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Abstract

The introduction of two-dimension (2D) graphs and their numerical characterization for comparative analyses of DNA/RNA
and protein sequences without the need of sequence alignments is an active yet recent research topic in bioinformatics.
Here, we used a 2D artificial representation (four-color maps) with a simple numerical characterization through topological
indices (TIs) to aid the discovering of remote homologous of Adenylation domains (A-domains) from the Nonribosomal
Peptide Synthetases (NRPS) class in the proteome of the cyanobacteria Microcystis aeruginosa. Cyanobacteria are a rich
source of structurally diverse oligopeptides that are predominantly synthesized by NPRS. Several A-domains share amino
acid identities lower than 20 % being a possible source of remote homologous. Therefore, A-domains cannot be easily
retrieved by BLASTp searches using a single template. To cope with the sequence diversity of the A-domains we have
combined homology-search methods with an alignment-free tool that uses protein four-color-maps. TI2BioP (Topological
Indices to BioPolymers) version 2.0, available at http://ti2biop.sourceforge.net/ allowed the calculation of simple TIs from
the protein sequences (four-color maps). Such TIs were used as input predictors for the statistical estimations required to
build the alignment-free models. We concluded that the use of graphical/numerical approaches in cooperation with other
sequence search methods, like multi-templates BLASTp and profile HMM, can give the most complete exploration of the
repertoire of highly diverse protein families.
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Introduction

The Chemical Graph Theory (CGT) consists in the application

of the graph theory to perform combinatorial and topological

exploration of the chemical molecular structure. Currently, the

CGT is being extended to bioinformatics through the introduction

of two-dimensional (2D) graphs for comparative analyses of DNA/

RNA and proteins without the use of sequence alignments. These

2D graphs or maps do not represent the ‘‘real structure’’ of the

natural biopolymers but they have been very effective to inspect

similarities/dissimilarities among them, either by direct visualiza-

tion or by numerical characterization [1]. Examples of 2D

artificial representations of DNA and protein sequences with

potentialities in bioinformatics include the spectrum-like, star-like,

cartesian-type and four-color maps [1–5]. These DNA/RNA and

protein maps can generally unravel higher-order useful informa-

tion contained beyond the primary structure, i.e. nucleotide/

amino acid distribution into a 2D space. Their essence can be

captured in a quantitative manner through numerical indices to

easily compare a great number of sequences/maps [6–8]. One of

the simplest numerical characterizations of sequences compre-

hends the use of topological indices. Topological Indices (TIs) are

based on the connectivity between the elements composing the 2D

graph in terms of whether they are connected or not [9,10]. While

several types of 2D maps have been developed for DNA/RNA

and proteins, including their numerical characterization [11], the

four-color maps application in bioinformatics has been mostly

unexplored, being limited to illustrative examples on the

comparative characterization of DNA and protein sequences

[12]. However, the use of the four-color maps and its numerical

characterization can cooperate with traditional homology search

tools (e.g. BLAST, HMMs) to carry out an exhaustive exploration

of functional signatures in highly diverse gene/protein families.

Such exploration is effective when all family members are

retrieved including remote homologs. Remotes homologues are

divergent gene/protein sequences that have conserved the same

biological function in different organisms. They can be harvest in

the alignment algorithms twilight zone (,30% of amino acid

identity) and have been traditionally detected by the use of more
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sensitive alignment-based methods like PSI-BLAST [13] and

profiles Hidden Markov Models (HMM) [14]. The Nonribosomal

Peptide Synthetases (NRPS) family can harbor remote homolo-

gous due to the high sequence divergence among its Adenylation

domains (A-domains). In fact, all A-domain members cannot be

retrieved easily by BLASTp using a single template [15]. NRPS

are megasynthetases composed by several domains organized in

clusters for the synthesis of oligopeptides with biological activities.

A-domains are mandatory in each NRPS cluster being responsible

for the amino acid selection and its covalent fixation on the

phospho-pantethein arm as thioester, through AMP-derivative

intermediate during the production of oligopeptides via non-

ribosomal [16]. Cyanobacteria are a rich source of structurally

diverse oligopeptides that are predominantly synthesized by

NRPS. In Microcystis, a common cyanobacteria genus in eutrophic

freshwaters, numerous bioactive peptides have been identified that

can be mostly classified as aeruginosins, microginins, microcystins,

cyanopeptolins, and anabaenopeptins [17]. In the present work we

aim to annotate the A-domain repertoire in the proteome of

Microcystis aeruginosa as a strategy to spot NRPS clusters. To handle

the high sequence diversity of A-domains we used an ensemble of

homology-search methods, including an alignment-free model that

integrates the four-color-maps for proteins. TI2BioP (Topological

Indices to BioPolymers) version 2.0, available at http://ti2biop.

sourceforge.net/ allows the calculation of TIs from the four-color

maps for protein sequences [18]. Such TIs were used as input

predictors for statistical techniques to build alignment-free models.

We concluded that the use of an ensemble of sequence search

methods (homology-based and alignment-free) can give the best

exploration of the repertoire of highly diverse protein classes, such

as the NRPS represented by its A-domains. The graphical method

rendered a Decision Tree Model (DTM) that detected signatures

of 22 A-domains in the proteome of Microcystis aeruginosa matching

19 out of 20 hits previously annotated as A-domains. The

multiple-template BLASTp found exactly the 20 A-domain

signatures annotated in the proteome, while the profile HMM

detected the same 20 hits plus three additional ones. DTM and

profile HMM identified, respectively, two and three A-domain

signatures not found by multi-template BLASTp among the

hypothetical proteins. The consensus detection of additional hits

by the two sequence search methods provides clues for the

presence of further A-domains remote homologues. The new A-

domain variants found in the proteome of Microcystis aeruginosa

could unravel the presence of novel NRPS clusters.

Results

Alignment-free model selection
We computed 17 TIs that consist in spectral moment series

(fcm0-fcm16) derived from four-color maps representing 8892 protein

domains (138 A-domains and 8854 CATH domains) using

TI2BioP (described in Methods and Database). The fcm0-fcm16

series were used as input predictors to build classification linear

models as the simplest relation between the response variable and

the predictors. General Discrimination Analysis (GDA) best subset

implemented in the STATISTICA software was used for such

purposes [19]. We select the best subset of predictors that accounts

for the more effective discrimination between A and CATH

domains through plotting the l variation against the number of

predictors in the set of models. A parsimonious linear model was

selected at the point where the l start to decrease smoothly

(Figure 1).

We found a linear classification function (see equation
below) with four significant predictors (fcm1,

fcm2,
fcm9,

fcm12)

describing the topology of the four-color maps at short range (fcm1,
fcm2) and at long range (fcm9,

fcm12) interactions.

AvsCATHdomains~54:83HPm1{20:94HPm2+68:70HPm9

{62:0HPm12{252:69

N~6750 l~0:11 F~1556:7 pv0:05

Where, N is the number of domain sequences used to train the

classification model and the statistics parameters commonly used

to evaluate linear functions (Wilk’s statistical (l) and Fisher ratio

(F) with a probability of error (p-level)) [20,21]. They provided

values indicating a good power of discrimination (l= 0.11) with

significance (p(F),0.05).

The model classification performance is shown in Table 1
together with the classification results from other alignment-free

models developed with non-linear techniques.

GDA provides good classification results in detecting A-domains

despite the members of this class ranged mostly between 10–40%

of sequence identity (Figure 2A) and the CATH domains share

less than 35% of sequence identity. Pair-wise identity is the most

common cutoff used to decide the twilight zone for alignment

algorithms [22]. Sequence alignments unambiguously distinguish

between protein pairs of similar and non-similar functional and

structural signals when the pairwise sequence identity is high

(.40%). The signal gets blurred in the twilight zone of 20-35%

sequence identity [22–24]. Particularly, the test set was made up of

A-domains mostly sharing between 20 to 30% of amino acid

identity (Figure 2B) and CATH domains with the diversity

above-mentioned. Such test set matches into the twilight zone

where generally remote homologous can be harvested.

The prediction power on the test set could be improved using

non-linear models like Decision Tree Models (DTM) and Artificial

Neural Networks (ANN) as can be seen below.

Although several alignment-free methods have been reported

for improving classification accuracy in protein classes and super-

families [25–27], DTM have been poorly explored to differentiate

protein classes [28]. We used Classification Trees (CT) as an

exploratory technique to obtain a DTM as predictive tools to

detect A-domain signatures. The method found the fcm1 and fcm2

predictors as splitting variables to produce two decisions split at

different values, respectively. The tree structure was very simple,

two decision nodes (outlined in blue) and three terminal nodes

(outlined in red) summing up a total of five nodes. The numbers of

the nodes are labelled on its top-left corner and on the top-right

corner are placed the label of the predicted class (A or CATH

domain). The 6750 training sequences are assigned to the root

node (first node) and tentatively classified as CATH domains or

control set. CATH domains are chosen as the initial classification

because they are numerically superior to A-domains.

The root node is split, forming two new nodes. The text below

the root node describes the split. It indicates that protein sequences

with fcm1 values higher than or equal to 3817 are sent to node

number 3 and tentatively classified as A-domains, by contrary

domain sequences with fcm1 values lesser than this value are

assigned to node number 2 and classified in the control set (CATH

domains). Similarly, node 3 is subsequently split taking the

decision that sequences with fcm2 values lesser than or equal to

11.12 are sent to node number 4 to be classified as A domains (109

cases). The remaining domain sequence with fcm2 value greater

than 11.12 are sent to node number 5 to be classified as CATH

domains reaching 6641 cases well classified (100%).

(1)

Ensemble of Sequence-Search Methods
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The tree graph presents all this information in a simple and

straightforward way allowing processing the information easily.

The histograms plotted within the tree’s terminal nodes show the

excellent performance of the DTM for the recognition of A-

domain signatures (Figure 3). The information from the tree plot

is also available in Table 2.

The classification results from the DTM development to

recognize A-domain signatures on training and test sets are shown

in Table 1 as well as the results for the 10-fold CV procedure on

the training set and the predictability on the test set. The

classification improvement is remarkable in respect to the linear

models.

ANN is one of the most popular non-linear modelling

techniques in use today and has been frequently applied into

bioinformatics [29–31]. The selection of input variables is a critical

part of neural network design. We use the combination of our own

experience and several feature selection algorithms (Forward,

Backward and Genetic Algorithm Selection) based on Multilayer

Perceptrons (MLP) available in the STATISTICA Neural Networks

module for variable selection [19]. The fcm0 and fcm1 predictors

were selected by consensus from the three methods. Then, a good

starting point to set the topology of the MLP is to use one hidden

layer, with the number of units equal to half the sum of the

number of input and output units.

The Table 3 shows the different MLP topologies used to select

the right complexity of the ANN. The performance on training,

selection and test progress were examined as well as its errors. The

best model was the MLP profile highlighted in bold in Table 3,

which showed the best accuracy on training, selection and test sets,

minimizing its respective errors.

The classification results derived from the best MLP profile to

classify A-domains are shown in Table 1. This ANN-model also

showed a higher accuracy level in classifying the training and test

sets in respect to the linear model but a very similar performance

in comparison to the DTM. However, according to the statistics

from the 10-fold CV procedure carried out for each alignment-

free model, the DTM shows the best statistics average (Table 1)
being the most robust model reported among them. Therefore,

DTM was the selected model to perform A-domains search among

the proteome of Microcystis aeruginosa.

Alignment-free approaches vs. homology-search
methods in the detection of A-domains

We carried out a comparatively analysis to evaluate the

sensitivity of other different alignment-free approaches and

homology-search methods in respect to our graphical/numerical

model to detect A-domains among the overall dataset (138 A-

domains and 8 854 CATH domains) included in study. Such

comparison was addressed to inspect the ability of our alignment-

free approach to detect distant A-domains members (A-domains

placed in the twilight zone) in the selected dataset. The Webserver

PseAAC (http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/) was

used to generate alignment-free approaches based on amino acid

composition (AAC) and pseudo amino acid composition (PseAAC)

[32]. Both approaches provided classifiers to build up DTM under

the same statistical parameters reported for our graphical/

numerical-based model. Amino acids were weighted with their

hydrophobicity values, similarly to the physicochemical property

used for the four-color maps and l values that reflect the sequence

order effect was set to 0 if the AAC is only considered and 1 if we

take into account the sequence order [33].

Most of the alignment-free classifiers have been based on AAC

to predict protein cellular attributes and biological functions

including remote homologs detection [26,34]. One of the most

popular alignment-free approaches is the Chou’s concept of

PseAAC that reflects the importance of the sequence order effect

Figure 1. Assessing the relationship between the number of TIs entered in each model and the Wilk’s (l) values obtained for each
one.
doi:10.1371/journal.pone.0065926.g001

Ensemble of Sequence-Search Methods
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in addition to the AAC to improve the prediction quality to detect

protein attributes [33,35]. Classification trees were selected as the

statistical technique to generate alignment-free models due to its

simplicity and reliability to recognize the A-domain signature

among the overall dataset (Table 1).
On the other hand, homology-based searches for A-domains

were performed by single-template BLASTp, multi-template

BLASTp and profile HMM. These methods that show by

definition different sensitivity to recognize distant homologs were

evaluated considering their ability to retrieve all A-domains (close

and distant members).

Our alignment-free model (DTM) generated by four-color maps

outperformed alignment-free models (DTM) supported by AAC

and PseAAC (Table 4). Although A-domains share 10–40% of

sequence identity with several members placed in the twilight

zone, it was possible to retrieve all of them using four-color maps.

In spite of the fact that the other two left alignment-free methods

(AAC and PseAAC) showed lower sensitivity, they did not provide

many false positives (Table 5). It was also demonstrated the effect

of the sequence order besides the AAC on the prediction quality;

when l was increased from 0 to 1, there was an improvement in all

standard classification measures (Table 4).
Regarding homology-based methods sensitivity, classification

results agreed with the fact that multi-template BLASTp and

profile HMM are more sensitive than simple BLASTp. Both

multi-template BLASTp and profile HMM easily retrieved all A-

domain members at expectation values (E-value#10) without

reporting any false positive (Table 5). However, the BLASTp

search using a single template provided false positives (significant

matches) among CATH domains at both high (E-value = 10) and

relatively stringent cut-offs (E-values,0.05) (Files S1–S5), which

is considered statistically significant and useful for filtering easily

Figure 2. Dot plot for the global sequence identity matrix obtained by Needleman-Wunsch algorithm for A-domains. (A) All A-
domains involved in the study. (B) A-domains of the test set.
doi:10.1371/journal.pone.0065926.g002

Ensemble of Sequence-Search Methods
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identifiable homologs pairs [36,37] (Table 5). False positives came

up in simple BLASTp searches despite we had cleaned the

negative set (CATH domains) from any A-domain signal (by the

use of profile HMM-based searches). In contrast to multi-template

BLASTp and profile HMM searches, the single-BLASTp search

sensitivity did not show stability in identifying the A-domain signal

among a benchmark dataset (CATH domains) when the

classification parameter (E-value cut-off) was changed. Thus, due

to the A-domain diversity, it is less reliable to extrapolate or apply

BLASTp searches using a single A-domain template to an

unknown test dataset such as an entire proteome. The multi-

template BLAST reported by the PKS-NRPS developers was not

only useful to detect A-domains with correct boundaries [15]; it

also provided more sensitivity (no false positive) and reliability in

the identification of this domain class from no stringent conditions

(File S6). In addition, both the profile HMM described in the

methods section (File S7) and the DTM built up from four-color

maps profiles reached the top in classifying the positive and

negative sets. These facts support that profile-based methods are

more effective to deal with remote protein homology unless a muli-

template BLASTp strategy or PSI-BLAST is conducted. The easy

and reliable identification of A-domains by multi-template

BLASTp, profile HMM and four-color maps in contrast to a

simple BLASTp search and other alignment-free methods

provided real clues about the ability of the four-color maps to

identify A-domain members in the twilight zone given the

evaluated dataset.

An ensemble of methods to explore the repertoire of
NRPS A-domains in Microcystis aeruginosa

The potentialities of the four-color maps and its numerical

characterization to detect A-domains in the twilight zone are

promising, as we showed previously. Detecting A-domains remote

homologues with reliability in a proteome that contains a large

diversity of proteins is a challenge for any sequence search method.

As several homology-search methods have been assembled into a

Figure 3. Architecture for the DTM. Decision Nodes are represented in blue and terminal nodes are in red. A-domains are labeled using
an intermittent line. Otherwise CATH domains are signed by a continuous line. Labels at the right-corner of the nodes indicate tentative membership
to A or CATH domain class. Numbers at the left-corner represent the node’s number.
doi:10.1371/journal.pone.0065926.g003

Table 2. Tree structure in details, child nodes, observed class n’s, predicted class, and split condition for each node.

Node Left branch Right branch CATH A-domain Predicted class Split constant Split variable

1 2 3 6641 109 CATH 23817.00 fcm1

2 6640 0 CATH 211.13 fcm2

3 4 5 1 109 A-domain

4 0 109 A-domain

5 1 0 CATH

Numbers in bold highlight the well-classified cases and the terminal nodes.
doi:10.1371/journal.pone.0065926.t002

Ensemble of Sequence-Search Methods
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certain annotation resource to retrieve accurately all members

from highly diverse gene/protein families [38,39], we used our

graphical alignment-free method not in competition but in

cooperation with alignment procedures to explore the whole

repertoire of A-domains, including the detection of new variants

(remote homologous), in the proteome of Microcystis aeruginosa.

The proteome of the Microcystis aeruginosa NIES-843 (http://

genome.kazusa.or.jp/cyanobase) is encoded from a 5.8Mbp

genome with 6 311 annotated genes; some of them codifying

NRPS proteins as hybrids with polyketide synthases (PKS)

representing a good target to evaluate the detection of A-domains.

DTM was selected among the alignment-free models due to its

excellent performance at low sequence identity and its simple way

to recognize A-domains. We just calculate the TIs for a proteome

and select A-domain signatures according to the DTM rule

(fcm1$3817 and fcm2#11.12) (File S8). DTM search detected 19

A-domain signatures that coincided with the previously annotation

inferred for these genes in the proteome. Three additional cases

were also detected as A-domains, but these cases have been

previously predicted to be other protein signatures unrelated to

NRPS A-domains in the proteome, namely a transketolase-like

protein and the other two were hypothetical proteins. The putative

hits with some remote relation to A-domains are probably found

among the hypothetical proteins due to its unclear annotation. To

increase the confidence and quality of the A-domains re-

annotation, two sensitive homology-search methods were evaluat-

ed on the same proteome. We carried out multi-template BLASTp

and profile HMM searches for A-domains in the proteome

Table 3. Testing different topologies for the MLP on the A-domain classification using TIs from four-color maps.

Performance Summary for ANN

MLP Topologies Train Accuracy Selection Accuracy Test Accuracy Train Error Select Error Test Error

1 MLP 2:2–1–1:1 1.000 0.999 0.999 0.000 0.027 0.021

2 MLP 2:2–2–1:1 0.756 0.757 0.758 0.001 0.024 0.020

3 MLP 2:2–1–1–1:1 0.755 0.763 0.759 0.001 0.038 0.024

4 MLP 2:2–3–1:1 0.756 0.755 0.760 0.016 0.033 0.035

5 MLP 2:2–1–2–1:1 0.755 0.762 0.757 0.013 0.025 0.026

6 MLP 4:2–2–1–1:1 0.756 0.757 0.759 0.006 0.022 0.020

Accuracy performance and error on training, selection and test sets.
doi:10.1371/journal.pone.0065926.t003

Table 4. Classification results for alignment-free DTM based on four-color maps, amino acid composition (AAC) and pseudo-amino
acid composition (PseAAC) in the A-domains detection.

Four-color maps DTM Training Test

Sensitivity (Sv) (%) 100 100

Specificity (Sp) (%) 100 100

Accuracy (Acc) (%) 100 100

F-score 1.0

10-fold CV Sv Sp Acc

Average 98.16 99.98 99.95

AAC (l = 0) DTM Training Test

Sensitivity (%) 53.70 3.44

Specificity (%) 100 99.68

Accuracy (%) 99.25 98.44

F-score 0.07

10-fold CV Sv Sp Acc

Average 21.73 100 98.78

PseAAC (l = 1) DTM Training Test

Sensitivity (%) 67.89 20.68

Specificity (%) 99.80 99.77

Accuracy (%) 99.30 98.75

F-score 0.40

10-fold CV Sv Sp Acc

Average 21.73 100 98.78

doi:10.1371/journal.pone.0065926.t004
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according to procedures described in the Methods section,

respectively. Multi-template-BLASTp found 20 significant hits

coinciding perfectly with the number of A-domains signatures in

the annotated genome (File S9). The profile HMM detected 23

significant matches for the A-domain signature in the cyanobac-

teria proteome (File S10). Twenty out of these 23 matches agreed

with the multi-template BLASTp results and therefore with the

current proteome annotation. The remaining three detected hits

by the profile HMM were found among the hypothetical proteins,

similarly to the alignment-free search (Figure 4). These five hits

retrieved by the use of two different sequence search methods

among the hypothetical proteins could reveal the presence of

additional A-domains remote homologues.

Discussion

The potential usefulness of several graphical/numerical ap-

proaches to characterize genes and proteins for comparative

analyses without the use of alignments has been recently reported

by Randić et al [1,40,41]. We have extended this philosophy

through the TI2BioP tool to characterize graphically and

numerically large sequences databases [18]. The 2D Cartesian

representation for genes and proteins and its simple numerical

characterization were implemented in TI2BioP version 1.0,

especially to deal with functional classification problems at low

sequence similarity [8,28,42]. Our alignment-free models predic-

tions based on graphical profiles have generally been used in

cooperation with profile HMMs and experimental evidences

[8,28].

In this work we highlighted a practical utility of the four-color

maps accompanied with sensitive alignment procedures to detect a

functional signal among a highly diverse protein domains dataset

including a proteome. The four-color maps construction was

based on a similar procedure carried out to the building of 2D

Cartesian maps for protein sequences, previously used with success

to detect functional signatures at low homology level [28,42].

Proteins four-color maps were modified by clustering the amino

acids according to their physicochemical properties in four groups

(polar, non-polar, acid and basic) labeled in the map with four

colors. The numerical characterization of the four-color maps can

describe homologous sequences (replacement between amino acids

of similar properties) and remote homologous (important changes

in the primary structure but still retaining the same biological

function). While small changes in the sequence do not affect the

topology of the map, this kind of amino acid substitution produces

implicit numerical changes in the calculation of the TIs making

possible the differentiation of the sequences. When an amino acid

exchange occurs between different physicochemical groups of

amino acids, this change affects the topology of the map and

consequently affects significantly the TIs values estimation.

The TIs consist in the spectral moments series (fcm0-fcm16)

describing the protein four-color maps. The topology of the

protein four-color maps is determined by the sequence order and

its amino acid composition (amino acid content according to the

above-mentioned four groups). These two sequence features define

the number and composition of the clusters formed in the map.

The spectral moments series codify a range of information about

the protein four-color maps that comprise the number of formed

clusters in the map (fcm0) until the connectivity between the clusters

in the map at different range (fcm1-fcm16). Our approach has a

similar conceptual framework to the PseAAC introduced by Chou

[33] but instead of using linear information (amino acid

composition and sequence order) to get a vector representing the

protein, four-color maps are built following similar rules but

containing higher order information beyond the linearity of the

Table 5. True positives vs. false positives in the A-domain
detection for different sequence-search methods among the
overall dataset involved in the study.

Sequence-search method True positive False Positive

DTM (Four-color maps) 138 0

DTM (AAC) 59 7

DTM (PseAAC) 80 18

HMM (E-value = 10) 138 0

Multi-template BLASTp (E-value = 10) 138 0

BLASTp (E-value = 10) 138 6033

BlASTp (E-value = 0.05) 138 122

BLASTp (E-value = 0.01) 138 24

BLASTp (E-value = 0.001) 138 4

BLASTp (E-value = 0.0001) 138 0

doi:10.1371/journal.pone.0065926.t005

Figure 4. Re-annotation of the A-domains in the proteome of Microcystis aeruginosa by using an ensemble of algorithms.
doi:10.1371/journal.pone.0065926.g004
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sequence. Afterwards, the topology of such 2D graphs is described

by node adjacency matrices used to calculate the spectral moments

series as TIs.

The spectral moments series (fcm0-fcm16) were used to develop

several alignment-free models with linear and non-linear statistical

techniques. DTM and ANN showed a better performance in

classifying A-domains in respect to linear models supporting that

the identification of protein signatures are better assessed with

non-linear models. DTM was the best-reported alignment-free

model due to the reasons given in the previous section.

Consequently, it was applied to get other alignment-free models

based on AAC and PseAAC to inspect their sensitivity to retrieve

all A-domains members. Such DTM displayed lower classification

rates than those reached by the four-color maps based models

(Table 4). It seems that higher order patterns providing by the

four-color maps are more effective in the detection of A-domains

than linear sequence features driven by AAC and PseAAC.

Therefore, the DTM based on four-color map patterns was

selected to perform the alignment-free search for A-domains in the

proteome of the cyanobacteria Microcystis aeruginosa.

Interestingly, DTM detected in the proteome two putative hits

of A-domain signatures among the hypothetical proteins and later

another three hypothetical proteins were detected as A-domains

by the profile HMM (Figure 4). The sequence search methods

based on profiles (graphical and alignment) were able to detect

more hits than the 20 A-domains already annotated in the

proteome, which were also detected by the multi-template

BLASTp. Hypothetical proteins are greatly expanded in cyano-

bacteria and have been placed into the diversity of the nuclease

superfamily by homology inference. Probably the graphical and

HMM profiles detected signals of the A-domain signature among

the diversity of the hypothetical proteins leading us to new variants

of A-domains.

Both methods detected different additional hits as A-domains

but they were found among the hypothetical proteins, which is a

good clue for the presence of further A-domains remote

homologues in the proteome of Microcystis aeruginosa. The use of

an ensemble of methods provides more confidence to the

predictions since each method exploits different features of the

protein sequences. Four-color maps generate graphical patterns

using the sequence order and the amino acid composition

arranged into a 2D space. These graphical profiles are numerically

described in a wide range of information by series of TIs, which

characterize individually the sequences. Consequently, such TIs

are flexible to be used for different classification problems (from

high sequence identities until the twilight zone).

Figure 5. Steps for the four-color map construction of 1 pdb AMU. (A) Arranging the protein sequence into a square spiral. (B) Making up the
clusters according to the amino acids properties: polar (green), non-polar (red), acid (yellow), basic (blue). (C) The final four-color map for pdb 1AMU.
doi:10.1371/journal.pone.0065926.g005
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On the other hand, the profile HMM is based on amino acid

positions conserved at low range through multiple sequence

alignments in linear sequences. HMM profiles are proved sensitive

tools for remote protein homology detection even when the

sequence conservation is restricted to short motifs, as is the case of

A-domains [16,43].

The ensemble of the three sequence search algorithms (DTM,

multi-template BLASTp and profile HMM) provided the best

solution for the search of remote homologues among a highly

diverse protein class.

Methods

Computational methods
TI2BioP software version 2.0 was used for the calculation of

spectral moments as TIs associated with the protein four-color

maps depicted below (Figure 5). Protein four-color maps are

inspired on the Randic’s DNA/RNA [44] and protein 2D

graphical representations [12]; but instead of using the concept

of virtual genetic code, we construct the spiral of square cells

straightforward from the amino acid sequences. The four colors

are assigned to the four amino acids classes (polar, non-polar, acid

and basic) used previously by our group in Nandy’s representation

for proteins [28,45]. A node adjacency matrix is defined to

calculate the spectral moments to describe the topology of these

proteins colored maps (Figure 6).
Figure 5 shows how the four-color map for the first A-domain

structurally characterized is built up. It belongs to the Gramicidin

Synthetase cluster isolated from Brevibacillus brevis (pdb 1AMU).

Each of the four colors is associated with each one of the amino

acid groups: polar (green), non-polar (red), acid (yellow), basic

(blue).

Database
Positive set. 109 A-domain sequences from NRPS were

collected from the major NRPS–PKS database (http://www.nii.

res.in/nrps-pks.html) to conform the training set. The test set was

made up of 29 A-domain sequences independently gathered from

the subset of the NRPS-PKS hybrids (http://www.nii. res.in/nrps-

pks.html). The sequence diversity among A-domains was explored

comparatively using the Needleman-Wunsch (NW) algorithm.
Negative set. The starting group was made up for 8 871

protein sequences downloaded from the CATH (Class, Architec-

ture, Topology and Homology) domain database of protein

structural families (version 3.2.0) (http://www.cathdb.info). We

select the FASTA sequence database for all CATH domains

sharing just the 35% of sequence similarity (,35% of sequence

identity). The starting data was reduced to 8 854 CATH domains:

Figure 6. From the protein sequence to its numerical characterization. (A) The first nine aminoacids of pdb 1AMU. (B and C) Building the
four-color map for A. (D) The definition of the node adjacency matrix derived from C the four-color map.
doi:10.1371/journal.pone.0065926.g006
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17 cases were removed because they showed the A-domain

signature when an hmmsearch was performed against the AMP-

binding profile HMM (PF00501). The members of the test set (2

213 sequences) were selected taking out at random the 20% from

the 8 854 CATH domains; the rest 6641 CATH domains were

used to train the models.

Each A-domain and CATH domain sequence retrieved was

labeled respecting its original database ID code (File S11).

Numerical characterization of protein four-color maps
through the spectral moments

The spectral moments are TIs calculated as the sum of the

entries placed in the main diagonal of the bond adjacency matrix

(B) between atoms for the small organic molecules. B is a square

matrix of n x n row and column where its non-diagonal entries are

ones or zeroes if the corresponding bonds or edges (n) share or not

one atom. The different powers of B give the spectral moments of

higher order to obtain the spectral moments series (m0- m15).

mk ~Tr Bð Þk
h i

2ð Þ

Where Tr is called the trace and indicates the sum of all the values

in the main diagonal of the matrices kB = (B)k, which are the

natural powers of B [46].

For the calculation of the spectral moments from the protein

four-color maps, we consider each region of the map as a node

made up for the amino acids clustering; two adjacent regions of

the map sharing at least one edge (not a vertex) are connected. B is

calculated in a similar way but instead of considering the

adjacency relationships between bonds or edges, it is set between

nodes. The number of nodes or clusters in the graph is equal to the

number of rows and columns in B. Since a cluster is made up for

several amino acids sharing similar physicochemical properties,

the cluster is weighted with the sum of the individual properties

(e.g. electrostatic charge (q)) of all amino acids placed in the

cluster). The main diagonal of B was weighted with the average of

the electrostatic charge (Q) between two adjacent clusters. The q

values were taken from Amber 95 force field [47]. The calculation

of the spectral moments up to the order k = 3 from the four colours

maps is illustrated (downstream figure 6) using the first nine

amino acids of pdb 1AMU (M1V2N3S4S5K6S7I8L9). The figure 6
represents the four-color map built up for these nine amino acids,

as well as its cluster adjacency matrix. q values are represented in

the matrix as the amino acids symbols (M = 1.91, V = 2.24,

N = 2.07, S = 2.09, K = 2.254, I = 2.02, L = 1.91).

Expansion of expression (2) for k = 0 gives the fcm0, for k = 1 the
fcm1 and for k = 2 the fcm2. The node adjacency matrix derived

from this 2D map is described for each case

fcm0~Tr Bð Þ0
h i

~Tr

8:09 7:17 5:09 5:17

7:17 6:25 0 4:25

5:09 0 2:09 2:17

5:17 4:25 2:17 2:25

2
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3
777775

0
BBBBB@

1
CCCCCA

0

~4:0

fcm1~Tr Bð Þ1
h i

~Tr

8:09 7:17 5:09 5:17

7:17 6:25 0 4:25

5:09 0 2:09 2:17

5:17 4:25 2:17 2:25

2
666664

3
777775

0
BBBBB@

1
CCCCCA

1

~8:09z6:25z2:09z2:25

fcm2~Tr Bð Þ2
h i

~Tr

8:09 7:17 5:09 5:17

7:17 6:25 0 4:25

5:09 0 2:09 2:17

5:17 4:25 2:17 2:25

2
666664

3
777775
|

8:09 7:17 5:09 5:17

7:17 6:25 0 4:25

5:09 0 2:09 2:17

5:17 4:25 2:17 2:25

2
666664

3
777775

0
BBBBB@

1
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~

169:5 124:8 63:0 95:0

124:8 108:5 45:7 73:2

63:0 45:7 34:9 35:7

95:0 73:2 35:7 54:5

2
666664

3
777775

~169:5z108:5z34:9z54:5

TI2BioP version 2.0 arranges automatically all domain sequenc-

es (positive and negative sets) into four-colour maps and allows the

calculation of spectral moments series (fcmk). File S12 shows the

calculation of these indices to the positive and negative sets.

Alignment-free models development with four-color
maps TIs for A-domains detection

Linear models. General Discrimination Analysis. The

General Discrimination Analysis (GDA) best subset was carried

out for variable selection to build up the linear models [48–50]. All

variable predictors were reviewed for finding the ‘‘best’’ possible

sub model. The predictors were standardized in order to bring

them onto the same scale. Subsequently, a standardized linear

discriminant equation that allows comparison of their coefficients

was obtained [51]. The model and variable selection was based on

the revision of Wilk’s (l) statistic (l= 0 perfect discrimination,

being 0,l,1). The Fisher ratio (F) was also inspected to indicate

the contribution of one variable to the discrimination between

groups with a probability of error (p-level) p(F),0.05.

Non-linear methods. Decision Tree Models (DTM). The

development of the DTM was performed using the C&RT

(Classification and Regression Trees)-style univariate split selection

from the Classification Trees (CT) module of the STATISTICA

8.0 for Windows [19]. The C&RT examine all possible splits for

each predictor variable at each node to find the split producing the

largest improvement in goodness of fit. The prior probabilities

were estimated for both groups with equal misclassification cost.

The Gini index was used as a measure of goodness of fit and the

F̈ACT-style direct stopping̈ was set to 0.1 as stopping rule to select

the right-sized classification tree.

Artificial Neural Networks (ANN). We used the Multilayer

Layer Perceptron (MLP) network architecture as the most popular

network architecture in use today. The selection of the subset of

predictors that is most strongly related to the response variable was

supported on the Feature and Variable Selection analysis of the ANN

module from STATISTICA software [19]. The right complexity of

the network was selected by testing different topologies to the MLP

while checking the progress against a selection set to avoid over-

fitting during the two-phase (back propagation/conjugate gradient

descent) training algorithm. The selection set was randomly

extracted (10%) from the training set. The test set was the same

used for GDA and DTM representing an external subset (not used

during training algorithms) to check the final network performance

[52].

(2a)

(2b)

(2c)
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Evaluation of models’ performance and validation
procedure

The performance of the all alignment-free models was evaluated

by several statistical measures commonly used for classification:

accuracy, sensitivity, specificity and F-score (it reaches its best

value at 1 and worst score at 0). The robustness of the classification

model was verified by a 10-fold cross-validation (CV) procedure on

the training set. The CV statistics for each of the ten samples were

averaged to give the 10-fold estimate for the accuracy, sensitivity

and specificity [53]. In addition, a test set made up for 2242

domains was selected to evaluate the prediction power of each

model.

Ensemble of methods for re-annotation of A-domains
NRPS in the proteome Microcystis aeruginosa

We used an ensemble of three methods for the re-annotation of

the Microcystis aeruginosa proteome considering its repertoire of A-

domains signatures.

1. The graphical method represented by the alignment-free

model (DTM) to perform the A-domain search in the

proteome. Spectral moments series from the four-color maps

were calculated for the proteome of Microcystis aeruginosa NIES-

843 (6 311 annotated genes) and later a simple rule was applied

to detect A-domain signatures (fcm1$3817 and fcm2#11.12).

2. A profile HMM for whole A-domain sequences was built as

follows: (i) the 109 A-domain sequences used in training the

alignment-free models were aligned by CLUSTALW [54], (ii)

alignment was edited by Gblock software [55] to increase the

alignment quality (iii), edited alignment was used as input for

hmmbuild release 2.3.2 [14]. The generated profile HMM is

used to search A-domains in the proteome of Microcystis

aeruginosa.

3. The multiple-template BLASTp reported by the NRPS-PKS

database developers for A-domain searches was used [15].

Multiple-template BLASTp consist in using each one of the

109 A-domains from the training set as template to evaluate

each query of the proteome by BLASTp. BLOSUM62 scoring

matrix, default values for gap penalties and E-value = 10 were

set as BLASTp parameters and just the best matches were

retrieved.

Conclusions

The utility of graphical approaches in bioinformatics has been

demonstrated by the introduction of the four-color maps and the

TIs as a cooperative tool for detecting remote homologous of A-

domains in the proteome of Microcystis aeruginosa. Since each

sequence search method extract different features from the protein

sequences, their integration allow a more exhaustive description of

certain protein class and therefore provide a higher yield for the

detection of remote protein homologous. The knowledge of the

complete repertoire of A-domains in the proteome of cyanobac-

teria species may allow unraveling new NRPS clusters for the

discovery of novel natural products with important biological

activities.
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44. Randic M, Lers N, Plavšić D, Basak S, Balaban A (2005) Four-color map

representation of DNA or RNA sequences and their numerical characterization.
Chemical Physics Letters 407: 205–208.

45. Aguero-Chapin G, Gonzalez-Diaz H, Molina R, Varona-Santos J, Uriarte E, et
al. (2006) Novel 2D maps and coupling numbers for protein sequences. The first

QSAR study of polygalacturonases; isolation and prediction of a novel sequence

from Psidium guajava L. FEBS Lett 580: 723–730.
46. Estrada E (1996) Spectral Moments of the Edge Adjacency Matrix in Molecular

Graphs. 1. Definition and Applications to the Prediction of Physical Properties of
Alkanes. J Chem Inf Comput Sci 36: 844–849.

47. Cornell WD, Cieplak P, IBayly C, Gould IR, Merz KWJ, et al. (1995) A second
generation force field for the simulation of proteins, nucleic acids, and organic

molecules. J Am Chem Soc 117: 5179–5197.

48. Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano HS, Morales A, et al.
(2005) Atom, atom-type and total molecular linear indices as a promising

approach for bioorganic and medicinal chemistry: theoretical and experimental
assessment of a novel method for virtual screening and rational design of new

lead anthelmintic. Bioorg Med Chem 13: 1005–1020.

49. Marrero-Ponce Y, Diaz HG, Zaldivar VR, Torrens F, Castro EA (2004) 3D-
chiral quadratic indices of the ‘molecular pseudograph’s atom adjacency matrix’

and their application to central chirality codification: classification of ACE
inhibitors and prediction of sigma-receptor antagonist activities. Bioorg Med

Chem 12: 5331–5342.
50. Ponce YM, Diaz HG, Zaldivar VR, Torrens F, Castro EA (2004) 3D-chiral

quadratic indices of the ‘molecular pseudograph’s atom adjacency matrix’ and

their application to central chirality codification: classification of ACE inhibitors
and prediction of sigma-receptor antagonist activities. Bioorg Med Chem 12:

5331–5342.
51. Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Standardized Multiple

Regression Model. Applied Linear Statistical Models. Fifth ed. New York:

McGraw Hill. 271–277.
52. The MathWorks I, editor (2004) Neural network toolbox users guide for use with

MATLAB. Massachusetts: The Mathworks Inc.
53. Rivals I, Personnaz L (1999) On cross validation for model selection. Neural

Comput 11: 863–870.

54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Res 22: 4673–4680.

55. Talavera G, Castresana J (2007) Improvement of phylogenies after removing
divergent and ambiguously aligned blocks from protein sequence alignments.

Syst Biol 56: 564–577.

Ensemble of Sequence-Search Methods

PLOS ONE | www.plosone.org 13 July 2013 | Volume 8 | Issue 7 | e65926


