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Abstract

Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug
repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing
debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have
been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis.
Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is
flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of
drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there
is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but
a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural
similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with
similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for
binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in
proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-
cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our
findings suggest that global structural and binding site similarity play a more important role to explain the observed drug
promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find
ligand flexibility to have a minor influence.
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Introduction

Drug Promiscuity
Not too long ago, a drug binding to multiple different targets

seemed to be more the exception than the rule and was unwanted

in drug development due to possible side effects. Thus, the

pharmaceutical industry focused on the development of highly

selective single-target drugs. However, the high attrition rates in

late stage clinical trials due to a lack of efficacy [1] indicate that

something is wrong with the ‘‘one drug – one target’’ paradigm.

Now, it is clear that polypharmacology – also termed as drug

promiscuity – is not only widespread [2], but also important for

the efficacy of drugs [3]. A promiscuous drug can be both, a curse

and a blessing. Undesired side effects are inter alia due to the

binding of drugs to off-targets. On the other hand, this gives the

opportunity to uncover new uses for already known drugs [4,5]

and increase the efficacy of drugs [6], as reported for antipsychotic

or anticancer drugs. In particular, there are efforts to develop

promiscuous drugs, especially for complex diseases [3]. Approach-

es to discover new drug targets and uses are manyfold [7], ranging

from the analysis of genome wide association studies [8], gene

expression data [9] and networks [10–12] to structural approaches

[5,13]. Structural binding site comparison approaches can be

distinguished in alignment methods [14–16] and alignment-free

methods, e. g. using finger prints [17,18]. The latter have the

advantage of uncovering also distant similarities with great success

but do not provide an aligned structure.

Despite the importance of drug promiscuity, there is still an

open debate regarding its underlying reason and its definition.

Promiscuous Drugs: Hydrophobicity vs. Molecular
Weight

Over the past ten years, researchers mainly focused on drug

properties such as hydrophobicity and molecular weight as

explanation for promiscuity. Table 1 summarizes nine studies,

primarily by pharmaceutical companies, comprising up to 75000

drug like compounds and over 500 targets. However, their

comparison reveals inconsistency since they draw contradictory

conclusions.

Azzaoui et al. [19] reported that promiscuity – computed by a

model based on naı̈ve Bayesian classification on 3138 compounds

and 79 targets – correlates with molecular weight. I.e. highly

promiscuous drugs have a high molecular weight and drugs with
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low molecular weight are weakly promiscuous. Additionally, they

found that hydrophobicity (log P) and the number of nitrogen

atoms are higher while the number of oxygen atoms is lower for

promiscuous drugs. Moreover, they found that marketed drugs are

more selective and hence less promiscuous.

Hopkins et al. observed the opposite when analyzing Pfizer

screening data of 75,000 compounds and 220 targets: An inverse

correlation between molecular weight and promiscuity [20] (i.e.

the higher the mean molecular weight of a compound, the lower

the promiscuity). They also found hydrophobicity to be higher for

promiscuous compounds [20]. Morphy et al. (Organon) observed a

similar trend regarding molecular weight [21]. The study of

BioPrint (AstraZeneca, 2,133 compounds and 200 targets) showed

similar results regarding hydrophobicity but found no general

correlation between molecular weight and promiscuity [22]. Peters

et al. investigated 213 Roche compounds. The results agreed with

the aforementioned studies concerning hydrophobicity [23]. They

additionally reported that a positive charge in drug molecules

increases their potential for promiscuity. Regarding a relationship

between promiscuity and molecular weight, they could not find a

correlation [23], resulting in a compromise between the conclu-

sions of the aforementioned studies.

Another study analyzed seven databases of drug-target interac-

tions, showing that promiscuity drops with increasing molecular

weight and – in agreement with the other studies – that

promiscuity increases with increasing hydrophobicity [24].

Recently, a study on the ChEMBL database by Gleeson et al.

tried to sort these controversial results. By dividing the number of

micromolar potencies by the total number of reported activities,

they showed that high potency promiscuity increases with

molecular weight [25]. Using this normalization, they also found

– regarding hydrophobicity – the consensus trend of the

aforementioned works. In addition, they observed that neutral or

basic molecules are more promiscuous than acidic molecules [25].

The very recent analysis of Leach and Hann of 2500 Glaxo-

SmithKline compounds showed that promiscuity correlates with

hydrophobicity, but molecular weight does not significantly

change within certain hydrophobicity ranges [26].

The overall conclusion of these studies is that the more

hydrophobic a drug is, the more likely it is to be promiscuous.

Due to the non-selective characteristics of hydrophobic interac-

tions, drugs with such properties may also accumulate at lipid

bilayers and thus interact with signaling molecules [26].

A clear relationship between molecular weight and drug

promiscuity was not apparent in the existing studies. Hann et

alifnextchar. found that the probability of a ligand binding to a

protein drops with increasing ligand complexity because the

selectivity of the ligand increases due to the higher number of

chemical features [27]. This could explain the observation of

higher molecular weight implying lower promiscuity. For the

converse observation (higher molecular weight implies higher

promiscuity), a relaxed version of this model (allowing unmatched

entities) can be applied [26]. Thus, the probability of a complex

ligand to interact with a binding site increases due to a higher

number of possible matching interaction features, whereas other

features are not matched. Clearly, this leads to a decrease of

potency [26]. However, it is questionable whether an unmatched

portion of a ligand (eventually having a considerable portion

exposed to the solvent) is sufficient to establish more than a short-

term binding event. Additionally, a binding affinity threshold of

10 mM (as applied in most of the aforementioned studies) will also

reflect unselective binding due to hydrophobic interactions or

aggregation.

Indeed, the screening libraries of pharmaceutical companies

may be biased by promiscuous inhibitors acting by aggregation

[28–30]. Moreover, the compounds forming aggregates were

found to be typically hydrophobic [28], reflecting the increase in

promiscuity with an increase in hydrophobicity.

To summarize, researchers have focused on molecular weight

and hydrophobicity as explanation for promiscuity. Regarding

both explanations, contradictory studies can be found. Not all

studies do find a correlation with molecular weight, but all do find

a link to hydrophobicity. However, Feng et al. [30] show that this

may be an artifact resulting from drug aggregation.

Ligand Flexibility vs. Binding Site Similarity
The studies discussed above were mostly performed by large

pharmaceutical companies and are based on large compound

screens. All of the above screens are drug centric and thus omitting

properties of the drug targets as explanation for promiscuity. Here,

we address this problem by following a structural approach based

on protein-drug complexes from the PDB (Protein Data Bank

[31]).

We present a systematic study of all protein structural data

available to shed light onto the source of drug promiscuity,

contributing to the above controversy from a structural point of

view. Besides basic drug physicochemical properties like hydro-

phobicity and molecular weight, as in the studies above, two

additional explanations – in the context of drug promiscuity in the

PDB – are analyzed: The flexibility of promiscuous drugs and the

binding site similarity among their targets.

These properties are potential explanations for drug promiscu-

ity, since a drug might be promiscuous because it is flexible and

thus can adapt to multiple different targets. On the other hand, a

promiscuous drug might be able to bind to different receptors

because their binding sites are similar in terms of their shape and

physicochemical properties.

To illustrate these hypotheses, consider Figure 1. The flexibility

of the drug ligand tretinoin – a drug marketed for skin diseases is

visualized in Figure 1.A. Tretinoin adapts to the two conformers to

bind to the alpha helical retinoid X receptor and to lipocalin, a

beta barrel.

Figure 1.B shows BVDU, an anti-herpes drug which has been

on the market since the 1980s, being recently repositioned to

tackle chemoresistance in pancreatic cancer [32]. BVDU binds to

the herpes virus thymidine kinase and to the human heat shock

protein Hsp27, which is involved in chemoresistance in pancreatic

cancer. Despite the two targets are completely unrelated, the

binding sites in thymidine kinase and a model of Hsp27 have five

Table 1. Overview of Drug Promiscuity Studies.

Organization Drugs Targets Hydrophob. MW

Pfizer [20] 75000 220 yes low

UCSF (USA) [30] 70563 – artifact

EBI [25] 40408 .500 yes high

Novartis [19] 3138 79 yes high

GSK [26] 2500 490 yes indep.

AstraZeneca [22] 2133 200 yes indep.

IMIM/UPF (Spain) [24] 802 480 yes low

Roche [23] 213 – yes indep.

Organon [21] 138 – low

Controversy over drug promiscuity: hydrophobicity and molecular weight.
doi:10.1371/journal.pone.0065894.t001

Drug Promiscuity in PDB
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residues at similar positions, including two key phenylalanines that

coordinate the drug by pi-stacking (Figure 1.B), as was experi-

mentally validated [32].

Overall, Figure 1 shows that, in principle, both ligand flexibility

as well as binding site similarity can serve as hypotheses to explain

drug promiscuity from a structural point of view. In the remainder

of the paper, we screen all relevant protein structures and evaluate

four potential explanations for promiscuity – hydrophobicity,

molecular weight, ligand flexibility and binding site similarity –

based on drug-protein target complexes from the PDB. The

available data is being correlated with the degree of drug

promiscuity (i.e. number of targets) and physicochemical proper-

ties distributions for promiscuous PDB drugs are compared to all

drugs in the PDB.

Results and Discussion

Drug Promiscuity
Drug promiscuity is receiving a lot of attention [19–26,30].

Often, authors consider a drug promiscuous if it binds more than

one target (e. g. [20,33]). However, especially in large screens,

drug targets are not defined precisely [25,34]. So, under which

circumstances are targets different? A fine grained view considers

two targets of a drug different if they have less than 95% sequence

identity. A granular view considers two targets of a drug different if

they fall into different Pfam families (and thus would have less than

ca. 30% sequence identity). We present both approaches and

provide the corresponding results. For the granular view, we use

Pfam [35] and for the fine grained view, we cluster proteins at

95% sequence identity.

The clustering of protein targets at 95% sequence identity gives

a non-redundant target set for the present study. To ensure that

these targets are not highly similar, we have systematically

computed pairwise target sequence similarity (see Figure S1). As

the figure shows, the targets cover the full range of sequence

identity with a mean of 18% and a median of 12%. Besides

shedding light on the targets of promiscuous drugs by evaluating

the targets’ sequence similarity, their global structural similarity,

their protein family membership, and their binding site similarity

are investigated. The first three measures will help to assess how

targets relate globally, while the last is the focus of this paper since

it addresses the exact mode of binding. Among the first three, the

evaluation with Pfam helps to distinguish different flavors of

promiscuity such as the example of staurosporine (targeting

different kinases) and BVDU discussed above.

Drug-Target Dataset
To create a meaningful structural drug-target data set, we

proceeded as follows: Starting from an integrated dataset of 3551

drugs from the Therapeutic Targets Database (TTD), the

Comparative Toxicogenomics Database (CTD), and DrugBank,

we selected 543 drugs being present in PDB structures and 164 of

those with three or more targets in the PDB. These drugs bind a

set of 712 non-redundant protein structures (clustered by 95%

sequence identity, see Methods).

To assess the strength of the drug-target interactions in PDB, we

compared our drug-target pairs to affinity data from BindingDB

[36]. Overall, the mapped ligands (6% of the drug-target pairs are

covered) bind with high affinity: 46% of these bind at least in the

range, 72% bind in the mM range or better and 98% bind in the

range or better (data not shown). However, promiscuous drugs do

not necessarily have to bind with high affinity since the low-affinity

binding of multiple targets also leads to high efficacy [37].

Our dataset is limited in terms of coverage of the chemical space

of drugs as well as in terms of coverage of the protein space.

Important drug targets like GPCRs and other membrane proteins

[34] are underrepresented in the PDB due to their hydrophobic

nature. However, the PDB is estimated to cover the vast majority

of the known drug targets (92% when considering similar proteins)

[34]. Moreover, the screens listed in Figure 1 are considerably

larger compared to our set of 164 promiscuous drugs, since they

Figure 1. Drug promiscuity: Ligand flexibility vs. binding site
similarity. (A) A flexible ligand, tretinoin (on the left), with two distinct
conformations is able to bind to very different binding sites. (B) The
drug BVDU (orange) binding to a viral thymidine kinase (green, 1osn)
and a human heat shock protein (blue, homology model [32]). The two
targets share a similar binding site, which allows the promiscuous
binding of the drug in the same conformation.
doi:10.1371/journal.pone.0065894.g001

Drug Promiscuity in PDB
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do not consider structural data. Thus, the analysis in this study

must be interpreted with these limits in mind.

Figure 2 summarizes the distribution of drug promiscuity in

PDB. The majority of drugs has only one target, but some 30%

(164) have three or more targets (see Methods for details). The top

10 of these promiscuous drugs are listed in Table 2. The most

promiscuous drug with 37 different targets is benzamidine, a

competitive inhibitor of serine proteases and a precursor of many

drugs such as pentamidine. However, it is overrepresented since it

is used in X-ray crystallography to prevent degradation of

proteins. Second is staurosporine, a non-selective kinase inhibitor

with 31 targets having a sequence identity down to 3% (average

23%). Derivatives of staurosporine are in clinical trial for different

cancers. The first three promiscuous drugs that are on the market

are acarbose (diabetes), methotrexate (cancer and auto-immune

diseases), and niacinamide (skin diseases). Each has over 15 distinct

targets with average pairwise sequence similarities of 12%, 18%,

and 10%, respectively.

Molecular Weight does not Correlate with Promiscuity
As discussed in the introduction, there is a debate on the

relation of molecular weight (MW) and promiscuity. MW is of

interest in the context of promiscuity because it approximates

molecular size. Since bigger molecules bare more features to

interact with a receptor, they could be potentially more

promiscuous [26]. On the other hand, big and thus complex

molecules could be very selective due to specific interaction

patterns with the receptor [27].

Figure 3.A plots this relationship for the 164 promiscuous drugs

of this study. Molecular weights range from 91 g/mol (aminoox-

yacetic acid) to 1541 g/mol (cobamamide). The top two promis-

cuous drugs have a MW of 124 g/mol for benzamidine and

465 g/mol for staurosporine, respectively. Overall, there is no

correlation between weight and the degree of promiscuity (Pearson

correlation coefficient rv0:1). In order to test the statistical

significance of the correlation, we computed P-values (see

Methods). The correlation of promiscuity to molecular weight

has an insignificant P-value of 0.97. Additionally, we compared

the distributions of MW for the promiscuous drugs dataset and for

all drugs in the PDB. These distributions were fairly similar as well

(Kolmogorov-Smirnov test, distributions are similar with a P-

Value of 0.58, see Figure S2). Moreover, the distributions equal

the weight distribution for all PDB ligands [38], further supporting

the finding that MW has no impact on the degree of promiscuity.

Figure 2. Promiscuity of drugs in the PDB. 30% of the drugs have three or more targets.
doi:10.1371/journal.pone.0065894.g002

Table 2. The 10 most promiscuous drugs.

Organization Targets Approved

Benzamidine 37

Staurosporine 31

NANA 19

Sinefungin 19

Acarbose 18 !

Methotrexate 17 !

Niacinamide 16 !

59-methylthioadenosine 15

Quercetin 15 !

Tretinoin 14 !

NANA stands for 2-deoxy-2,3-dehydro-N-acetylneuraminic acid.
doi:10.1371/journal.pone.0065894.t002

Drug Promiscuity in PDB
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Figure 3. Visualization of possible correlations with degree of drug promiscuity (drug target count). Green dots denote the mean. (A)
Molecular weight. There is no correlation (rv0:01). (B) Hydrophobicity. There is no correlation (r~{0:12). (C) Bound Drug conformer clusters. There
is a weak correlation (r~0:2). (D) The number of target Pfam families is correlated with the drug target count (r~0:69). (E) Global structural
alignment. There is a correlation between the number of targets of a drug and the square root of the number of structurally similar proteins among
its targets (r~0:76). (F) Similar binding sites. There is a correlation between the target count of a drug and the square root of the similar binding site
count of its targets (r~0:81).
doi:10.1371/journal.pone.0065894.g003

Drug Promiscuity in PDB
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Thus, our data supports the findings of [22,23,26] that

molecular weight is not indicative of promiscuity and is not in

accordance with the findings presented in [19–21,25].

Hydrophobicity does not Correlate with Promiscuity
While disagreeing on the influence of molecular weight, all

studies but two [28,30] agree on hydrophobicity as a reason for

promiscuity. Hydrophobicity is a fundamental criterion during

drug development, since it influences e. g. solubility, membrane

permeability and thus bioavailability with a direct impact on

potency [39].

For the promiscuous PDB drugs, we analyzed hydrophobicity as

computed octanol-water partition coefficient (log P). Overall,

hydrophobicity varies greatly. For example, the two most

promiscuous drugs, benzamidine and staurosporine have a log P

of 0.77 (slightly hydrophobic) and 7.14 (hydrophobic), respectively.

Among all the promiscuous drugs, the greatest difference in

hydrophobicity is between the compounds kanamycin and vitamin

K1 with log P values of 27.14 and 9.06, respectively. All in all,

Figure 3.B shows that there is no correlation between the number

of targets and hydrophobicity (r&{0:1, P-value~0:14).

Regarding distribution, hydrophobicity (computed log P) is

normally distributed around 0 for all PDB ligands [38], whereas

the restriction to the promiscuous PDB drugs shows a trend of

higher hydrophobicity (higher log P, Figure S3). Hydrophobicity

is a general property of drugs since protein drug targets tend to

have more apolar amino acids in their binding sites than non-drug

targets [40]. To assess, whether this trend is a property of the

promiscuous drugs dataset, we compared the log P distribution for

the promiscuous drugs to the distribution of log P-values for all

PDB drugs in our dataset. The two distributions are not

significantly dissimilar (P-Value of 0.13, see distributions in Figure

S3). Thus, no trend of higher/lower hydrophobicity for the

promiscuous drugs in comparison to all drugs in PDB is apparent.

The predominance of hydrophobic compounds among the

promiscuous drugs in the studies summarized in the Introduction

has been explained by works demonstrating that the observed

promiscuity is due to the formation of hydrophobic aggregates

[28,30]. However, the drug dataset in this study does not sample

the entire chemical space since important drug targets like GPCRs

[34] and other membrane bound proteins are clearly underrep-

resented in the PDB.

Determinants of Promiscuity: Drug Flexibility and Binding
Site Similarity

As the analyses above suggest, there is no correlation between

drug promiscuity and molecular weight or hydrophobicity. As

shown in Figure 1, two reasons why a drug may be promiscuous

are of structural nature: Either the drug may be flexible and can

adapt to different binding sites or the binding sites of the targets

are similar.

Drug Flexibility Weakly Correlates with Promiscuity
The last drug property open for analysis is conformational

flexibility. It is of interest to analyze ligand flexibility because a

flexible ligand might be able to adapt to different receptors (see

Figure 1) and thus being more promiscuous. Since flexibility itself

cannot be measured directly, two approximations are studied. We

analyze the rotatable bond count and compare all conformers (as

found in the PDB structures) for each promiscuous drug.

Rotatable Bond Count
A commonly used approximation for conformational flexibility

is the rotatable bond count. Instead of using the absolute number

of rotatable bonds, the relative number of rotatable bonds was

used to avoid bias towards molecule size (approximated by MW).

This is because the number of rotatable bonds correlates well with

MW (r&0:7, compare also Figure S4 to Figure 3.A). In contrast,

the relative number of rotatable bonds is only weakly correlated

with MW (r&0:2).

For the promiscuous drugs, the median of the relative rotatable

bond count is 0.2. Between 11% and 30% of the bonds are

rotatable for half of the drugs (see Figure S5). No correlation was

apparent between the relative number of rotatable bonds of the

promiscuous drugs and the observed promiscuity (rv0:1, Figure

S6).

Drug Conformers
To reliably assess the influence of the ligands’ flexibility on their

promiscuity, we additionally performed an analysis of the

exhibited drug conformers. Thus, all conformers of the promis-

cuous drugs were extracted from the corresponding PDB

structures and clustered to determine the different conformer

counts for each drug. Conformers with an RMSD of #1.4 Å were

clustered (see Methods and Figure S7 for the histogram of the

RMSDs).

As shown in Table 3, the most flexible drug (with a maximum

number of different conformers) is suramin (9 conformers).

Suramin is an antiparasitic drug (against trypanosomiasis and

onchocerciasis) developed in 1916 by Bayer and currently studied

for its activity against various cancer cell lines [41]. It is found in 7

PDB structures (representing 6 distinct targets) in 9 different

conformers. However, 3 different conformers were solely found in

a single PDB structure of the toxic component of a snake venom

(PDB ID 3bjw) [42].

Five different conformers were found for methotrexate, but its

targets are highly similar in structure and binding site, building

essentially one cluster. In terms of sequence, the methotrexate

targets are clustered into three clusters.

Table 3. The most flexible drugs.

Drug Targets ConformersMin Mean Max

Suramin 6 9 1 2.22 4

Farnesyl Pyrophosphate 12 8 1 4.50 22

Acarbose 18 6 1 7.33 19

Methotrexate 17 5 1 14.40 56

Glutathione Disulfide 6 5 1 1.80 3

Cholecalciferol 3 5 1 1.80 3

b-Methylene TAD 7 5 1 3.40 6

Ampicillin 5 4 1 2.50 6

5,6,7,8-Tetrahydrofolic
Acid

6 4 1 2.25 5

Sinefungin 19 4 1 8.25 24

Dodecyl Sulfate 3 4 1 4.25 11

Drugs with $4 conformer clusters. For each drug, the total number of clusters
(i.e. the number of conformers in all PDB structures) and the minimum/
maximum/average number of cluster members (i.e. similar conformers of one
drug) in such a cluster is given.
doi:10.1371/journal.pone.0065894.t003

Drug Promiscuity in PDB
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The situation for acarbose is the converse: It shows six different

conformers, which is reflected in the 5 clusters of different global

structures and 9 binding site clusters. The diversity in sequence is

even higher, leading to 12 sequence clusters. See the last

subsection of Results/Discussion for details on methotrexate and

acarbose.

However, these examples of highly flexible drugs are exceptions

in the data set. Figure 4 summarizes the number of conformers for

all drugs in a histogram. By far the most drugs (68%) show exactly

one conformer when bound to a PDB protein. This is a similar

result as in [43], where the authors found this number to be 54%

on a set of 193 drugs. Furthermore, of the 164 drugs in our

dataset, 18% showed two conformers and only 14% three or

more. For one drug (pepstatin), the number of conformers was not

determined because it got changed from a ligand (PDB Chemical

ID: IHN) to a protein chain in the PDB structure as the analyses

were performed.

Since 50% of the drugs have more than two targets (Figure 2),

the conformational flexibility can not completely explain the

observed promiscuity. This finding is further supported by a weak

correlation between the degree of promiscuity of a drug and the

number of conformer clusters (r&0:2, P-Value = 0.01,

Figure 3.C). Probably, the reason for the relatively low number

of conformers for the promiscuous drugs lies in drug design: rigid

compounds are preferred over flexible ones, reducing entropy loss

upon target binding and membrane permeation [44]. The

correlation between the conformer count of the drugs and their

relative rotatable bond count is weak (r&0:3), reflecting the

discrepancy between the number of theoretically possible

conformers of a drug and the actually observed number of

conformers in the binding sites.

Comparing the distributions of the relative rotatable bond count

for the promiscuous drugs and all drugs in the PDB, slight

differences are apparent (P-Value of 0.007, see Figure S5). As the

data suggests, promiscuous PDB drugs show a tendency towards a

higher rotatable bond count in comparison to the set of all drugs in

the PDB. Thus, ligand flexibility might explain the permissive

binding of some drugs to highly dissimilar pockets in distinct

targets.

A combination of the three studied drug properties was not

related to the degree of promiscuity as resulted from an

appropriate linear regression model (R2~0:07 at a P-Value of

0.04).

Binding Site Similarity Analysis
To investigate whether a pair of proteins (being targeted by a

promiscuous drug) has a similar binding site, their structures are

aligned locally with SMAP [15,45,46]. The binding site alignment

essentially works by selecting the Ca atoms from each protein and

trying to find an optimal local superposition of these atoms in

space, while taking their side chains’ physicochemical properties

into account [5]. Since only binding sites of identical promiscuous

drugs are aligned against each other, we can use the ligand

positions in an aligned pair of proteins to judge the alignment.

This is done by measuring distances between the atoms of the two

ligands (root-mean-square deviation, RMSD). Similar measures

have been applied in protein-protein docking [47], drug target

identification [11] and binding site similarity assessment [46,48].

We enriched the approach described in [48] with an automated

substructure search (Small Molecule Subgraph Detector [49]),

generating a robust scoring for binding site similarity: Li-

gandRMSD (see Methods).

To assess, whether promiscuous drugs have targets with similar

binding sites, we implemented a pipeline consisting of three steps

(see Figure 5):

1. First, we align all pairs of binding sites for all promiscuous

drugs using SMAP [15,45,46].

2. Second, we remove redundant targets.

3. Third, we only keep sites with a consistent binding mode of the

ligand.

The purpose of step one is to systematically compare any

possible match of any binding sites of a promiscuous drug. Since

the comparison is pairwise, the number of 712 non-redundant

targets (2284 structures) leads to a total 38244 aligned binding site

pairs. Some of the aligned binding sites are very similar. To

remove this redundancy, all targets with $95% sequence identity

are clustered, reducing the dataset to nearly 10% (3948 pairs). The

final step is the crucial one. Since we want to study binding sites in

the light of drug promiscuity, it is vital that the compared binding

sites bind the ligand in a similar mode. The first step only considers

the binding sites and not the ligands in its alignment. Hence, the

third step, in which the ligands are compared, is necessary. This

third step is called LigandRMSD since we compute how well the

two ligands of the compared binding sites are aligned due to the

superposition of the binding sites. This is done by measuring the

RMSD of the ligand superposition and comparing it to a

corresponding optimal superposition. An alignment of two binding

sites was judged successful if the positions of their shared ligand in

each site are similar (i.e. the protein structural alignment led to a

superposition of the ligands). Therefore, two binding sites were

considered similar if their alignment yields a LigandRMSD #3 Å

(see Methods and Figure S8 for the histogram of all computed

LigandRMSDs). LigandRMSD is independent of conformational

differences between the ligands since it compares the alignments of

the ligands against the corresponding optimal alignment. The

third step of requiring consistent ligand binding reduces the set by

59%.

This final set of 1628 binding site pairs satisfies now three

properties: First, the binding sites share some similarity as obtained

by SMAP, they are non-redundant, and they bind their ligands

similarly (LigandRMSD). The current pipeline uses all binding site

comparisons provided by SMAP as they are independent of their

score. Thus, the question arises, whether setting up a threshold on
Figure 4. Conformer count of promiscuous drugs in the PDB.
doi:10.1371/journal.pone.0065894.g004
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the SMAP score could make the final step of filtering for consistent

ligand conformation unnecessary. This amounts to the question

whether SMAP P-Values and LigandRMSD separate the similar

binding site pairs from the non-similar equivalently. To test this,

we plotted the SMAP P-Value against the LigandRMSD for the

corresponding pairs in Figure 6. The filtering by LigandRMSD

detected more similar binding site pairs in comparison to the

SMAP P-Value at any threshold without increasing the false

positive count considerably. At a P-Value threshold of 10{3,

LigandRMSD detects 16% more similar binding sites. At the same

time, basically all highly significant similar binding site pairs

according to the SMAP P-Value are retained by the Li-

gandRMSD filtering.

Thus, the two separations are different and hence both steps –

one and three – are necessary. Intuitively, this is also supported

since SMAP compares only the targets and not the ligands. While

LigandRMSD focuses solely on the ligand. For this specific

analysis of drug promiscuity, both perspectives are needed.

Similar Binding Sites and Structural Similarity do
Correlate with Promiscuity

1628 out of the 3948 target pairs (41%) have a similar binding

site according to the alignment by SMAP together with the scoring

with LigandRMSD. The average sequence identity of these 1628

target pairs is still low with 28% and the majority (1112 pairs) has

less than 30% sequence identity. Taking a drug-centric view, we

find that 71% of the drugs have at least one target pair with a

similar binding site and that for 18% of the drugs all of their

targets are similar. The top 4 promiscuous drugs (Table 4)

benzamidine, staurosporine, NANA and sinefungin are also the

ones with most similar binding sites among their targets (see

Table 4). To check for a relation between drug promiscuity and

binding site similarity, Figure 3.F shows a plot of the degree of

promiscuity against the square root of the number of similar

binding sites. The square root is taken since there are potentially

t:(t{1)=2& t2

2
similar binding sites for t targets. Overall, Figure 3.F

shows a correlation of r~0:81 (P-Value v10{15).

It must be noted that any found binding site similarity is

significant and a priori unlikely since the average sequence identity

of all compared target pairs sharing a drug is just 19% (Figure S1).

Furthermore, 3310 out of the 3948 compared non-redundant

target pairs have a sequence identity of less than 30%. The

distributions in Figure S1 show that the targets are dissimilar in

sequence (sequence identity #23% for half of all pairs), although

they are similar in binding site.

To assess the influence of global structural similarity on the

detected similar binding site pairs, global protein structural

alignments were computed using TM-align [50] in the same way

as for SMAP. Thus, the global structural alignments were also

filtered with LigandRMSD. Figure S9 shows the distribution of the

TM-scores for the aligned proteins. 55% of these protein pairs are

dissimilar in global structure with a TM-score,0.5, demonstrating

the diversity among a drug’s targets. The correlation of global

structural similarity (TM-score$0.5) with the degree of promis-

cuity was with r~0:76 (P-Valuev10{15, Figure 3.E) weaker than

for binding site similarity with SMAP (r~0:81, Figure 3.F).

Moreover, 15% of the similar binding site pairs are significantly

dissimilar in global structure with a TM-score,0.5. Such cases of

binding site similarity in the absence of structural and sequence

similarity are of particular interest, since they would not be

discovered by conventional methods; although being potential off-

targets causing severe side effects.

Furthermore, we investigated the diversity in the dataset of

similar binding site pairs in terms of their family membership using

Pfam. However, 56% of the promiscuous drug targets did not have

a Pfam annotation. We found a strong correlation (r~0:69, P-

Valuev10{15, Figure 3.D) of the different family count with the

degree of promiscuity, demonstrating that the promiscuous drugs

in our data set bind to diverse proteins.

Thus, binding site similarity and structural similarity are the

only of the five studied properties that correlate well with the

degree of promiscuity. It must be noted that 15% of the target

pairs with similar binding sites are dissimilar in global structure.

Figure 5. Pipeline of the binding site similarity analysis. Starting from 543 drugs, we identify 164 promiscuous drugs, each binding to three or
more non-redundant targets (712 in total). The binding site alignment with SMAP is performed for all 2284 structures (i.e. the redundant targets).
Subsequently, target pairs are clustered by 95% sequence identity – giving 712 non-redundant targets – and ranked with LigandRMSD.
doi:10.1371/journal.pone.0065894.g005
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Similar Binding Sites for Targets of Methotrexate,
Acarbose and Quercetin

We selected three examples from the highly promiscuous drugs

in Table 2 for detailed discussion. The aim was to have three

representative approved drugs with targets of low, very low and no

pair-wise sequence identity, resulting in methotrexate, acarbose

and quercetin. Methotrexate is an antifolate drug, used in the

treatment of cancer and autoimmune diseases. It is mainly

inhibiting dihydrofolate reductases (DHFR), which are necessary

for DNA and RNA synthesis. Acarbose, an alpha-glucosidase

inhibitor, is an anti-diabetic drug against type 2 diabetes. Due to

its ability of delaying the absorption of carbohydrates from the

small intestine, it is also used to treat cardiometabolic disorders.

Quercetin is a natural flavonoid with beneficial effects on blood

pressure and lipid metabolism. Its inhibitory activity against a wide

range of kinases suggested a potential application as anticancer

drug. Figure 7 shows three different heatmaps for each of the three

drugs. The heatmaps compare the targets in terms of sequence

identity, the overall structural similarity (TM-score) and the

binding site similarity (LigandRMSD).

For all the three cases, the similarity among the targets is best

reflected in the binding site similarity heatmaps. Sequences are not

indicative of any relationship between those proteins although they

are all binding the same drug. The structural similarity could

underline clusters of similar targets but misses interconnections

among the groups (for example in Figure 7.A and Figure 7.B), or

identifies only small clusters unrelated to each other as in

Figure 7.C. Two illustrative target proteins are underlined for

each of the drugs with the corresponding structures shown in

Figure 8.

Figure 6. Comparison of the SMAP P-Value to LigandRMSD. A P-Value of 10{3 gives a significant binding site alignment. The LigandRMSD
gives the conformational similarity between the bound ligands and is #3 Å for similar binding sites. The thresholds are displayed as solid lines in the
plot. In total, 3948 non-redundant target pairs were compared.
doi:10.1371/journal.pone.0065894.g006

Table 4. The 10 drugs with the most similar binding sites.

Sequence Identity

Drug Sim. BS min

Q1 ~xx �xx Q3

max

Staurosporine 450 3 19 22 23 25 80

Benzamidine 202 0 27 33 32 37 90

NANA 143 2 9 13 15 17 70

Sinefungin 106 4 9 12 12 15 27

Methotrexate 79 4 31 26 26 31 89

59-methylthioadenosine 58 1 10 14 14 16 45

Actinonin 43 24 27 29 36 49 70

5,6,7,8-tetrahydrobiopterin25 12 60 64 63 67 92

1-Methyl-3-
isobutylxanthine

25 20 26 27 29 29 92

Zanamivir 21 2 12 29 31 47 92

For each entry, the minimum, lower (Q1) and upper quartile (Q3), the median
(~xx), average (�xx) and maximum sequence identity (among pairs with similar
binding sites) is given. NANA stands for 2-deoxy-2,3-de-hydro-N-acetyl-
neuraminic acid.
doi:10.1371/journal.pone.0065894.t004

Drug Promiscuity in PDB

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e65894



The first example – methotrexate – is the approved drug with

most similar binding sites (79; see Table 4). Figure 7.A provides an

overview of the similarity of its targets and their binding sites. The

left heatmap shows that its sequences are clustered in three groups.

Figure 7. Target similarity. The heatmaps for the targets of methotrexate (A), acarbose (B) and quercetin (C) show that the target sequences are
dissimilar (left), the global structural similarity (middle) is comparable to the sequence identity and the binding sites are overall more similar (right).
(A) Two DHFR (1dg5, 3dl6) with a conserved 3D structure and similar binding sites for methotrexate are highlighted. (B) Although the proteins 4-a-
glucanotransferase (1k1x) and glucoamylase (2f6d) have globally distinct sequences and structures, they bind acarbose in a very similar way. (C) The
two protein kinases PI3KCG (3lj3) and PIM1 (3ma3) share a similar binding pocket for quercetin.
doi:10.1371/journal.pone.0065894.g007
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These correspond to the three groups of targets of the drug (from

bottom left to the top right) : Pteridine reductases, thymidylate

synthases, and dihydrofolate reductases (DHFRs). The heatmap

for global structural similarity in the middle shows a similar picture

as the one for sequence identity on the left. However, weak global

structural similarities are apparent for all its targets. One single

exception is a thymidylate synthase (TS) from E. coli (PDB ID

3 bhr), in the bottom left corner, similar to two TS-DHFR (3dl6,

3 hbb). The heatmap for binding site similarity on the right shows

two predominant groups : Pteridine reductases (bottom left) and

DHFRs plus TSs. However, the separation between those groups

is less pronounced, suggesting that the binding site of methotrexate

is more conserved than the global structure of the proteins. In

human, the binding to DHFR is exploited in cancer therapies,

since it is blocking the synthesis of DNA. Methotrexate is targeting

DHFRs of other organisms too, such as Mycobacterium tuberculosis or

Leishmania major, where the promiscuous binding to pteridine

reductase 1 causes resistance to the drug [51]. Two DHFRs (1dg5,

3dl6) are underlined in blue in Figure 7.A. The structural detail for

methotrexate in Figure 8.A shows two dihydrofolate reductases

(1dg5, 3dl6) from human pathogens with only 9% sequence

identity, but sharing a common 3D structure (TM-score 0.89) and

binding site (LigandRMSD 0.46 Å and SMAP P-Value 0). The

binding site detail on the right in Figure 8.A shows a very good

agreement of the residues.

The 18 targets of acarbose are dissimilar in sequence and

mainly clustered in three groups (Figure 7.B) when considering

global structural similarity (middle heatmap). The latter picture is

resembled by the binding site similarity heatmap on the right,

although the pair-wise similarities are fewer. Two proteins, a 4-a-

glucanotransferase (1k1x) and a glucoamylase (2f6d) – even though

completely different in sequence (Sequence identity 9.7%) and in

structure (TM-score 0.32) – are showing a conserved binding site

able to bind acarbose (LigandRMSD 1.69 Å, but SMAP P-Value

0.97). The corresponding aligned structures are shown in

Figure 8.B with some differences in the amino acid positions of

the binding sites, but still having similar physicochemical

properties.

The final example (Figure 7.C) shows how inhomogeneous the

targets of quercetin are. They are dissimilar in sequence, have a

low pair-wise structural similarity (except for two small clusters on

the bottom left) but show many pairs with similar binding sites. In

particular, two protein kinases PI3KCG (3lj3) and PIM1 (3ma3),

are well known targets of quercetin and implicated in cancer cell

biology [52]. They show only 8% sequence identity, a TM-score of

0.46 indicating no structural similarity but their binding sites are

very similar (LigandRMSD 1.41 Å, but SMAP P-Value 0.28). The

binding site residues align structurally and match physicochemi-

cally very well, although they mostly mismatch on the sequence

level.

Conclusion
Finding general reasons for drug promiscuity is still an open

problem. Nine studies – mostly from pharmaceutical companies –

draw partly inconsistent conclusions on the influence of a drug’s

molecular weight and its hydrophobicity on drug promiscuity. We

contributed to this discussion by pursuing for the first time a

comprehensive structural approach and by investigating two more

possible sources for drug promiscuity: ligand flexibility and binding

site similarity. However, our drug data set is limited in size due to

the restriction to PDB.

We analyzed a structural dataset of 164 promiscuous drugs

bound to 712 unique protein targets from the PDB. We found no

correlation to weight or hydrophobicity and a weak correlation to

ligand flexibility. However, we found some correlation (r~0:81,

P-Valueƒ10{15 ) between the number of targets and the number

of similar binding sites. Thus, our analysis supports [22,23,26] that

molecular weight is not indicative of promiscuity and it contradicts

the findings presented in [19–21]. Regarding hydrophobicity, the

studies mostly agree that hydrophobic compounds tend to be more

promiscuous. However, Shoichet and co-workers argue that many

drug-target associations from high throughput screenings are

biased by hydrophobic drug aggregation [28,29]. Our finding that

there is no correlation between the degree of promiscuity and

hydrophobicity supports this view but does not reflect the findings

in [19,20,22–26]. However, it must be noted that our dataset is

limited to the PDB and thus has an intrinsic bias. This limitation

directly affects the investigated number of drugs. Thus, the

comparability to the other studies of drug promiscuity is limited in

that sense. A big portion of drugs binds for example to membrane

proteins like GPCRs [34], which are underrepresented in the

PDB. Thus, the trends in terms of physicochemical properties

reported in the discussed studies might be driven by the nature of

drugs binding to membrane proteins.

None of the discussed studies considered a structural analysis of

the ligands and/or their protein binding sites. To this end, we

clustered the drug conformers and compared all binding sites. As a

result, we found a weak correlation of the degree of drug

promiscuity to ligand flexibility (r~0:2), a correlation to structural

similarity (r~0:76) and even higher to the number of similar

binding sites (r~0:81). Furthermore, we found that for 71% of the

drugs at least one pair of their targets’ binding sites is similar and

for 22% all are similar.

Thus, we conclude that binding site similarity is the most

important prerequisite for a promiscuous PDB drug to bind to

multiple PDB targets and that ligand flexibility has a minor

impact. Molecular weight and hydrophobicity do not seem to

influence whether a drug is promiscuous or not. It is important to

note that structural similarity gives a strong correlation as well.

However, global structural similarity is also reflected in the pairs of

similar binding sites but misses the important examples of similar

binding sites in globally structural dissimilar proteins. In particular,

15% of all target pairs with a similar binding site are dissimilar in

global structure and would have not been detected by other

approaches on sequence or global structure level.

Our study demonstrates that it is vital and worthwhile to

incorporate structural data in drug discovery pipelines and that the

efforts in structural genomics and algorithm development for

structural bioinformatics have to be strengthened. As supported by

our findings, protein local structural alignments bare a huge

potential to infer so-far unknown drug-target relationships. Apart

from identical ligands, as in this study, LigandRMSD is suitable to

score binding site alignments with dissimilar ligands as well. This is

achieved by a maximum common substructure detection in a pair

of ligands. The further mapping of the drug-protein interaction

space with structural bioinformatics approaches – such as the

approach used in this study – gives hypotheses for drug

repositioning or off-target detection, speeding up drug develop-

ment and uncovering causes for adverse drug reactions. Analyses

from a convergent evolution point of view, such as the detection of

protein interaction interface mimicry strategies by viruses, can also

be driven by local structural alignments.

Methods

Drug-Target Dataset
Drugs. We integrated 3042 drugs from TTD [53] (version

4.3.0.1, 2011/07/01), 1261 from the Comparative Toxicoge-
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nomics Database (CTD) [54] (2011/07/05), and 1348 approved

drugs from DrugBank [55] (version 3, 2011/11/28) leading to a

set of 3551 drugs. All drugs were mapped to PubChem [56] CIDs,

using a provided mapping or the PubChem Power User Gateway

(PUG). In the latter case, the structures were first transformed to

InChI and SMILES using OpenBabel (version 2.2.3, open-

babel.sourceforge.net) [57] and Pybel [58]. Only for PDB ligands,

the provided SMILES were used. These string representations of

the chemical structures were then sent to the PubChem PUG web

service, which returns the corresponding PubChem CID. If no

CID was returned (because the query structure is not present in

PubChem), a similarity search via the PUG is performed. This was

implemented as a binary search for the highest possible Tanimoto

similarity to the query structure. Only compounds with a

Tanimoto score $0.9 were considered for the analyses in this

work. If the search result comprises more than one compound, the

smallest CID is retained as a representative.

Promiscuous drugs. We obtained 10430 co-crystallized

ligands from 66820 structures in the PDB [31] (accessed 2010/

10/29). Of these 10430, 560 are drugs present in the set above,

8977 are non-drugs and 893 were blacklisted. Ligands were

blacklisted if they are small compounds (five non-hydrogen atoms

or less), common cofactors, detergents or solutes or the compounds

listed in [59]. The filtering of small compounds was performed

Figure 8. Structural details of binding site similar targets. The binding site alignments for the targets of (A) methotrexate, (B) acarbose and
(C) quercetin (highlighted in blue in Figure 7) are visualized. Binding sites are highlighted in red and ligands are displayed in orange. PDB IDs are
given below the structures. If the given ID is a representative of a cluster, the PDB ID of the underlying structures is given in parentheses.
doi:10.1371/journal.pone.0065894.g008
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with OpenBabel. For each PDB structure, all of its ligands were

extracted using mmLib [60] with Python.

Protein targets. Subsequently, all PDB protein structures

were clustered according to the 95% sequence identity clusters as

provided by the PDB, resulting in a set of non-redundant targets

(i.e. the cluster representatives). The number of targets as listed

throughout this paper is based on this non-redundant set of protein

structures for a drug. Out of the 560 drugs with at least one target

in PDB, 164 have three or more (non-redundant) targets. These

164 are the set of promiscuous drugs used throughout the paper.

The 164 drugs are present as ligands in a total of 2284 PDB

structures, clustered to 712 (non-redundant) protein targets.

Binding Site Alignment
The binding sites of all promiscuous drugs (three or more

different targets) were aligned with the binding site alignment tool

SMAP (version 2.0, funsite.sdsc.edu, see Table 5 for the setup )

[15,45,46].

SMAP uses a Ca representation of the protein structure,

characterizing each such atom by a geometric potential to reflect

the distance to the surface and neighboring atoms [45]. Two

protein binding sites are aligned by computing the maximum

weight common subgraph of the graphs built from a tessellation of

Ca atoms (nodes). Weights are amino acid frequency profile

distances. The alignment score for the aligned residue pairs is

computed from their profile distances, weighted by distance and

normal vector differences [46]. A P-Value is computed from an

estimated background probability distribution of binding site

alignment scores for a pair of aligned ligand binding sites [61]. A

typical P-Value threshold is ƒ10{3 as in two studies of the

algorithm authors [37,62].

An alignment of two binding sites was considered to be

significant only if their bound ligands were in a similar position

(LigandRMSDƒ31A).

Only ligand binding sites as found in PDB structures were

considered during the alignment by setting the appropriate option

in the SMAP configuration file (see Table S1 for the detailed

setup). For each drug d (targeting proteins ti) and for each pair of

non-redundant targets (i.e. cluster representatives) ti and tj , we

compared the (redundant) structures t’l against all (redundant)

structures for t’m (i.e. t’l and t’m are cluster members represented

by ti and tj , respectively). If at least one of these pairs (t’l ,t’m) has a

LigandRMSDƒ31A, then the binding sites in ti and tj are

considered similar.

For the drug d bound by each member of a pair of aligned

binding sites (ti,tj ), the LigandRMSD of the two drug conformers

d1 and d2 was calculated as follows: First, the maximum common

subgraph d ’ of d1 and d2 was computed using OpenBabel, or the

Small Molecule Subgraph Detector [49] if no isomorphism was

found by OpenBabel. The RMSD between the conformers d1’ and

d2’ in d1 and d2 was computed for the positions according to the

SMAP binding site alignment (RMSD9) and for the optimal

alignment of the two ligands (RMSD’’). For details on the

computation of the RMSD’’ see section ‘‘Comparison of Ligand

Conformers’’). Finally, the LigandRMSD is given by

LigandRMSD~RMSD0{RMSD00.
Binding site alignments for the 164 promiscuous drugs with the

712 non-redundant targets were computed and scored with

LigandRMSD. Thus, the comparison of all targets for each of the

164 drugs resulted in 38244 local structure alignments.

Sequence and Structure Alignment, Protein Families
For each structural binding site alignment, the corresponding

protein sequence alignment was computed as a global alignment,

using an implementation of the Needleman-Wunsch algorithm

(program needle) in the EMBOSS suite [63] (version 6.1.0). Gap

penalties were set to 10 for gap opening and 0.5 for gap

elongation. BLOSUM62 was used as substitution matrix.

Sequences were extracted from the FASTA file provided by the

PDB as of 2010/10/29.

Global structural alignments were performed using TM-align

[50] with default parameters on single PDB chains.

Protein families were assigned to the target proteins using Pfam

release 26.0 [35].

Comparison of Ligand Conformers
To explore the conformational space of the drugs in the PDB,

all drugs were identified and extracted from the 2284 PDB files. A

python script together with Pybel [58] was used to perform this

task. Subsequently, for each drug d and each pair of its conformers

c1 and c2, the conformers were superimposed (3D rigid structure

alignment) onto each other using OpenBabel and RDKit for

Python (rdkit.org). The lowest RMSD from both of the methods

was retained. The RMSD of the superposition of two conformers

c1 and c2 is their distance during the clustering. Next, the

conformers were clustered with hierarchical clustering using

average linkage. The hierarchical tree of clusters was turned into

distinct clusters by cutting off at 1.4 Å. The threshold of 1.4 Å

RMSD allows to find well matching conformers by staying well

below 2.5 Å as used in docking studies [64].

Drug Physicochemical Properties
Drug physicochemical properties were computed using the

QSAR descriptors of MOE (Molecular Operating Environment,

version 2010.10, Chemical Computing Group Inc.). The com-

puted octanol-water partition coefficient (log P, a measure for the

hydrophobicity of a compound) and the number of rotatable

bonds was computed. The relative number of rotatable bonds

represents the ratio of rotatable bonds to the total bond count.

Bonds in a ring are not counted as rotatable.

Computation, Visualization and Availability
All computations performed for this work – if not stated

otherwise – were scripted in Python using among others Pybel

[58], BioPython (biopython.org), mmLib [60] and RDKit

packages on Linux 2.6.

Protein structures were visualized with PyMol (pymol.org).

The R environment for statistical computing and graphics

software package (R-project.org) was used for data evaluation and

to create the plots shown in this work. To generate the heat maps,

the Heatplus package from the Bioconductor tools for R

(bioconductor.org) was used.

Pearson correlation coefficients r were computed and tested for

statistical significance using the R function cor.test. A low P-

Value#0.05 denotes a low probability of the true correlation being

equal to 0.

A linear regression model was computed for the combination of

all studied drug properties (log P, molecular weight, conformer

count, relative rotatable bond count and rotatable bond count)

using the R function lm.

The distributions are shown as density plots, being a smoothed

approximation generated with the R function density. To assess

the difference in a pair of distributions of original data, the
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Kolmogorov-Smirnov test was used. A high P-Value.0.05 is

indicative of similar distributions.

The result data for this study are available at: http://www.

biotec.tu-dresden.de/research/schroeder/publications/

2012_Drug_Promiscuity_PDB_Suppl/. A description of the files is

given in the Supporting Information S1.

Supporting Information

Figure S1 Density plot of the sequence identity distribution for

all pairs of proteins binding the same drug. The distribution for

protein pairs with similar binding sites is shown in green. Half of

the similar binding site pairs have a sequence identity #23% and

25% have a sequence identity #15%%. The sequence identity

density maximum for all pairs is at 9% (mean 19%) and for the

similar binding site pairs at 22% (mean 28%).

(TIFF)

Figure S2 Density plots of the molecular weight distribution for

the promiscuous drugs (green) and for all drugs in the PDB. The

underlying distributions are similar (Kolmogorov-Smirnov test P-

Value = 0.581).

(TIFF)

Figure S3 Density plots of the computed log distribution for the

promiscuous drugs (green) and for all drugs in the PDB. The

underlying distributions are similar (Kolmogorov-Smirnov test P-

Value = 0.1255).

(TIFF)

Figure S4 The absolute number of rotatable bonds for
different promiscuous drugs. Green solid dots denote the

mean.

(TIFF)

Figure S5 Density plots of the rotatable bond count distribution

(relative to the total number of bonds) for the promiscuous drugs

(green) and for all drugs in the PDB. The underlying distributions

are dissimilar (Kolmogorov-Smirnov test P-Value = 0.007).

(TIFF)

Figure S6 The number of rotatable bonds (relative to the total

number of bonds) for different promiscuous drugs. Overall, the

relative rotatable bond count drops with increasing number of

targets. Green solid dots denote the mean.

(TIFF)

Figure S7 Histogram showing the RMSDs of all conformers of a

drug against each other.

(TIFF)

Figure S8 Histogram of the LigandRMSDs for the binding site

alignments of the promiscuous drug targets. A LigandRMSD of

#3 Å represents similar ligand conformers.

(TIFF)

Figure S9 Density plot of the TM-score distribution for all pairs

of proteins binding the same drug. The distribution for protein

pairs with similar binding sites is shown in green. 15% of the

similar binding site pairs are significantly dissimilar in global

structure with a TM-score ,0.5. The median TM-score is 0.43.

(TIFF)

Table S1 The parameters of SMAP.

(PDF)

Supporting Information S1 Description of supplementary

files. The files list the detailed drug physicochemical properties

and the results of the protein (local) alignments.

(PDF)

Author Contributions

Conceived and designed the experiments: VJH MS. Performed the

experiments: VJH SD. Analyzed the data: VJH SD. Wrote the paper: VJH

SD MS.

References

1. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates?

Nat Rev Drug Discov 3: 711–715.

2. Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its
implications for biotechnology. Nat Biotechnol 27: 157–167.

3. Hopkins AL (2008) Network pharmacology: the next paradigm in drug
discovery. Nat Chem Biol 4: 682–690.

4. O’Connor KA, Roth BL (2005) Finding new tricks for old drugs: an efficient

route for public-sector drug discovery. Nat Rev Drug Discov 4: 1005–1014.

5. Haupt VJ, Schroeder M (2011) Old friends in new guise: Repositioning of

known drugs with structural bioinformatics. Brief Bioinform 12: 312–326.

6. Mencher SK, Wang LG (2005) Promiscuous drugs compared to selective drugs

(promiscuity can be a virtue). BMC Clin Pharmacol 5: 3.

7. Xie L, Xie L, Kinnings SL, Bourne PE (2012) Novel computational approaches

to polypharmacology as a means to define responses to individual drugs. Annu
Rev Pharmacol Toxicol 52: 361–379.

8. Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, et al. (2012) Use of

genome-wide association studies for drug repositioning. Nat Biotechnol 30: 317–

320.

9. Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, et al. (2011)
Computational repositioning of the anticonvulsant topiramate for inflammatory

bowel disease. Sci Transl Med 3: 96ra76.

10. Pujol A, Mosca R, Farrs J, Aloy P (2010) Unveiling the role of network and

systems biology in drug discovery. Trends Pharmacol Sci 31: 115–123.

11. Kalinina OV, Wichmann O, Apic G, Russell RB (2011) Combinations of

protein-chemical complex structures reveal new targets for established drugs.
PLoS Comput Biol 7: e1002043.

12. Daminelli S, Haupt VJ, Reimann M, Schroeder M (2012) Drug repositioning

through incomplete bi-cliques in an integrated drug-target-disease network.

Integr Biol (Camb) 4: 778–788.

13. Kinnings SL, Xie L, Fung KH, Jackson RM, Xie L, et al. (2010) The
mycobacterium tuberculosis drugome and its polypharmacological implications.

PLoS Comput Biol 6: e1000976.

14. Konc J, Cesnik T, Konc JT, Penca M, Janei D (2012) Probis-database:

precalculated binding site similarities and local pairwise alignments of pdb
structures. J Chem Inf Model 52: 604–612.

15. Xie L, Xie L, Bourne PE (2009) A unified statistical model to support local

sequence order independent similarity searching for ligand-binding sites and its

application to genome-based drug discovery. Bioinformatics 25: i305–i312.

16. Kellenberger E, Schalon C, Rognan D (2008) How to measure the similarity

between protein ligandbinding sites? Curr Comput-Aid Drug 4: 209–220.

17. Schalon C, Surgand JS, Kellenberger E, Rognan D (2008) A simple and fuzzy

method to align and compare druggable ligand-binding sites. Proteins 71: 1755–

1778.

18. Liu T, Altman RB (2011) Using multiple microenvironments to find similar

ligand-binding sites: application to kinase inhibitor binding. PLoS Comput Biol

7: e1002326.

19. Azzaoui K, Hamon J, Faller B, Whitebread S, Jacoby E, et al. (2007) Modeling

promiscuity based on in vitro safety pharmacology profiling data. ChemMed-

Chem 2: 874–880.

20. Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design

promiscuous drugs? Curr Opin Struct Biol 16: 127–136.

21. Morphy R, Rankovic Z (2007) Fragments, network biology and designing

multiple ligands. Drug Discov Today 12: 156–160.

22. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on

decision-making in medicinal chemistry. Nat Rev Drug Discov 6: 881–890.

23. Peters JU, Schnider P, Mattei P, Kansy M (2009) Pharmacological promiscuity:

Dependence on compound properties and target specificity in a set of recent

roche compounds. ChemMedChem 4: 680–686.

24. Mestres J, Gregori-Puigjan E, Valverde S, Sol RV (2009) The topology of drug-

target interaction networks: implicit dependence on drug properties and target

families. Mol BioSyst 5: 1051–1057.

25. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links

between in vitro potency, admet and physicochemical parameters. Nat Rev

Drug Discov 10: 197–208.

26. Leach AR, Hann MM (2011) Molecular complexity and fragment-based drug

discovery: ten years on. Curr Opin Chem Biol 15: 489–496.

27. Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact

on the probability of finding leads for drug discovery. J Chem Inf Comput Sci

41: 856–864.

Drug Promiscuity in PDB

PLOS ONE | www.plosone.org 14 June 2013 | Volume 8 | Issue 6 | e65894



28. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common

mechanism underlying promiscuous inhibitors from virtual and high-throughput
screening. J Med Chem 45: 1712–1722.

29. McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) A specific mechanism

of nonspecific inhibition. J Med Chem 46: 4265–4272.
30. Feng BY, Simeonov A, Jadhav A, Babaoglu K, Inglese J, et al. (2007) A high-

throughput screen for aggregation-based inhibition in a large compound library.
J Med Chem 50: 2385–2390.

31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

Protein Data Bank. Nucleic Acids Res 28: 235–242.
32. Heinrich JC, Tuukkanen A, Schroeder M, Fahrig T, Fahrig R (2011) RP101

(brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in
animals and pancreatic cancer patients. J Cancer Res Clin Oncol 137: 1349–

1361.
33. Kroeze W, Roth B (2012) Polypharmacological drugs:magic shotguns for

psychiatric diseases. Polypharmacology in Drug Discovery: 133–148.

34. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are
there? Nat Rev Drug Discov 5: 993–996.

35. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The pfam protein
families database. Nucleic Acids Res 38: D211–D222.

36. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-

accessible database of experimentally determined protein-ligand binding
affinities. Nucleic Acids Res 35: D198–D201.

37. Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemical
systems biology: weak inhibition of multiple kinases may contribute to the anti-

cancer effect of nelfinavir. PLoS Comput Biol 7: e1002037.
38. Kellenberger E, Muller P, Schalon C, Bret G, Foata N, et al. (2006) sc-PDB: an

annotated database of druggable binding sites from the protein data bank.

J Chem Inf Model 46: 717–727.
39. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and

poor permeability. J Pharmacol Toxicol Methods 44: 235–249.
40. Bakheet TM, Doig AJ (2009) Properties and identification of human protein

drug targets. Bioinformatics 25: 451–457.

41. McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP (2008) Suramin:
clinical uses and structure-activity relationships. Mini Rev Med Chem 8: 1384–

1394.
42. Zhou X, Tan TC, Valiyaveettil S, Go ML, Kini RM, et al. (2008) Structural

characterization of myotoxic ecarpholin s from echis carinatus venom. Biophys J
95: 3366–3380.

43. Gnther S, Senger C, Michalsky E, Goede A, Preissner R (2006) Representation

of target-bound drugs by computed conformers: implications for conformational
libraries. BMC Bioinformatics 7: 293.

44. Brandt W, Haupt VJ, Wessjohann LA (2010) Cheminformatic analysis of
biologically active macrocycles. Curr Top Med Chem 10: 1361–1379.

45. Xie L, Bourne PE (2007) A robust and efficient algorithm for the shape

description of protein structures and its application in predicting ligand binding
sites. BMC Bioinformatics 8 Suppl 4: S9.

46. Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold
space, using sequence order-independent profile-profile alignments. Proc Natl

Acad Sci U S A 105: 5441–5446.

47. van Dijk ADJ, Boelens R, Bonvin AMJJ (2005) Data-driven docking for the

study of biomolecular complexes. FEBS J 272: 293–312.

48. Najmanovich R, Kurbatova N, Thornton J (2008) Detection of 3d atomic

similarities and their use in the discrimination of small molecule protein-binding

sites. Bioinformatics 24: i105–i111.

49. Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM (2009) Small

molecule subgraph detector (smsd) toolkit. J Cheminform 1: 12.

50. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm

based on the tmscore. Nucleic Acids Res 33: 2302–2309.

51. Bello AR, Nare B, Freedman D, Hardy L, Beverley SM (1994) Ptr1: a reductase

mediating salvage of oxidized pteridines and methotrexate resistance in the

protozoan parasite leishmania major. Proc Natl Acad Sci U S A 91: 11442–

11446.

52. Boly R, Gras T, Lamkami T, Guissou P, Serteyn D, et al. (2011) Quercetin

inhibits a large panel of kinases implicated in cancer cell biology. Int J Oncol 38:

833–842.

53. Zhu F, Han B, Kumar P, Liu X, Ma X, et al. (2010) Update of TTD:

Therapeutic target database. Nucleic Acids Res 38: D787–D791.

54. Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, et al. (2011)

The comparative toxicogenomics database: update 2011. Nucleic Acids Res 39:

D1067–D1072.

55. Knox C, Law V, Jewison T, Liu P, Ly S, et al. (2011) DrugBank 3.0: a

comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:

D1035–D1041.

56. Li Q, Cheng T, Wang Y, Bryant SH (2010) PubChem as a public resource for

drug discovery. Drug Discov Today 15: 1052–1057.

57. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, et al. (2006)

The blue obeliskinteroperability in chemical informatics. J Chem Inf Model 46:

991–998.

58. O’Boyle NM, Morley C, Hutchison GR (2008) Pybel: a python wrapper for the

openbabel cheminformatics toolkit. Chem Cent J 2: 5.

59. Gold ND, Jackson RM (2006) Fold independent structural comparisons of

protein-ligand binding sites for exploring functional relationships. J Mol Biol

355: 1112–1124.

60. Painter J, Merritt EA (2004) mmLib Python toolkit for manipulating annotated

structural models of biological macromolecules. J Appl Crystallogr 37: 174–178.

61. Xie L, Wang J, Bourne PE (2007) In silico elucidation of the molecular

mechanism defining the adverse effect of selective estrogen receptor modulators.

PLoS Comput Biol 3: e217.

62. Xie L, Li J, Xie L, Bourne PE (2009) Drug discovery using chemical systems

biology: identification of the protein-ligand binding network to explain the side

effects of cetp inhibitors. PLoS Comput Biol 5: e1000387.

63. Rice P, Longden I, Bleasby A (2000) Emboss: the european molecular biology

open software suite. Trends Genet 16: 276–277.

64. Bottegoni G, Rocchia W, Recanatini M, Cavalli A (2006) Aclap, autonomous

hierarchical agglomerative cluster analysis based protocol to partition confor-

mational datasets. Bioinformatics 22: e58–e65.

Drug Promiscuity in PDB

PLOS ONE | www.plosone.org 15 June 2013 | Volume 8 | Issue 6 | e65894


