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Abstract

There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with
each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a
disease related functional linkage network are informative to reveal significant metabolic processes and disease’s
associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network
(T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored
and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The
assembly of top scoring overlapping members in the functional modules revealed that, along with the well known
biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have
significant occurrence in the pathophysiology of the disease. The disease’s association with other metabolic and
neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and
carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study
also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2
diabetes and neuromuscular diseases.
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Introduction

Systems biology approaches to diseases arise from a simple

hypothesis that genes contributing to a common disorder have an

increased tendency for their products to be linked at various levels

of functionality, including protein-protein interaction, co-expres-

sion, co-regulation and share Gene Ontology terms [1]. Complex

diseases have long been known to emerge from an impaired

function of a single protein or a protein cluster that alter the

general functionality. Statistically significant pathogenic overlap

between the complex disorders results possibly from the variations

in linked genes encoding proteins that are a part of a functional

module. Hence, systems based approaches have found a wide

range of applications for the identification of the putative proteins

and revealing the underlying biological processes. The identifica-

tion of disease-causing genes not only facilitates the understanding

of the protein function that provides direct insight into the

progression of the disease but also points out potential drug targets

for further research.

In the last decades, significant efforts have been expanded to

understand the contribution of genetic factors to the development

of complex diseases with the hope that discovering these genetic

factors will provide fundamental insights for pathogenesis,

diagnosis and treatment [2,3]. Most of these studies revealed the

importance of underlying biological pathways and shared genes

among the diseases. Thereby, systems biology based approaches

emerged as powerful tools to identify of the molecular mechanisms

underlying complex disorders and their relationships with other

complex disorders including various types of cancers [4–7],

cardiovascular disease [8,9], neurological diseases [10,11], diabe-

tes [12,13], asthma [14] and aging [15,16].

Type 2 diabetes (T2D), or non-insulin dependent diabetes

mellitus (NIDDM), is the most common form of the disease world-

wide, accounting for over 90 per cent of diabetes cases, [17] where

336 million people worldwide now have Type 2 diabetes, and

diabetes is responsible for 4.6 million deaths each year. These

numbers highlights the fact that diabetes is one of the prospective

pandemics. [18] Type 2 diabetes is characterized by a combina-

tion of impaired insulin secretion and insulin action, both of which

precede and predict the onset of disease. Although environmental

factors, such as dietary habits, obesity and sedentary life [19] play

important roles in the progress of the disease, it is now well-known

phenomenon that the disease susceptibility is influenced by genetic

factors. Despite strenuous efforts over the last two decades had

been embarked on the identification of genetic variants that

contribute to individual differences in predisposition of T2D,

susceptibility genes are mostly identified through genome-wide

analysis [20–35]. Transcriptome data sets related to T2D obtained

from different human tissues provided a new tool for the

identification of underlying molecular mechanisms of the disease
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[36–39]. Alterations in signaling pathways including adipocyto-

kines, insulin, protein kinase C’s, FFA, EGF, Jak-STAT, MAPK,

VEGF, PPAR, P13K and Wnt were reported in the pathogenesis

of the disease [18,40–43]. Several network based approaches

which integrate co-expressed genes with interaction networks were

also developed to identify affected pathways and key regulatory

pathways of T2D. Both studies employed gene expression datasets

and integrated these datasets with protein interactions. The up-

regulated and down-regulated genes are assembled to construct

subnetworks. Liu et al. revealed insulin signaling and nuclear

receptor subnetworks, Sengupta et al, displayed the relation

between diabetes and kidney complications, and proposed

interactions that pointed vascular function in diabetic nephropathy

[12,13]. Zelezniak et al. have integrated skeletal gene expression

data sets with human metabolic network reconstructions to

identify key metabolic regulatory features [44]. Despite the

contribution of aforementioned cellular mechanisms to the disease

has been well documented, there has been growing interest in

identifying genes and processes that could trigger insulin resistance

beyond these metabolic pathways and regulatory mechanisms. It

has also been known that high blood glucose levels damage vessels

that carry oxygen and nutrients to nerves and this damage

manifests itself as numbness, insensitivity to pain and loss of

balance and coordination in diabetic patients. The relationship

between muscle strength, motor function and diabetes has been

quantified by clinical studies. [45] However, the muscle weakness

and decreased motor function in diabetes patients have received

limited attention, partly because these complications are not

considered as life threatening, hard to monitor and shadowed by

the complications of diabetes. The relation between the neuro-

logical diseases and diabetes creates an ample incentive to employ

system biology tools to reveal these links.

Functional linkage networks are relevant from a systems biology

point of view; the general organization principles can be conveyed

using these networks. Although, protein-protein interactions from

high throughput experiments are reported and deposited in

publicly available databases, functional relatedness can be

achieved at any level of interaction; including physical interaction

as well as co-expression, co-regulation and phenotypic behavior.

Functionally related genes usually act in the form of modules of

highly interacting proteins encoded by these genes. These modules

are considered as building blocks of biological systems and their

interactions may shed light into the complex function of the whole

system. While integration of information from at various levels of

interaction provides insight to biological systems, it should be

noted that the origin of the interaction data and the verification of

results are made through same sources, which may introduce bias

to the system of interest, therefore rigorous randomization

algorithms and detailed literature support are required.

The idea of community structure in networks has been applied

in various research fields including social communities [46,47], the

internet [48] and ecosystems [49]. Modularization in yeast protein

interaction networks received much attention for gene annotation,

protein function prediction, identification of regulators and novel

proteins in molecular pathways [50–52]. There are numerous

algorithms proposed to identify dense subgraphs and functional

modules [53–56]. These algorithms assign the proteins to

individual and separate clusters and prevent the enumeration of

overlapping modules. The Bron-Kerbosch algorithm [57] is a

rigorous clique partitioning algorithm that aims to enumerate

maximal cliques within a network. Its implementation is easy

compared to some other clique enumeration algorithms [58] and it

has been applied to various networks ranging from social networks

to large scale proteomic networks to find overlapping cliques [59–

62]. The algorithm assigns one protein into many clusters, which is

a realistic requirement, considering the fact that one protein may

participate in many biological processes. [9].

In this study, we have developed an integrative modular

network approach, where genes were organized into functional

modules based on the topological characteristics of the constructed

network to investigate Type 2 diabetes. The aim of this work is to

identify distinctive biological processes for the disease, as well as

novel genes shared among metabolic and neuromuscular diseases.

The proposed approach was initiated from the modular architec-

ture of the Type 2 diabetes disease related functional linkage

network. A novel computational approach was developed to

evaluate the functional modules in terms of shared pathways, co-

localization, co-expression and associations with similar diseases.

The most informative modules were selected using a non-linear

model where the parameters were estimated by genetic algorithm.

The assembly of top scoring functional modules through

overlapping members revealed the fundamental biological pro-

cesses present in the pathophysiology of the disease. Other

complex diseases that have pronounced associations with the

proteins included in this assembly were linked to each other

through shared proteins.

Methods

In this study, the functional linkage network consisting Type 2

diabetes associated proteins was constructed and analyzed in terms

of modular structure. The computational framework to evaluate

the functional modules enumerated from the network of interest

constitutes three major stages: (i) construction of a disease related

protein interaction network and its extension with neighboring

proteins (ii) enumeration of functional modules, scoring these

modules for co-occurring KEGG pathway terms, localization

information, an integrated disease ontology composed of MeSH

terms and OMIM database, co-expression patterns and evaluation

of these modules with Genetic Algorithm. (iii) Assembly of the high

scoring modules and calculation of disease overlapping scores. The

computational framework of this study is presented in Figure 1.

Construction of the Network
Construction of functional linkage network for Type 2 diabetes

was started with 574 core proteins (c-proteins) reported to be

associated with the disease in the literature [20–35]. Furthermore,

National Center for Biotechnology Information (NCBI) database

was searched for the specific disease term (Type 2 diabetes) and

the resulting genes were also included.

The functional links between the proteins were extracted from

STRING database v8.1 [63]. Rather than using physical evidence

of protein interactions, which could be obtained through records

deposited for yeast-2-hybrid experiments, the preference of linkage

type was to use functionality, since modular approaches based

solely on physical protein interactions generally yielded protein

complexes. Hence, establishing functional linkages between

proteins has been anticipated to achieve more biologically relevant

structures. STRING combines available information on protein–

protein interactions and assigns a confidence score according to

variety of the supporting data, including physical interactions,

curated biological pathway knowledge, functional linkage, co-

expression profiles, as well as the co-occurrences of protein pairs in

database text fields and conservation across species [63]. The core

set of proteins was incorporated with the first neighbors to achieve

a comprehensive disease related network constituting putative

proteins that have potential associations with the disease. To select

a reliable confidence score for interactions, several networks were

Disease Interventions from Type 2 Diabetes Network
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created with different confidence scores, ranging from 900 to 990,

and these networks were analyzed in terms of coverage of core set

of proteins and constitution of core proteins in the network.

Coverage is defined as the fraction of number of core proteins

included in the network to the number of proteins initially

collected. Constitution is defined as the fraction of the number of

core proteins included in the network to the number of total

proteins in the final network representation.

Functional Module Identification and Evaluation
Functional modules were identified using Bron-Kerbosch (BK)

algorithm [57] implemented in Python scripting language as

described [9]. Functional modules were then scored using the

KEGG Pathway database to associate biological pathways [64],

LOCATE database to determine the co-localization information

[65] and Medical Subject Headings (MeSH) [66] incorporated

with OMIM database [67] to establish the links between proteins

and diseases.

The consistency in a functional module was investigated by

assigning a score for each category, reflecting the homogeneity of

the cluster by calculating the redundancy, Ri:

Ri~logn n P
n

k~1
f
fk
k

� �� �
ð1Þ

where fk represents the relative frequency of the class in cluster i

and n is the total number of classes in the classification scheme.

These scores range between 0 and 1, where 1 indicates all the

members in the functional module belong to the same classifica-

tion. To assess the significance of our results, 103 randomized

classification schemes were generated.

After all functional modules enumerated from the network were

scored according to pathway (RKEGG), localization (RLOC) and

medical subject headings (ROMIM). A non-linear model was used to

evaluate the functional modules with a single resulting score.

Fi~
X
j

ajS
bj
j ð2Þ

where Sj M (logN, RKEGG, RLOC, ROMIM), all of which ranges

between 0 and 1, 1 indicating consistency in the module; except

for N, which denotes the size of the module. aj and bj are the

nonlinear model coefficients.

Genetic Algorithm (GA) was employed to estimate the

nonlinear model parameters. The nonlinear model parameters

were predicted by evolving the population of tentative solutions of

the model in the search space. The ten artificially generated

functional modules, five of which have the highest score in each

scoring scheme, were intentionally planted in the population

representing the best achievable entities. The population of the

modules was evolved for 100 generations. Upon the prediction of

the model parameters, these model parameters were used to

evaluate the functional modules and the high scoring functional

modules were investigated for biological significance. (Text S1).

Biological Processes through Non-overlapping Gene
Ontology Terms

After the functional modules were scored according to the

classification schemes, the top scoring members of the modules

were assembled in a condensed network. This network comprises

only the proteins that are associated with each other in terms of

shared pathways and localizations, co-expression and shared

diseases. To determine the underlying biological processes in the

condensed network, the Gene Ontology (GO) Biological Process

terms associated with these proteins were extracted by AmiGO

analysis (Table S3). This well-known analysis procedure yields the

Figure 1. Computational framework of the study for evaluation of scoring functional modules. The databases used in the study were
shown in boxes.
doi:10.1371/journal.pone.0065854.g001
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GO Terms, and their associated proteins as a list and comprises

extensive amount of overlaps. We developed a framework to

overcome these overlaps and to distinctively decipher the

biological processes that are associated with the proteins in the

condensed network. Figure 2 represents the schematics of the

computational framework. In a typical analysis, all the proteins in

the condensed network provided to the AmiGO term enrichment

analysis tool, by which the GO terms associated with the proteins

are listed [68]. This information was then used to construct a GO

Term – protein matrix, which was then multiplied with its

transpose to yield GO Term matrix. In this symmetrical matrix,

the diagonal elements represent the number of proteins associated

with the corresponding GO Term, non-zero elements show the

number of proteins shared among two particular GO Terms and

zero elements indicate the non-overlapping GO Term partners.

These non-overlapping GO Terms were then listed as an

interaction network. The modules with Q= 1 in this interaction

network yields the non-overlapping GO Term groups in the

condensed map. Among these configurations, the best represen-

tation of the map is conveyed through the total number of proteins

assigned to GO Terms. It should be noted that, in the final

configuration, non-assignment to a GO Term does not necessarily

mean that a protein is not associated with a GO Term, rather it

implies that this particular protein is associated with many GO

Terms, therefore it cannot be included in non-overlapping GO

Terms.

Complex Disease Interventions
To associate complex diseases with each other, the proteins

assembled in a condensed map and their linkages with other

proteins were used. The links between the proteins and diseases

were established by incorporating MeSH terms with OMIM

database. All disease protein relations extracted are presented in

(Table S4). For instance, the proteins in the condensed network

were linked to a disease term. Hence the diseases can be associated

with each other through shared proteins. Each pairwise disease

association was evaluated in terms of overlapping partners by

considering only the proteins in condensed in T2DFN network. A

score representing the disease overlap (DO) was assigned to each

pair of disease terms appear in the condensed network using:

DOi,j~
Ddi\dj D
Ddi|dj D

ð3Þ

where di and dj represent the proteins associated with disease term

pair. To determine the significance of our analysis, 103 random

control runs were performed. The proteins and randomly

annotated disease terms were shuffled and overlapping scores

were recalculated. The random distribution obtained for each

disease term was compared with the current score. The statistical

analysis was subsequently corrected by calculating FDR.

Results and Discussion

Construction of Type 2 Diabetes Related Functional
Linkage Network

The construction of Type 2 diabetes functional linkage network

was started with the proteins encoded by 574 genes (c-proteins)

collected from previous studies (Table S5) [20–35]. The linkages

between the proteins were extracted from STRING v8.1, using a

selected confidence score threshold of 940 as described in

materials and methods.

Figure 3A displays the coverage of the network with respect to

confidence score and Figure 3B shows how the number of proteins

changes with increasing confidence score. These relations were

also compared with 200 randomly generated networks, where 100,

200, 300, 400 and 500 randomly selected proteins were used to

construct networks with corresponding confidence scores. The

difference in the coverage and constitution measures between the

disease specific and random networks indicates the coherency of

the proteins. Since the initial 574 proteins (core proteins) are

already associated with a disease (i.e. presumably functionally

related), more core proteins are captured in the final network

representation. For instance, for a set of 500 randomly selected

proteins, the maximum achievable coverage at 900 is 53.02%,

whereas the coverage of the network constructed by disease

specific core proteins is 91.2%, indicative of biological relatedness.

In this resulting network, however, at 900 confidence score, the

constitution of the core proteins in the network is 13.37% (i.e.

13.7% of the final network representation is core proteins).

Although, 91.2% of core proteins (c-proteins) were captured at the

confidence score 900, such low confidence score leads to the

presence of many redundant proteins. We observed a slight

decrease in the coverage of the core proteins at 940; in return the

constitution of the core proteins was increased up to 17.71%,

indicating the elimination of the redundant neighboring proteins.

Therefore, confidence score of 940 was accepted as the threshold

to eliminate the linkages while keeping the sufficient amount of

core proteins in the network. The sensitivity and specificity of the

Figure 2. The computational framework to derive non-overlapping GO Terms.
doi:10.1371/journal.pone.0065854.g002

Disease Interventions from Type 2 Diabetes Network

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e65854



tested confidence scores were determined by calculating true-

positive and false-positive rates (Figure 3C), where the former is

the number of the core proteins in the final network representa-

tion; the latter is the non-core proteins. When 574 core proteins

were extended with all possible neighboring proteins (i.e. without

confidence score restriction), the final network representation

contains 13488 proteins, which is the maximum size attainable

with this core set of proteins. These values are compared with 200

randomly generated networks with 574 nodes, indicated with red

diamond markers.

Following the removal of singletons, the giant component of

network has 2770 nodes (proteins) and 15041 edges (functional

linkages) and entitled as Type 2 diabetes related functional linkage

network (T2DFN) (Table S5) and topological properties of the

network were investigated as described previously (Text S1). [9] In

this network, among the 2734 proteins, 497 of them are c-proteins,

which have previously defined associations with the disease. These

497 proteins form 17.71% of the functional linkage network.

Enumeration of Functional Modules in T2DFN
Genes participate in similar biological processes, share GO

terms and operate in similar functions have a tendency to localize

as dense groups in interaction networks [14]. These entities are

considered as functional modules, where the members functionally

linked to each other. The functional modules in T2DFN were

derived based on modularity measure, as explained in Method-

ology. The Python scripting language is implemented to decipher

the functional modules, where the members have the maximum

allowable interaction, hence Q= 1. The algorithm used in this

study, rather than assigning proteins into distinct clusters, allows

the presence of proteins in many functional modules. The

algorithm produced 10109 functional modules, the size of the

modules ranges from two to 14, with an average module size of

4.04, hence with the supporting information that modules

consisting four or more members are biologically meaningful

[69], the 5414 modules of size four and above were considered for

further analyses (Table S5).

Evaluation and Scoring of T2DFN Modules
The module enumeration algorithms produce massive amounts

of entities that require an elaborate analysis to elucidate the most

informative and reliable components. There is accumulating

evidence that proteins function together to exhibit a single action

often tend to participate in similar pathways, co-localized and

share GO Terms. In fact, genes contributing to a disorder have

increased tendency for their products to be functionally related.

Hence, the functional modules enumerated from T2DFN were

evaluated and scored in terms of participation in pathways, co-

localization and association with similar diseases. Combination of

various resources provided a deliberate and consistent evaluation

method.

The scoring of the functional modules was initiated with the

assembly of the data that will be incorporated. KEGG Pathway

database [64] was used to associate biological pathways, where the

classification scheme involves 338 pathways, including major

metabolic processes, as well as disease pathways. LOCATE

database [65] was used to determine the co-localization informa-

tion, where the proteins are assigned to 30 different subcellular

compartments. In order to establish links between proteins and

diseases, in this study, Medical Subject Headings (MeSH) [66]

were incorporated with OMIM database to achieve the disease

associations. Manual curation of the MeSH database yielded 3630

disease terms and these disease terms were categorized into 23

different disease classes depending on the system that is exposed to

disease. These 3630 disease terms were then searched in OMIM

database with an in-house developed text-mining algorithm to

associate genetic information with the diseases. To assess the

reliability of the scores assigned to the modules, the associations in

the classification schemes were randomly shuffled 103 times and

calculated score was compared with the distribution of the random

scores. After scoring of the functional modules was completed,

three different scores were obtained: RKEGG, RLOC and ROMIM.

These scores were varied from zero to one, where one indicates

the consistency in the module. The selection of the most

informative functional modules was completed using a non-linear

model, where the parameters were estimated using genetic

algorithm (GA).

Construction of Condensed T2DFN
According to the model parameters estimated by GA, the

functional modules were ranked according to their scores. The

proteins in top scoring (25, 50, 75, 100, 150 and 250) functional

modules were assembled. Each tentative condensed network was

then analyzed in terms of the number of core proteins captured

and the number of distinct sub-networks observed. The number of

core proteins in this condensed network indicates the effect of the

Figure 3. The (a) coverage, (b) constitution of the core proteins with respect to confidence scores. N shows the number of randomly
selected proteins as the core proteins to construct the network. (c) ROC curve showing the trade-off between sensitivity and specificity for choosing
the confidence score for interactions, red diamonds represent randomly generated networks.
doi:10.1371/journal.pone.0065854.g003
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reduction in the network. The number of sub-networks formed

accounts for the conjunction of the biological processes in the

disease. In fact, the presence of many distinct sub-networks in a

condensed network indicate diverse biological functions, however,

does not provide information on how these biological processes are

connected to each other. The proteins collected in a condensed

map were anticipated to represent the fundamental biological

processes involved in Type 2 diabetes.

The selection criterion for the number of top scoring functional

modules that will be assembled was based on the number of core

proteins and clusters. Since, the motivation of such assemble is to

reveal underlying shared mechanisms; the number of clusters

obtained through incorporation of the overlapping members of the

selected functional modules is an important parameter. In

addition, the number of core proteins in the network is another

issue that should be considered to preserve the association with the

disease. Considering the increase in the number of core proteins

captured in the final network representation (which saturates at

26%), the top scoring 75 functional modules were incorporated to

construct a condensed functional linkage network. Selection of

these modules is explained in Text S1.

Among 5414 modules, the overlapping members of 75 top

scoring functional modules were assembled reflecting the biolog-

ical processes involved in the disease. This condensed network,

presented in Figure 4, contains 203 proteins, 149 of which are

non-core proteins, and 1118 interactions (Table S5). The core

proteins in the assembly (Figure 4) are indicated with black

borders.

Indicators of Fundamental Cellular Processes in T2DFN
To elucidate the fundamental biological processes involved in

the disease, The Gene Ontology terms for the condensed network

proteins were extracted. These biological process terms contain

excessive amount of overlaps among proteins impeding a

comprehensive analysis. (Table S3) A novel computational

framework explained in Methods was followed to decipher the

underlying distinct biological processes in the condensed network.

This computational procedure resulted in over 50,000 possible

combinations of GO Terms. The best configuration of GO Terms

was selected to achieve a comprehensive representation of the

network (Figure 4). As a result, 12 GO Terms with non-

overlapping 124 members indicated the major cellular processes

involved in the progression of the disease. The GO Terms

enriched in this condensed map is represented in the Table 1. In

Figure 4, the nodes are colored according to the distinct GO

Term. In this representation, white color represents the proteins

that are not associated with a GO Term in the final configuration.

However, this non-association does not necessarily imply that a

particular protein is not associated with a biological process; rather

it is an implication of its involvement in many biological processes.

Dorsal/ventral pattern formation term (p-val= 1.68E-08) con-

sists of signal transducer and transcriptional modulator (SMAD6),

forkhead class of DNA-binding protein (FOXA2), smoothened

homolog (SMO), sonic hedgehog homolog (SHH), patched

homolog 1 (PTCH1), glioma-associated oncogene family zinc

finger 2 (GLI2), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and

bone morphogenetic protein receptors (BMPR1A and BMPR1B)

proteins and display the modulating function of Hedgehog (Hh)

Figure 4. Condensed functional linkage network constructed from the top scoring functional modules in T2DFN. In this
representation, white color represents the proteins that are not associated with a GO Term in the final configuration.
doi:10.1371/journal.pone.0065854.g004

Disease Interventions from Type 2 Diabetes Network
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signaling in diabetes. Hedgehog signaling is known to function in

early pancreas development, [70] and defects are considered as a

potential factor in T2D. [71].

Positive regulation of ligase activity (p-val= 5.44E-52) was found

to be one of the distinct GO process terms, which is involved in the

pathogenesis of T2D in the present study. The cluster, which is

significantly associated with this process, consists of 28 proteins

including all the subunits of 20S core and 19S regulator particles

of 26S proteasome. Two members of this cluster, PSMA6, and

PSMD6, have already reported associations with Type 2 diabetes

(core proteins). PSMA6 gene encodes a member of 20S core a-

subunit type 6, PSMD6 encodes a non-ATPase subunit of the 26S

regulator. PSMD6 is probably involved in the ATP-dependent

degradation of ubiquitinated proteins [72]. Although the mech-

anism leading to b-cell dysfunction causing T2D is not well

understood, there is accumulating evidence that it is related to b-

cell endoplasmic reticulum (ER) stress, increased b-cell apoptosis.

The ER functions as a quality control system to target the

unfolded proteins to the ubiquitin-proteasome system (UPS). The

up-regulation of the UPS in rat muscle with T2D was also

reported [73]. The investigation of the myocardial infarction

susceptibility in Type 2 diabetes showed that UPS plays also an

important role in arterial plaque formation [74], hence the up-

regulation of the UPS was suggested to be potential mechanism

that links myocardial infarction to Type 2 diabetes [75]. UPS is

activated by various stimuli, including oxidative stress and plays a

pivotal role in the activation of nuclear factor B (NF-kB)

transcription factor, which induces the transcription of proin-

flammatory cytokines [74].

Response to cholesterol (p-val= 3.74E-06) was found to be

distinctly and significantly associated with the cluster including

TGFB1, TGFBR2, TGFBR1 and SMAD2, where only TGFB1 is

a core protein. Transforming growth factor b1 (TGFB1) is a

ubiquitously expressed in humans, its levels are up-regulated in

some cancers, and play important physiological roles in tissue

regeneration, cell differentiation, embryonic development, the

regulation of the immune system and apoptosis [76]. It is known

that hyperglycemia is one of the major factors for TGFB1

expression, and patients with diabetes have higher levels of

TGFB1 than healthy people. TGFB1 induces the phosphorylation

of the TGF-b receptor activated protein (SMAD2), and its

responsiveness is modulated by cholesterol by binding TGFB

receptors [77]. SMAD2 transfers the signal of the TGFB, and

regulates cell proliferation, apoptosis, and differentiation. The

interaction of SMAD2 with double zinc finger FYVE domain

protein (ZFYVE9) enables SMAD2 to be recruited to TGFB

receptors. Followed by TGFB signal, this complex is dissociated

and SMAD2 forms a complex with SMAD4. The association

enables SMAD2 to be directed to the nucleus, where it binds to

target promoters and forms a transcription repressor complex with

other cofactors. SMAD2 can also be phosphorylated by activin

type 1 receptor kinase, and mediates the signal from the activin.

Activin signaling pathway has recently suggested as a potential

therapeutic target for obesity associated metabolic complications

[78]. The existence of SMAD proteins with TGFB signaling and

proteasome unit members suggests that SMAD proteins might

have regulatory roles in the proteasome activity through activin

signaling, leading to the suppression of PI3K signaling and

decreased insulin expression. This functional module was previ-

ously associated with kidney failure in diabetes in network study

integrating gene-gene co-expression with protein interaction data.

[13].

Type 1 Interferon-mediated signaling pathway (p-val= 4.73E-

10), which can be considered as a part of the JAK-STAT pathway,

is represented with STAT1, STAT2, SOCS3, IFNA1, PTPN1,

JAK1, TYK2, where four of them have well characterized roles in

the pathophysiological processes of the disease. JAK-STAT

signaling pathway transmits extracellular signals from a variety

of cytokines, lymphokines and growth factors to the nucleus and its

activation stimulates cell proliferation, differentiation, migration

and apoptosis. It has also been reported that high glucose

concentrations induces the production of TGFB and activates

JAK-STAT cascade [13]. Two STAT proteins (STAT1 and

STAT2) out of seven members were captured within this large

Table 1. 12 distinct GO terms corresponding to separate cellular processes enriched in the T2DFN condensed network.

GO Term p-value Proteins

GO:0051351 positive regulation of ligase activity 5.44E-52 PLK1, PSMD13, UBC, PSMD6*, PSMC5, PSMC6, PSMB4, PSMB2, PSMA3, PSMC1, PSMD10,
PSMA5, PSMB1, PSMA6*, PSMC2, PSMB6, PSMA7, PSMA1, PSMB7, PSMB3, PSMA4, PSMA2,
PSMD7, PSMD12, PSMD8, PSMB5, PSMB10, CDC2

GO:0006270 DNA replication initiation 1.78E-17 ORC1L, MCM5, CDC45L, CDK2*, MCM6, MCM7, ORC5L, ORC2L, MCM2, ORC4L, MCM3, CDT1,
MCM4

GO:0007623 circadian rhythm 2.87E-13 PER1, CRY1, NR3C1*, BHLHB3, CLOCK*, PTGDS, ARNTL, NPAS2, PER3, NR1D1, IL6*, TIMELESS

GO:0060338 regulation of type I interferon-mediated
signaling pathway

4.73E-10 SOCS3*, TYK2, STAT2, JAK1, PTPN1*, STAT1*, IFNA1*

GO:0030518 intracellular steroid hormone receptor
signaling pathway

2.05E-09 MED12, RARA, EP300*, CRSP6, THRAP4, CDK7, CRSP2, NRIP1, PPARGC1A*, NCOA3, PPARBP

GO:0042508 tyrosine phosphorylation of Stat1 protein 2.11E-09 IL23R, IL23A, IFNG*, LIF, OSM, IL6ST, IL12B*

GO:0000398 mRNA splicing, via spliceosome 1.02E-08 POLR2C, POLR2B, POLR2L, CDC5L, POLR2D*, POLR2I, POLR2H, POLR2F, POLR2E, POLR2A,
POLR2K, POLR2G

GO:0009953 dorsal/ventral pattern formation 1.68E-08 SHH*, SMO, FOXA2*, SMAD6, BMPR1A, PSEN2, PSEN1, BMPR1B, GLI2, PTCH1

GO:0007598 blood coagulation, extrinsic pathway 2.72E-08 F10, F3*, TFPI*, F7

GO:0009410 response to xenobiotic stimulus 3.19E-07 PTGS1, PTGIS, CYP1A1*, TBXAS1, GPX1*, GSTM1*, MGST1, GSTA4, GSTM4

GO:0070723 response to cholesterol 3.74E-06 TGFBR2, TGFBR1, SMAD2, TGFB1*

GO:0046323 glucose import 8.92E-06 IRS1*, IRS2*, INSR*, TCF1*, AKT1*, INS*, PIK3R1*

*core proteins
doi:10.1371/journal.pone.0065854.t001
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cluster. SOCS3 is a member of suppressors of cytokine signaling

(SOCS) proteins, which are also known as JAK-binding protein.

The members of this family of proteins are responsible for

establishing inducible negative regulations of cytokine signaling via

inhibition of JAK-STAT pathway. Cytokine-induced activation by

STATs is a major mechanism of SOCS induction; however, there

is increasing evidence that SOCS expression can also be induced

by other stimuli, such as elevated levels of lipopolysaccharide and

insulin [79]. SOCS3, which is a major suppressor of JAK-STAT

signaling, is reported to inhibit JAK1 and TYK2 [80]. In a study

aiming to understand the interplay between cardiovascular disease

and other complex disorders, Rende et al have identified SOCS3

in a functional module consisting of INSR, INS, IRS1 and LEP

and found to be significantly linked with Diabetes Mellitus,

hypertriglyceridemia and hypoglycemia. The presence of SOCS3

in this module was attributed to the formation of a link between

cardiovascular disease and diabetes [9].

12 proteins formed a cluster that is enriched with circadian

rhythm GO biological process term (p-val= 2.87E-13). Transcrip-

tional activator of the molecular clock consists of a heterodimer

between either the CLOCK or the neuronal PAS domain protein

2 (NPAS2) and the aryl hydrocarbon receptor nuclear translo-

cator-like protein (ARNTL) that binds to E-box elements in the

promoter of three period (PER) and two cryptochrome (CRY1)

genes, thereby activating their transcription [81]. The association

of CRY1 and NPAS2 single nucleotide polymorphisms with the

disease has been reported in a recent study focused on exploiting

the association of type 2 disease and circadian rhythm genes. [82]

A number of other genes, such as nuclear receptor subfamily 1,

group D, member 1 (NR1D1), and timeless homolog (Drosophila)

(TIMELESS), are involved in the feedback loops. Type 2 diabetes

is associated with increased incidence of hypertension and

disrupted blood pressure (BP) circadian rhythm [83] and people

having rotating night shifts are susceptible to the disease, partly

mediated through body weight [84]. These results show the

indicative role of circadian rhythm genes Type 2 diabetes

susceptibility. Our results showing the involvement of these

proteins in the condensed network also suggest that successful

maintenance of circadian rhythm is an important parameter that

needs to be controlled during the progression of the disease.

11 proteins (CDK7, CRSP2, CRSP6, EP300, NRIP1, NCOA3,

RARA, PPARBP, PPARGC1A, MED17, THRAP4) are enriched

with steroid hormone receptor signaling pathway (p-val= 9.39E-

04), where PPARGC1A and EP300 are core proteins. NRIP1,

NCOA3, RARA are nuclear receptors that translate hormonal,

metabolic and nutritional signals into various metabolic activities

by altering gene expression. Nuclear receptor interacting protein 1

(NRIP1) modulates transcriptional activity of the estrogen receptor

by steroid receptors. NRIP1 was shown to act either as a

transcriptional repressor or activator depending on the transcrip-

tional factors with which it interacts. This finding underlines its

essential role in normal cellular function and metabolic diseases

[85]. Retinoic acid (RA), which is biologically active metabolite of

vitamin A (retinol), plays an essential role in embryonic eye

development and maintains vital organs in adults [86,87]. Vitamin

A metabolism is strictly controlled by various retinoid-generating

enzymes, retinoid-binding proteins and retinoid-activated nuclear

receptors. Retinoic acid receptor (RARA) has also regulatory roles

in regulation of development, differentiation, apoptosis, transcrip-

tion of clock genes [88]. The protein encoded by the gene

PPARGC1A is a transcriptional regulator that is involved in

energy metabolism and is an important factor regulating the

expression of genes for oxidative phosphorylation and ATP

production in target tissues through co-activation of nuclear

Figure 5. A section of disease network showing disease associations derived through T2DFN.
doi:10.1371/journal.pone.0065854.g005
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receptors. PPARGC1A mRNA expression has been found to be

correlated with glucose-stimulated insulin release, and its inhibi-

tion of expression was shown to be associated with a decline in INS

mRNA expression [89]. PPARBP (MED1), CRSP2 (MED14),

CRSP6 (MED17) and THRAP4 (MED24) are the components of

the mediator complex, which is involved in the regulation of

hormone receptor–dependent transcription of selected genes by

acting as a bridge between transcription factors and RNA

polymerase II. [90,91] None of the components of the mediator

complex captured in this study were reported to be associated with

the disease. The assembly of these proteins under steroid hormone

receptor signaling process and the presence of nuclear receptors in

T2DFN suggest that along with their diverse actions in sterol,

retinoic acid, thyroid and glucocorticoid metabolism; nuclear

receptors portray prospective therapeutic targets in regulating

these metabolic processes.

Disease Interventions Derived from T2DFN
The proteins involved in the modular form in T2DFN have

been implicated to be present in many other complex diseases;

therefore the diseases can be linked to each other through shared

proteins. To elucidate the shared partners, the proteins in

condensed form of T2DFN were used to calculate the disease

overlapping score among diseases. The manual curation and

elimination of the MeSH terms initially yielded 3630 disease

terms, and subsequently incorporated with OMIM database

records, forming a disease classification scheme, which was also

used scoring the functional modules enumerated from T2DFN

(Table S4). The 203 proteins present in condensed map were

related with 370 disease terms. According to the shared proteins,

the disease overlapping score was calculated for each pair of

diseases, and significantly associated 146 diseases sharing at least

two proteins were selected (p-val,1.00E-02). A representative

network showing Type 2 diabetes and its related neuromuscular

diseases are presented in Figure 5 (The entire disease network is

presented in Figure S3, all pairwise disease relations were given in

Table S6). In this network, the nodes are colored according to

disease class and node sizes adjusted according to the number of

links established with other disease.

The relation between insulin resistance and obesity is

established through nine shared proteins, all of which are core

proteins (Figure 6A), presented at the intersection, and the proteins

that are not present in the core network are indicated with red. In

this scheme, the non-core proteins, namely, NRIP1, is linked with

obesity; IGF1R is linked with insulin resistance. Nuclear receptor

interacting protein 1 (NRIP1), also known as RIP140, is a nuclear

protein that specifically interacts with the hormone-dependent

activation domain of nuclear receptors, such as estrogen receptor.

RIP140 suppresses the expression of gene clusters that are

involved in lipid and carbohydrate metabolism, inhibits glucose

uptake and facilitates the expression of genes promoting energy

expenditure. Therefore, the functional interplay between tran-

scriptional activators and RIP140 is an essential process in

metabolic regulation [92]. However, two recent studies reported

contradictory results; the function and expression level of RIP140

was not correlated with obesity [93] but lower gene and protein

expression levels of RIP140 was observed in obese subjects [94].

Although controversial studies were reported on the modulating

effect on RIP140 in obesity, RIP140 has an obvious modulating

role in lipid and carbohydrate metabolism, and one recent study

Figure 6. A representative scheme showing the links between selected metabolic and neuromuscular disorders derived from the
protein linkages in T2DFN.
doi:10.1371/journal.pone.0065854.g006
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reported the role of RIP140 in maintaining energy homeostasis

and a promising therapeutic target for insulin resistance [95].

One other relation derived from disease overlapping network is

hepatocellular carcinoma (HCC) and Type 2 diabetes (Figure 6B),

where IL6 and TCF1 are shared. Hepatocellular carcinoma is the

most common form of liver cancer. The mutations on IL6ST are

associated with hepatocellular carcinoma. [96] In a recent study,

the incidence of HCC is reported to be as twice higher for diabetes

patients. [97].

The associations between insulin resistance, spinal muscular

atrophy (SMA) and muscular atrophy are presented (Figure 6C

and 6D), where ciliary neurotrophic factor (CNTF) and trans-

forming growth factor beta 1 (TGFB1) are shared. Muscular

atrophy is the loss of mass and strength that progresses with

medical conditions such as cancer and aging. Spinal muscular

atrophy, on the other hand is a neuromuscular disease that is

characterized by degeneration of motor neurons, leading to

progressive muscular atrophy. Cardiotrophin-1 (CTF1) is a

muscle-derived member of IL6 family cytokine, exerts its cellular

effects by interacting with the glycoprotein 130 [98], and is highly

expressed in embryonic skeletal muscle and secreted by myotubes

[99]. It promotes the survival of cultured embryonic mouse and rat

motor neurons. Circulating levels of CTF1 were associated with

glucose levels, where glucose triggers CTF1 expression in

adipocytes [98]. In SMA, CTF1 has a slowing down effect on

the progression of the disease [100]. This finding suggests that

CTF1 has a modulating effect on the metabolic processes involved

in diabetes and neuromuscular diseases. CREB binding protein

(CREBBP) is associated with muscular atrophy, which is

ubiquitously expressed and is involved in the transcriptional co-

activation of many different transcription factors. CREBBP has

also been implicated to play a central role in spinal and bulbar

muscular atrophy, which is a neurodegenerative disorder caused

by toxic effects of polyglutamine tracts [101]. In animal models,

heterozygous CREBBP deficiency results in increased effects of

hormones such as adiponectin and leptin, preventing obesity and

insulin resistance. Hence, CREBBP functions as a ‘‘master-switch’’

between energy storage and expenditure through inhibition or

activation of leptin and adiponectin pathways [102].

Conclusions
In the present study, an integrative modular approach based on

the functional linkage network associated with Type 2 diabetes was

developed to investigate statistically significant metabolic processes

in the disease. The proteins clustered in the functional modules

were scored and evaluated in terms of shared pathways, co-

localization, and co-occurrence with other complex diseases. The

assembly of top scoring overlapping members in the functional

modules revealed the fundamental biological processes present in

the pathophysiology of the disease. It should be noted that the

prospect of inferring biological information from networks that are

constructed by publicly available databases contains biased

information to a certain extent, the set of known interactions are

overrepresented and less studied interactions have less evidence to

support. The interaction databases are biased toward proteins

from particular cellular components and processes conserved

proteins and highly expressed proteins.

Along with glucose and cholesterol related processes, the

proteins related to circadian rhythm appeared as a cluster in the

condensed network, which underlines the fact that successful

maintenance of circadian rhythm is an important parameter that

needs to be controlled during the progression of the disease. The

nuclear receptors, which have diverse actions in sterol, retinoic

acid, thyroid and glucocorticoid metabolism, also appear in the

condensed network, indicative of possible roles in the disease.

In the current study, the disease’s association with other

complex disorders was established through shared proteins. The

statistically significant overlap between the diseases indicated that

the protein, ciliary neurotrophic factor, encoded by CNTF might

have a modulating role in linking obesity, insulin resistance and

neuromuscular diseases, namely spinal muscular atrophy. Nuclear

receptor interacting protein 1 (NRIP1), which is not previously

associated with Type 2 diabetes, links insulin resistance with

obesity. NRIP1 has a modulating role in lipid and carbohydrate

metabolism, studies were yet to be conducted to investigate the

subsequent effects of NRIP1 on Type 2 diabetes. Our results

showed that CREB binding protein (CREBBP), which has roles in

adiponectin, leptin signaling pathways and energy storage, links

muscular atrophy to insulin resistance. Our study also revealed

that Cardiotrophin-1 (CTF1) is present in the conjunction of

insulin resistance and spinal muscular atrophy. Although it is not

previously associated with Type 2 diabetes, evidence indicating

that circulating levels of CTF1 are associated with glucose levels

suggests its role in linking Type 2 diabetes and neuromuscular

diseases.
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