilities in bank voles, the presence of the first or the second

bacterium did not influence the probability of infection of the

other bacterium. Thus, no interaction was found, either directly or

indirectly via the immune system. At their point of entry, the

bacteria may have a limited opportunity to interact directly

because they are inoculated at different locations on the host.

Ticks, which transmit B. afzelii, are found most frequently on parts

of the cephalic region where the skin is thin and unattainable by

grooming (i.e. eyes, muzzle, ears), whereas fleas, which transmit

Bartonella spp., have no preferred biting sites [49,50]. However,

despite different entry points, interaction through a serological

cross-reactivity has already been found for Borrelia burgdorferi

interacting with Treponema pallidum [51].

The probability for adults to be infected by B. afzelii (13%) was

higher that the probability for juveniles (2%), a result commonly

found in rodents [39,52]. Surprisingly, the probability for rodents

to be infected by Bartonella spp. at the adult stage was null.

According to the sets of biological hypotheses in our model, this

result means that most individuals were infected at the juvenile

stage and not at the adult stage. Part of the population thus could

be resistant to flea infestation, as was observed by Hawlena et al.

[53] in other rodent and flea species. Another possible reason is

that part of the population is resistant to Bartonella spp. infection,

similar to what Greene et al. [54] observed in cats, where the cats

became resistant to reinfection by B. henselae. However, the

biologically surprising results obtained for adults force us to

reconsider the hypothesis of persistence, which was based on the

successive colonisation of hosts by different Bartonella species [55].

Another model without an assumption of persistence therefore

should be developed.

None of the risk factors (tick carriage and sex) tested were

significant. The absence of effect of sex on infection probability has

been found in other studies. For instance, Bajer et al. [45] found

that sex played a minor role for several haemoparasites, including

Bartonella grahamii. The fact that we did not find any effect of tick

carriage is rather surprising for B. afzelii [56]. The reason might be

that the test lacked power because only presence/absence of ticks

could be tested, not the quantified tick burden. Testing the impact

of flea burden on infection probability of Bartonella spp. would have

been interesting [33]. Unfortunately, the fleas were not harvested

in our bank vole population.

Perspectives: Developing other Probabilistic Models for
other Sets of Biological Hypotheses

Our probabilistic model was specific to a certain sets of

biological hypotheses, in particular to microparasites that were

persistent, vector-borne and not pathogenic to the reservoir host.

Two main hypotheses could be investigated to broaden the study

of pathogen interactions to non-reservoir hosts and non-persistent

microorganisms. The general approach would remain the same,

but new parameters would be added, which would decrease the

degrees of freedom. For instance, in the case of non-persistence,

the model would have to take time into account. The probabilities

of transition from one state to another would have to be estimated

based on observed data.

Our paper proposes a novel approach to model the dependence

of co-occurrence between two pathogens and to characterise this

dependence. This methodology provides an opportunity to study

interactions using data of cross-sectional studies, and this, despite

the limited information available in the dataset (e.g. no information
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on infection span, no individual history). Our methodology is a

population-centric modelling approach (e.g. average values) and

not individual-centered. Therefore, our model allowed to quantify

and characterise the potential interactions, providing that relevant

confounding factors are taken into account. It provides avenues

and opportunities to deepen thinking on the interaction modelling.

This method responds to current needs by taking into account

multi-pathogen relationships, which will allow the development of

better controls and preventive health care. By identifying pairs of

potentially interacting species [57–60], it furthermore will clarify

fundamental processes of organism assemblages.

Supporting Information

Table S1 Variation of the a risk under H0 of test based on our

probabilistic model, according to different number of individuals

and different pathogen prevalences. 1000 simulations were

performed to create a simulated data set. The numbers of

individuals of different states of infection were drawn at random

from a multinomial distribution. The model parameters were fixed

a priori: (pi,qi) e {0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90}

under the null hypothesis (Wa = WA = 1), for a range from 200

to 1000 individuals. The estimated a risk can thus be compared to

the theoretical value defined a priori (0.05).

(XLS)

Table S2 Variation of the a risk under H0 of Chi-square test of

independence for juveniles and for adults, according to different

number of individuals and different pathogen prevalences. 1000

simulations were performed to create a simulated data set. The

numbers of individuals of different states of infection were drawn

at random from a multinomial distribution. The model parameters

were fixed a priori: (pi,qi) e {0.10,0.20,0.30,0.40,0.50,0.60,

0.70,0.80,0.90} under the null hypothesis (Wa = WA = 1), for a

range from 200 to 1000 individuals. The estimated a risk can thus

be compared to the theoretical value defined a priori (0.05).

(XLS)

Table S3 Evaluation of the power of the test (1 - b) under H1 for

different weights of infection for test based on our probabilistic

model. 1000 simulations were performed to create a simulated

data set. The numbers of individuals of different states of infection

were drawn at random from a multinomial distribution. The

model parameters were fixed a priori: (pi,qi) e {0.10,0.20,

0.30,0.40,0.50,0.60,0.70,0.80,0.90} under different alternative

hypotheses with Wa e [0.5, 1.5] and WA e [0.5, 1.5], for a range

from 200 to 1000 individuals.

(XLS)

Table S4 Evaluation of the power of the test (1 - b) under H1 for

different weights of infection for Chi-square test of independence

for juveniles and for adults. 1000 simulations were performed to

create a simulated data set. The numbers of individuals of different

states of infection were drawn at random from a multinomial

distribution. The model parameters were fixed a priori: (pi,qi) e
{0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90} under different al-

ternative hypotheses with Wa e [0.5, 1.5] and WA e [0.5, 1.5], for a

range from 200 to 1000 individuals.

(XLS)

Table S5 Comparison of observed and estimated of different

states of infection for the final model. The total sample size was

119 for juveniles (A) and 324 for adults (B).

(XLS)

Functions S1 Functions to estimate the model probabil-
ities.
(TXT)
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