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Abstract

Particle swarm optimization (PSO) is employed to investigate the overall performance of a pin fin.The following study will
examine the effect of governing parameters on overall thermal/fluid performance associated with different fin geometries,
including, rectangular plate fins as well as square, circular, and elliptical pin fins. The idea of entropy generation
minimization, EGM is employed to combine the effects of thermal resistance and pressure drop within the heat sink. A
general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the
pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance.
Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate
corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate
that the preferred fin profile is very dependent on these parameters.
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Introduction

In order to enhance the convective heat transfer from a solid

surface, fins of different shapes are used in several applications

such as microelectronics, heat exchanger and cooling of engines.

The shape of the fin has the main effect on the overall

performance and therefore, needs to be optimized for better

efficiency. Many researchers including [1–9] have studied

numerically and experimentally the longitudinal and annular fins

of different shapes and determined the overall performance

depending upon certain criteria. They found that elliptical fins

have a better overall efficiency than other geometries. Khan [10],

Poulikakos and Bejan [11], and Culham and Muzychka [12]

employed the concept of entropy generation minimization (EGM)

and determined theoretically the optimal fin dimensions. EGM

combines the fundamental principles of thermodynamics, heat

transfer, and fluid mechanics and applies these principles to the

modeling and optimization of real systems and processes that are

characterized by finite size and finite time constraints, and are

limited by heat and mass transfer and fluid flow irreversibilities.

They considered different shapes and also obtained the optimal

shape for the same parameters to give the better thermal and

hydraulic performance. Bar-Cohen and his co-workers [13–16]

applied a least material optimization technique to plate-fin

geometry and extended his analysis to multiple fin arrays. They

explored the potential for the least energy optimization of natural

and forced convection cooled rectangular plate heat sinks. Chiang

and Chang [17] developed an effective procedure to find the

optimal values of designing parameters of a pin-fin heat sink. They

used the constraints of mass and space limitations and performed

several experiments to validate their results.

Genetic algorithms (GAs) have been successfully applied in

optimizing heat transfer from solid surfaces. Complex optimiza-

tion involving non-linear constraints can be easily solved using

genetic algorithms. Fabbri [18] proposed a genetic algorithm to

optimize the thermal performance of a finned surface. He used

finite element method to obtain temperature distribution along the

fin and compared the heat flux with that obtained by genetic

profile. Copiello and Fabbri [19] optimized heat transfer from

wavy fins in forced convection using genetic algorithms. They

obtained heat flux by finite element method and optimized fin

profile. Hajabdollahi [20] modeled one dimensional heat transfer

in a pin fin and optimized it using genetic algorithms. They

considered total heat transfer rate and fin efficiency as objective

functions and carried out multi-objective optimization to maxi-

mize the heat transfer rate and fin efficiency simultaneously.

Azarkish et al. [21] obtained the optimal fin geometry for a single

fin and fin array. They applied a single objective function GA in a

longitudinal fin with 1-D heat transfer. Jha and Chakraborty [22]

determined the optimal dimensions of arrays of plate fins in forced

convection. They minimized the entropy generation rate using

genetic algorithm-based evolutionary computing techniques and

investigated the effects of heat transfer and fluid friction on

entropy generation rate.

Recently, Particle Swarm Optimization (PSO) technique has

attracted several investigators. This technique is one of the most

widely used algorithms to find the optimal values in order to

minimize the expectation as a function. PSO algorithm and GA

operate within a set of solutions, and interactively update it

through the application of a number of heuristics [23]. The two

algorithms are from different categories, which are trajectory
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based and non-trajectory based algorithms. PSO is a trajectory

based metaheuristic optimization algorithm, which used the

concept of distance to update the location of the solutions using

a term called velocity. However, GA is not a trajectory based, but

rather it switches chromosomes, which are the building block of

the solutions, to create a new solution.

PSO algorithm was developed by Kennedy and Eberhart [24]

and has been used by Yousefi and Darus [25], Peng et al. [26] and

Rao and Patel [27] for the optimization of a cross-flow plate fin

heat exchanger. They considered several variables as optimization

variables and proved the effectiveness of the proposed algorithm to

achieve more accurate results. In another papers, Patel and Rao

[28] and Lahiri et al. [29] employed the same technique for the

design optimization of shell-and-tube heat exchangers. They

considered the minimization of total cost as an objective function.

Azarkish et al. [30] compared the performance of both PSO and

GA on the geometry of a longitudinal fin. They found that the

PSO algorithm is more efficient for geometry optimization.

Calçada et al.[23] also showed that the PSO algorithm performed

much better than the GA. The Nash equilibrium can be used to

understand the PSO algorithm [31,32]. The Nash equilibrium was

conceived to determine optimal strategies in a non-cooperative

game. The optimal strategy is a set of strategic choices for the

players, such that there is no change in the choice of any single

player [33].

The above literature survey reveals that PSO has never been

used for optimization of pin fin geometry. The main objective of

this study is to optimize pin fins of different shapes using the PSO

algorithm, which was proposed by Eberhart and Kennedy [34,35],

with commercial softwer MATLABH .

Particle Swarm Optimization Algorithm
The algorithm is initialized with a population of random

solutions, and then updated through generating new positions

[36]. It is inspired by social behaviour of birds flocking or fish

Figure 1. Flowchart of a PSO algorithm.
doi:10.1371/journal.pone.0066080.g001

Figure 2. Cross-sections of different geometries.
doi:10.1371/journal.pone.0066080.g002

Table 1. Parameters for different geometries.

Geometry

Parameters Plate Circular Square Elliptical

L l d s 2a

Ac tl pd2=4 s2 pab

AP LH dH sH 2aH

P 2(lzt) pd 4s 4aE(e)

C1 1.357 5.781 0 {4:1(0:67{exp 0:733ð Þ
C2 0 1.152 2 1:1526[0:951

C3 0 1.26 0 1:26[0:951

C4 0.75 0.593 0.102 0:75� 0:16exp(� 0:018[�3:1)

C5 2[1(1z[1) p2=4 4 p4[=16E2(e)

C6 2(1z[1)=[1 4 4 16E2(e)=p2[

n 1/2 1/2 0.675 1/2

doi:10.1371/journal.pone.0066080.t001
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schooling [24,36,37]. Furthermore, PSO can be easily implement-

ed; its memory and CPU speed requirements are low. All solution

members, so-called particles, flies through the problem space by

following the particle with best performance and by tracking their

best positions. Each particle will have to position x, and velocity

vectorsv, which will be updated with each iteration. PSO

algorithm quickly converges to a good solution. However, it is

easy to get a local optimal value [38]. When the best particle is

known, all other particles are slightly moved during the

performance of the best one. In addition, there are also few

parameters to adjust. Several fields in engineering and computer

science used PSO algorithm [39–41].

In PSO algorithm, each particle keeps the best position that it

has achieved so far. The particles update their velocities, from the

previous velocity using Eq.1. On the other hand, a particle’s

position is adjusted according to the Eq.2.

vik tz1ð Þ~vik tð Þzc1 � r1k tð Þ � yik tð Þ{xik tð Þð Þ

zc2 � r2k tð Þ � ( yk
^

tð Þ{xik tð Þ
ð1Þ

xi tz1ð Þ~xi tð Þzvi tz1ð Þ ð2Þ

where

xi(t): The position of the particle at time t.

vi(t): The velocity of the particle at time t.

yi(t): The personal best position (pbest) of the particle at time t.

yk
^

tð Þ: The global best position (gbest) for the population.

c1: learning factor of pbest in interval [0, 2].

c2: learning factor of gbest in interval [0, 2].

r1 and r2 are the random numbers uniformly distributed in

interval [0, 1].

The presented Figure 1 shows the flowchart of PSO algorithm.

Moreover, the general steps of the PSO technique [24,40,42] is

given as follows:

i) Initialize the particle s with random positions and velocities

within the search space.

ii) Calculate the fitness value of each particle. In this study, the

fitness value is calculated by dimensionless total entropy

generation rate (Ns).

iii) Update the personal best position for each particle and the

global best position for the population.

Table 2. Dimensions used to determine the performance of
fin geometry.

Quantity Dimension

Footprint (mm2) 50650

Base plate thickness(mm) 2

Overall height of fin (mm) 12

Thickness of RPF (mm) 1

Approach velocity (m\s) 3

Thermal conductivity of solid (W/m?K) 237

Thermal conductivity of air (W/m?K) 0.026

Density of air (kg/m3) 1.1614

Specific heat of air (J/kg?K) 1007

Kinematic viscosity (m2/s) 1.58|1025

Prandtl number (Air) 0.71

Heat load (W) 10

Ambient temperature (K) 300

Base plate temperature (K) 350

doi:10.1371/journal.pone.0066080.t002

Figure 3. The global best performance and minimum performance of the algorithm per iteration in terms of Ns.
doi:10.1371/journal.pone.0066080.g003
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iv) Update the velocity and position of each particle.

v) If termination criteria fulfils, stop else go back to step (iii).

Therefore, the particles (solutions) should move into better

directions. In other words, they should intend to have been

decreasing fitness as quickly as possible and exploit the useful

information from some other particles besides the best particle

[38,42].

In this study, we use the PSO algorithm to minimize the noise of

pin fin geometry. We set the range of tand l to be the interval (0,

0.88), while the range of Rel is the interval (1000, 3000). The total

number of the iterations is set at 500 with a number of initial

population as 60, and c1~c2~0:001 [38].

Mathematical Analysis

Consider a pin fin of arbitrary cross section rectangular,

circular, square, or elliptical as shown in Figure 2, which is

extended from a base plate. It is assumed that there is no contact

resistance between fin and the base plate. The fin material is

assumed to be homogeneous and isotropic. The flow is assumed to

be steady, laminar and two dimensional and the fluids are

considered incompressible with constant properties. It is also

assumed that there is no heat source within the fin itself and there

is no radiation heat transfer from the fin. The approach velocity of

the air is Uapp and the ambient temperature of the air is assumed

to be Ta. The surface temperature of the pin wall is Tw(.Ta).

Following Bejan [43] and Khan [10], the entropy generation rate

can be written as

_SSgen~
Q2Rth

TaTb

z
FDUapp

Ta

ð3Þ

where Rthis the total thermal resistance and FDis the drag force

and can be written as

Table 3. Updating p in RPF with e~0:5.

p Ns

28.679 1.1075e-6

22.882 1.393e-6

8.467 1.926e-6

4.0 4.085e-6

18.958 1.323e-6

27.436 1.129e-6

doi:10.1371/journal.pone.0066080.t003

Table 4. RPF with different values of e.

e Ns Re‘

0.1 3.11E-06 3.00e+02

0.5 1.83E-06 3.23e+02

0.8 1.62E-06 2.02e+02

doi:10.1371/journal.pone.0066080.t004

Figure 4. Effect of e on dimensionless total entropy generation rate (Ns) of RPF.
doi:10.1371/journal.pone.0066080.g004
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Rth~
1

1
Rfin

z 1
Rfilm

and

FD~CD

1

2
rU2

app

� �
Ap

ð4Þ

with

Rfin~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hfinPkAc

p
tanh (mH)

,

Rfilm~
1

hb(LW{Ac)

CD~
C1ffiffiffiffiffiffiffiffi
Re‘
p zC2z

C3

Re‘

ð5Þ

The fin parametermand the heat transfer coefficients for the fin

and the base surface are given by

m~

ffiffiffiffiffiffiffiffiffiffi
hfinP

kAc

s
,hfin~

Nu‘kf

‘
,hb~

NuLkb

L
ð6Þ

where Nusselt numbers for the base plate and the selected

geometries were developed by khan [10] and are given by

Nu‘~C4Ren
‘Pr 1=3

NuL~0:75Re
1=2
b Pr 1=3

ð7Þ

with

Re‘~
Uapp‘

n
andReL~

UappL

n
ð8Þ

The constant C4 and the index n for the selected geometries are

given in Table 1. In dimensionless form, entropy generation rate

can be written as

Table 5. EPF with different values of e.

e Ns Re‘

0.1 8.29E-06 1.67E+02

0.5 5.95E-06 1.87E+02

1 4.00E-06 4.48E+02

doi:10.1371/journal.pone.0066080.t005

Figure 5. Effect of e on dimensionless total entropy generation rate (Ns) of EPF.
doi:10.1371/journal.pone.0066080.g005
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Ns~
_SSgen

Q2Uapp=kf nT2
a

� �
~

Takeq

TbRe‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C5Nu‘keq

p
tanh c‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C6Nu‘keq

p� �
zC7NuLkeq

� �
z

1

2
BRe2

‘CDc‘

ð9Þ

where

C5~
PAc

‘3
,C6~

P‘

Ac

,C7~
W

L
{

Ac

L2
ð10Þ

The values of these constants and the values of different

parameters for the selected geometries are also presented in Table

1. The hypothetical cases to compare the overall performance of

each fin geometry are illustrated in Table 2. The cross sections for

different fin shapes are shown in Figure 2.

Results

In the beginning, we have tried to make it clear about the

technical way in the algorithm. In our analysis, the PSO algorithm

was executed 50 times with 500 iterations each time. Then we

reported the best results. In each iteration, there are many

solutions, but the algorithm chooses the variables that give the best

solution, then compare this with the best solution it has achieved

so far (the best global value). In other words, the global best value

is moved towards to a better solution. So, if all the solutions are

moved towards better solutions, then, it can be stated that the

algorithm can achieved convergence. Accordingly, the global best

value will not change. For example, in Figure 3, we have

determined the best global value and current minimum value of

the dimensionless total entropy generation rate (Ns) per iteration.

This is done by updating the search space of (P) in the interval (0,

30) and fixing e~0:5 of rectangular plate fin (RPF). Thus, in each

iteration the algorithm recorded the best global value. As

mentioned, the solutions in PSO algorithm are called particles;

these particles change their location by updating the distance

depending on a term called velocity. Each particle is treated as a

point within the search space, which must be specified. Each

particle also carries a memory. In our analysis, the population size

was set to be 60, which means that there are 60 solutions in each

iteration. Furthermore, the best value of Ns was achieved when

p = 28.679, as shown in Table 3.

In addition, the algorithm was executed 50 times with 500

iterations. By updating Acin PSO algorithm with different values

of the aspect ratio (e) on the dimensionless total entropy generation

rate (Ns) for rectangular plate fin (RPF) and elliptical pin fin (EPF),

we found the following:

The minimum value of the dimensionless total entropy

generation rate (Ns) for RPF is received when e~0:8, as shown

Table 6. The values of NS with e~0:5.

Geometry RPF CPF SPF EPF

Ns 1.91e-06 4.57e-06 7.90e-06 5.11e-06

doi:10.1371/journal.pone.0066080.t006

Figure 6. Dimensionless total entropy generation rate (Ns) of RPF with e~0:5 and P = 8.467.
doi:10.1371/journal.pone.0066080.g006
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Figure 7. Effect of pin fin shape on dimensionless total entropy generation rate (Ns) for P = 6, e~0:5, and Re‘~300.
doi:10.1371/journal.pone.0066080.g007

Figure 8. Variation of Ns, Rtot, and DP for fixed values of P and e.
doi:10.1371/journal.pone.0066080.g008
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in Table 4. In fact, the greater aspect ratio of RPF decreases the

pressure drop and increases the heat transfer rate and as a result,

the overall performance increases. It is clear that the overall

performance of RPF increases with the aspect ratio, as shown in

Figure 4.

On the other hand, the minimum value of the dimensionless

total entropy generation rate (Ns) for EPF is obtained when e~1,

as shown in Table 5, while the effect of different values of e on Ns
for EPF is illustrated in Figure 5.

In Figure 6, after 500 iterations, the value of (NS) is equal to

1.926e-6 and P = 8.467. The minimum values of NS for

rectangular plate fin (RPF), circular pin fin (CPF), square pin fin

(SPF), and elliptical pin fin (EPF), withe~0:5, p = 6, and

Re‘~300are illustrated in Table 6. We get these values also after

500 iterations, as shown in Figure 7. Figure 8 represents the

relation between Ns, RTOT, and DP, with p = 6 ande~0:5. These

results are better by comparing with the results in [44].

Conclusions

Particle swarm optimization (PSO) has been employed success-

fully to investigate the overall performance of a pin fin with

different cross sections. In order to combine the effects of thermal

resistance and pressure drop, the idea of entropy generation

minimization ( EGM) is employed. We have examined the effects

of aspect ratio, Reynolds number, and perimeter of fin on the

dimensionless total entropy generation rate. Optimal dimension-

less entropy generation rate exists for each geometry. The square

geometry is found to be have the worst choice from the point of

view of total entropy generation rate. However, rectangular

geometry is found to be the best. The results indicate that the

preferred fin profile is very dependent on these parameters. It is

found that PSO algorithm quickly converges to a good solution,

and it is easy to obtain a local optimal value for each selected

geometry.
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