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Abstract

Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful.
However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue,
participants performed a two-choice response time task where error commissions were expected to be punished by electric
shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error
commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance
during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we
explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is
partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive
control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of
the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors,
and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-
window as the ERN), particularly during the high punishment risk condition where errors would be most aversive.
Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results
suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive
cognitive control when consequences are potentially harmful.
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Introduction

Cognitive control is engaged to match behavior to goals when

well-established responses are contextually inappropriate, or when

several possible responses conflict [1,2]. For example, if you are

used to cars driving on the right side of the road, and find yourself

visiting England where traffic is left-handed, you need to

cognitively control your habitual impulse to look to the right

when crossing the street [2]. In situations like this, the failure to

control your behavior can be fatal. However, the need for

cognitive control is not only dependent on your goals. It is likely to

be directly related to the perceived risk of harm if one fails to

control behavior; on a sparsely travelled country road, control

might be less needed than in the heart of London, where the risk of

harm following control failure is much higher.

Research on cognitive control has commonly emphasized the

role of task goals in guiding adaptive behavior, and less is known

about how the consequences of flawed control affect behavior. This is

surprising, because considering the consequences of one’s behavior

can be crucial to survival in many situations [3]. In fact, the

consequences of control-demanding real-world behaviors are

seldom neutral (e.g., looking in the wrong direction while crossing

the street in England or acting inappropriately in a social

situation), and the need for controlled behavior is likely to increase

as a function of the risk of aversive consequences following control

failure. A better description of the relationship between cognitive

control and the risk of aversive consequences of control failure is of

importance for our understanding of both normal social and

emotional functioning, and of stress- and anxiety-related psychi-

atric disorders [4] , as well as disorders characterized by control

failure (e.g., relapse in addiction) [5].

The aim of the present research was twofold: First, we aimed to

describe how the perceived risk of punishment following control

failure impact cognitive control (henceforth avoidance motivation). To

address this question, we examined performance in a response

conflict task, where mistakes incurred an increased risk of being

punished by aversive electric shocks. Secondly, to better describe

the underlying processes, we investigated electromyographic

activity in the corrugator supercilii muscle (cEMG) as a novel

index of the integration of cognitive control and avoidance

motivation.

Motivation Affects Cognitive Control
Recently there has been a surge of interest in characterizing the

interaction between motivation and cognitive control [6–11].

Behaviorally, motivation has been shown to reduce response

conflict [12] and improve performance [7]. The primary focus of
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these studies has, however, been in the domain of reward

motivation. Reward-oriented [13] and aversion-driven learning

[14,15] engage partially separable neural substrates and involve

different neurotransmitter systems [16,17], suggesting that the

impact of reward-oriented and avoidance-based motivation on

cognitive control likewise might differ. Recent work examining the

impact of motivation to avoid losing money on cognitive control

showed that loss of money modulated performance in the Go/No-

Go task, by inducing slower responses and fewer commission

errors relative to a control condition [18]. These results suggest

that punishment with a secondary reinforce can result in a more

cautions response strategy. In contrast, primary aversive stimuli,

such as electric shocks, have been shown to have detrimental

effects on cognitive control [19,20]. Importantly, because these

studies have typically been aimed at modeling the effects of general

anxiety on behavior, the delivery of shocks has been unrelated to

performance. Taken together, earlier studies do not speak directly

to the effect of the motivation to avoid primary punishment

through controlled behavior, because they have used either

secondary (e.g., money) reinforcers or primary (e.g., electric

shocks) reinforcers unrelated to performance. Our aim was to

examine the impact of avoidance motivation on controlled

behavior in situations where flexible control over behavior is

needed to avoid potentially dangerous physical consequences.

Following this, our task included the use of a primary reinforcer;

an electric shocks as a consequence of control failure.

Psychophysiological and Neural Correlates of Motivated
Cognitive Control

Recently, Shackman and colleagues described a brain-based

framework for how cognitive control and negative emotion

interacts; the Adaptive Control Hypothesis (TACH) [21]. Based

on an extensive meta-analysis of fMRI studies that demonstrated

overlapping activation to cognitive control (see [22] for a review),

negative emotion [23] and pain [24] in the anterior mid cingulate

cortex (aMCC), TACH postulates that this regions integrates

information about negative reinforcers (e.g., pain) arriving from

cortical and subcortical afferents (e.g., insula, striatum, amygdala),

to bias behavioral selection away from punishment. The bias of

behavioral selection is foremost needed in demanding or

potentially dangerous situations, for example, when the conse-

quences of action are uncertain (e.g., probabilistic learning),

multiple conflicting response alternatives are active, or when

failure of an intended action is associated with potential

punishment [21]. By identifying overlap between cognitive

control, negative emotion and pain at the level of functional

anatomy and linking this overlap to functional integration of

cognitive and affective processes, TACH led us to predict that

motivation to avoid aversive consequences would have important

consequences for cognitive control. Based on research on the

neural overlap between cognitive control and negative affect in the

aMCC, we also predicted that activity in the frowning muscle,

corrugator supercilii, would be a novel index of the integration

between cognitive control and avoidance motivation. The aMCC

contributes to facial expressions of negative affect in primates, by

projecting to the muscles of the upper face (e.g., the corrugator

supercilii and frontalis majoris) via the brainstem facial nucleus

[25,26]. The corrugator supercilii is one of the main muscles

involved in negative facial expressions, such as anger or fear, in

both humans and non-human primates [27,28]. Electryomyo-

graphic activity in the corrugator supercilii (cEMG) activity is also

elicited when subjects view aversive stimuli [29], negative facial

expressions [30] and experience physical pain [31]. Interestingly,

evidence also suggests that cEMG activity is sensitive to cognitive

control demands, e.g., response conflict. For example, Schacht

and colleagues reported prolonged cEMG activity on trials

requiring inhibitory control in a Go/No-go task [32]. In concert,

these studies suggest that the cEMG might serve as a novel index

of the integration of cognitive control and avoidance motivation.

Additional support for this proposal comes from research on the

properties of a well-established index of cognitive control: the

Error-related Negativity (ERN) ERP component elicited by error

commissions in experimental tasks [33–35]. Importantly, the ERN

is amplified as a function of the severity of the consequences of

errors, such as monetary punishment and social evaluation [36].

Recently, Riesel and colleagues [37] showed that punishing errors

in a flanker task with an aversive noise also amplified ERN

amplitude. Based on such findings, researchers have proposed that

the ERN might index ‘‘affective’’ qualities of error monitoring [38]

in addition to the traditional emphasis on cognitive control [33].

This integration between cognitive control and affect is well-

explained by TACH, and further supported by localizing the

neural generator of the ERN to the ACC/aMCC [38]. The ERN

thereby exemplifies the tight coupling between a process (cognitive

control to avoid costly errors) and its neural underpinnings (the

aMCC) described by TACH. Although we do not directly

measure the ERN in the present study, we base our research

question on a similar logic by looking for similarities in the

response properties of the cEMG to those reported for the ERN.

The impetus was to enhance our understanding of the processes

underlying the integration of cognitive control and avoidance

motivation by studying the cEMG signal.

The Present Study
The aim of the present study was two-fold: (1) to characterize

how avoidance motivation impacts cognitive control through a

parametric manipulation of perceived punishment risk, and (2)

investigate the cEMG as a novel index of this process by means of

testing a set of specific hypotheses derived from recent work on the

neural underpinnings of motivated cognitive control [21].

We used a two-alternative forced choice version of the Go/No-

Go task to manipulate response conflict (low/high) on a trial-to-

trial basis (see Fig. 1). The task sets an infrequent (25%) response in

conflict with a more habitual one (75%) [39]. To delimitate the

effect of avoidance motivation from behavior directly induced by

aversive reinforcers [17,40], the perceived risk of punishment

(henceforth punishment risk) was manipulated while we controlled

for the actual amount of punishment delivered to the participants.

Thus, unbeknownst to the participants, they always received a

fixed number of electric shocks regardless of their actual

performance level. Punishment risk was induced through a

threat-of-shock procedure, in which participants were informed

that response errors could be punished with mild electric shocks.

Three levels of punishment risk were included (no risk, low risk,

high risk), being the minimal parametric manipulation needed to

capture non-linear effects of punishment risk. Importantly, no

actual contingency between the number of errors and the number

of electric shocks existed, which allowed us to draw conclusions

about the effect of punishment risk in the absence of variability in

the amount of punishment across the group.

Predictions: Behavior. As previously noted, the previous

studies using threat-of-shock in relation to cognitive control have

used procedures in which performance and shocks are unrelated

with the impetus to model the effects of anxiety on performance.

However, based on the studies where monetary rewards and

punishments are contingent on performance [7,10,18], we

predicted that performance should be facilitated during the

punishment risk conditions relative to a neutral baseline.

Cognitive Control and Avoidance Motivation
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Furthermore, as error commissions are more likely during high

cognitive control demands [41], the effect of punishment risk on

performance should be most pronounced during the high response

conflict condition.

Predictions: Corrugator Supercilii. Our strategy was to

look for functional and temporal analogues between the cEMG

and previously reported response properties of the ERN in the

context of cognitive control and motivation (see [38] for a recent

review). Based on the ERN and TACH [21], we systematically

tested a set of specific predictions for the cEMG with reference to

the theoretical properties of a signal that integrates cognitive

control and avoidance motivation. Seven predictions were made

(, . indicate ordinal relations in predicted cEMG amplitude): (1)

high response conflict . low response conflict, (2) punishment risk

. no punishment risk, (3) high punishment risk x high response

conflict . all other combinations of punishment risk and response

conflict, (4) error responses . correct responses, and (5) error

responses during punishment risk . error responses during no

risk. We also predicted that (6) cEMG following error responses

would be functionally related to the slowing of response time (RT)

on the following trial in a similar manner as previously reported

for the ERN (post-error slowing [33]). Prediction 4–6 is based on

the characteristics of the ERN, due to its role as a well-established

index of motivated cognitive control and its origin in the ACC/

aMCC.

To delimitate punishment risk from general shock-related

anxiety in its impact on cEMG activity, we included a control

group which performed an identical experimental task, with one

critical exception. In contrast to the Experimental group, the

Control group was explicitly informed that there was no

contingency between task performance and the number of electric

shocks they received. We predicted (7) that the Control group

would not show potentiated cEMG following response errors,

because error commission had no expected aversive consequences.

We also measured the skin conductance level (SCL) across the task

to be able to relate the impact of punishment risk on cEMG

relative to a well-established physiological index of arousal.

In summary, we predicted that (i) behavioral performance

should be enhanced by punishment risk, and (ii) cEMG activity

should be sensitive to the combination of response conflict,

punishment risk, and error commissions.

Method

Participants
Forty participants (19 female) with a mean age of 25.9 years

(SD = 7.34), with normal or corrected-to-normal vision, were

recruited through posters at the Karolinska Institutet campus and

a local website advertising participation opportunities in scientific

research. Participants received two movie-vouchers. All partici-

pants provided written consent. All procedures were approved by

the ethics committee at Karolinska Institutet. Participants were

randomly assigned to the Punishment Risk group (n = 22, 11

male), and the Control group (n = 18, 10 male). Four participants

were excluded from the Control group, as they faultily reported a

relationship between their performance and the number of

received electric shocks (see below for details).

Materials
The experiment was conducted on a desktop PC with a 19-inch

cathode ray tube (CRT) monitor (with screen resolution

128061024 and refresh rate 85 Hz) placed in a sound-attenuated

experimental chamber. Seventy grayscale faces (equally many men

and women) with neutral facial expressions were selected from the

Karolinska Directed Emotional Faces [42] set. The faces were

surrounded by a colored frame (5 pixels wide). The aversive

stimulus was a monopolar 100 ms DC-pulse electric stimulation

(STM200; Biopac Systems Inc, www.biopac.com) applied to the

participant’s non-dominant forearm. The intensity of the electric

shock stimulation was adjusted individually for each participant in

a work-up procedure, based on the criterion ‘‘unpleasant but not

painful’’ (mean voltage: 30.7, SD = 8.2)

Physiological recordings
Electromyographic (EMG) activity of the left corrugator super-

cilii muscle was recorded using a BioPac (MP100; Biopac Systems

Inc, www.biopac.com) device equipped with two miniature Ag/

AgCl electrodes filled with electrolyte gel [43]. A third ground

electrode was placed on the mid forehead, proximal to the

hairline. The raw EMG signal (sample rate 1000 Hz) was

amplified and filtered through a 28–500 Hz IIR band pass,

followed by a 50 Hz IIR band stop. The signal was rectified and

integrated with a time constant of 20 ms. Skin conductance level

(SCL) were recorded with electrodes placed on the distal

phalanges of the non-dominant hand (sample rate 250 Hz). The

Figure 1. Figure 1. Illustration of the experimental task, which had a mixed 3 (Punishment Risk: No/Low/High) x Cognitive Conflict (Low/High)
block/event design. The sequence of blocks (left) was randomized for each subject, with four blocks of each Punishment Risk level. Green color
indicates No Risk blocks, yellow Low Rick blocks, and red High Risk blocks. A sequence of two example trials is shown to the right. Each block
included 80 trials, where 75% was Low Conflict and 25% High Conflict. Note that images of actors from the Karolinska Directed Emotional Faces
stimuli set were used in the actual experiment. For copyright reasons, these are represented by a silhouette.
doi:10.1371/journal.pone.0065692.g001
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SCL was based on average activity across all blocks for each

punishment risk level (shocks excluded).

Behavioral Task
The participants performed a two-choice speeded gender

decision task, and responded behaviorally using the left or right

arrow keys on a standard keyboard (see Fig. 1 for overview). The

probability of each target gender was asymmetric (75% male

faces/25% female faces, or the reverse), giving a correspondingly

asymmetric response ratio. This manipulation was based on the

Go/No-Go task [44], where the high probability target induces a

pre-potent tendency to respond, which has to be inhibited for low

probability targets. However, the standard Go/No-Go task has

apparent limitations due to the lack of a recorded response for the

critical low probability (no-go) condition. For this reason,

responses to both targets were collected. It should be noted that

evidence from fMRI [45,46] and computational modeling [47]

indicate that response inhibition and response selection is highly

related, or even overlapping, processes, suggesting that the task

used in the present study and the standard Go/No-Go task are

comparable. The 75% target condition is referred to as Low

Conflict and the 25% target condition is referred to as High

Conflict. The Low Conflict and High Conflict gender was

counterbalanced across participants.

Punishment Risk. Punishment Risk was manipulated block-

wise, with three levels; No Risk, Low Risk, and High Risk. For

Low- and High Risk blocks, participants were instructed that any

errors (both commissions and omissions) during the block might be

punished with a mild electric shock after the block: ‘‘Every time you

make an error during a ‘LOW risk’ or a ‘HIGH risk’ round you may get a

shock AFTER that round. The more error you make during a round, the greater

risk for multiple shocks AFTER that round. ‘HIGH risk’ rounds give

TWICE as many shocks as ‘LOW risk’ rounds.’’ (Translated from

Swedish).

Critically, the actual number of delivered shocks was identical

for all participants. The intention was to manipulate punishment

risk without introducing performance-contingent variability in the

amount of experienced shocks across participants. Participants

received 0–2 (uniform distribution) electric shocks after Low Risk

blocks, and 2–4 (uniform distribution) electric shocks after High

Risk blocks. Thus, no actual relationship between individual

performance and number of shocks existed. Importantly, funneled

interviews after the experiment showed that all 22 participants in

the Punishment Risk group believed that there was a direct

relation between their own performance and the number of shocks

they received.

To fully assess the validity of the manipulation, 14 participants

were randomly assigned to the Control group. The Control group

performed the same experimental task and received the same

number of electric shocks as the Punishment Risk group, but was

explicitly informed that there was no contingency between

performance and punishment. Four participants in the control

group faultily reported a relationship between their performance

and the number of shocks they received, and were therefore

excluded from the analyses.

Both groups completed 12 blocks (4 blocks per Punishment Risk

level) of 80 trials (total of 960 trials). Both block order (Punishment

Risk) and trial order (Response Conflict) were fully randomized for

each participant. A colored frame surrounding the target stimulus

indicated Punishment Risk level (control group: ordinal amount of

expected shocks) during the blocks (No Risk = green, Low

Risk = yellow, High Risk = red). Target duration was 250 ms,

followed by a 750 ms response period, and a 100–250 ms jittered

inter-trial-interval.

Data reduction and statistical analysis
EMG preprocessing and data reduction. The cEMG data

was extracted in 100 ms time bins locked to the behavioral

response on each trial using in-house software. Time-bins were

extracted both prior (Pre) and following (Post) the behavioral

response. The number of Pre-response relative to Post-response

time-bins extracted on each trial was dependent on RT (e.g., for a

trial with relatively long RT, more Pre-response time-bins and

fewer Post-response time-bins were extracted, compared to a short

RT trial). A 100 ms pre-stimulus baseline (mean cEMG ampli-

tude) was subtracted from all time-bins to reduce slow signal drift

and tonic level differences. Baseline measures below or exceeding

3 standard deviations were replaced and interpolated as an un-

weighted average from the six adjacent baseline means. Mean and

peak amplitude was computed for each time-bin.

EMG peak responses below or exceeding 3 standard deviations

within each subject and time-bin were removed. The cEMG data

was thereafter standardized (i.e., Z-transformed; scaled to mean 0

and standard deviation 1) across all-time bins within subject to

enable comparison between time-bins. Within subject time-bins

below or exceeding 5 standard deviations (the threshold was

chosen to approximately reflect tail-end characteristics) were

removed to reduce the impact of extreme outliers. All reported

analyses were conducted on standardized peak amplitude data

[43].

Statistical analyses. Generalized linear mixed models

(GLMMs) were used for all analyses. The lmer function in the

lme4 package for R was used for GLMM fitting [48]. Binary data

(i.e., accuracy) was modeled with a logistic link function following

a binomial distribution (GLMM) and continuous data (LMM) with

an identity link function following a normal distribution. The goal

in model construction was parsimony, where each model was

aimed at addressing a specific hypothesis rather than to maximize

explained variance. In contrast to the standard ANOVA analysis,

the GLMM approach allow us to model accuracy on a trial-by-

trial basis (rather than proportion correct) and flexibly incorporate

both factorial and continuous predictors into the models and

explicitly model both temporal correlations and random differ-

ences between participants, thereby increasing statistical power

[49,50].

All models included random intercept terms for each partici-

pant, and random slope adjustment by participant for each fixed

effect predictor when supported by likelihood ratio tests, in order

to find the maximum random effects structure supported by the

data. In cases where model convergence failed, random slopes

were included for the fixed effects with the largest effect sizes, in

order of magnitude. Mean-centered trial number (1–960) and

time-on-task (i.e., mean-centered RT) were included as covariates

of no interest in all analyses to account for variance related to time

on the macro (trial) or micro (RT) level. This random effect

structure efficiently accounts for temporal dependencies in the

data and overall random variability among participants [50].

Main- and interaction effects were evaluated with ‘‘Type II’’

analysis of deviance (i.e., analogous to Type II Sum of Squares

ANOVA) tests based on the Wald statistic, in which the goodness-

of-fit of nested models are compared against a x2 distribution,

using the Anova function in the car package [51] Note that

estimation of main effects in the presence of higher-order

interactions involving the main effect may be overestimated in

Type II tests. Main effects in the presence of interactions are

reported for completeness. The statistical significance of the simple

main- and interaction effect parameters (i.e., if the parameter

significantly differ from zero) was evaluated against the normal

distribution, as no exact method for determining denominator

Cognitive Control and Avoidance Motivation
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degrees of freedom (df) currently exist for GLMMs [47]. The t-

distribution and the normal distribution converge at high df

[50,52]. We also compared the p-values derived from the normal

distribution with p-values based on likelihood-ratio tests for model

comparison. These were identical or highly similar.

The asterisk operator is used as notation to indicate the factorial

combination of terms (e.g., Conflict*Punishment Risk = Con-

flict+Punishment Risk+Conflict6Punishment Risk), and ‘‘x’’ to

denote simple interaction terms. Data points below 200 ms and

exceeding 1200 ms were removed for the analysis of RT, which

only included correct trials. All graphs of cEMG results are

displayed with T-transformed data (Z*10+50) to facilitate inter-

pretation. Note that this scaling does not affect the results.

Results

Manipulation check: Skin Conductance Level
To asses if the punishment risk manipulation had an effect on

overall arousal, SCL was analyzed with Punishment Risk (No/

Low/High) as single predictor, which showed a strong main effect,

x2(2) = 61.16, p,.0001 (this effect was not related to individual

differences in shock level). Simple effects showed a linear effect of

Punishment Risk, where SCL was higher, relative to No Risk, for

both Low Risk (b = 1.25, SE = 0.25, z = 4.97, p,.001) and High

Risk (b = 1.96, SE = 0.25, z = 7.79, p,.001). The SCL was in

addition higher for High Risk compared to Low Risk (b = 0.70,

SE = 0.25, z = 2.83, p,.01). These results indicate that punishment

risk had a robust effect on arousal level.

Behavior: Accuracy
Behavioral accuracy was analyzed in a GLMM with Punish-

ment Risk (No/Low/High) * Conflict (Low/High) terms. The

analysis showed a strong main effect of Conflict (x2 (1) = 197.23,

p,.001), no main effect of Punishment Risk (x2 (2) = 1.30,

p = .522), but a significant Conflict6Punishment Risk interaction

(x2 (2) = 6.96, p = .031) (see Fig. 2). Simple effects showed a cross-

over interaction, where Low Risk decreased accuracy at Low

Conflict (b = 20.29, SE = 0.12, z = 22.48, p = .013) compared to

No Risk. However, this was reversed during High Conflict, where

Low Risk attenuated the effect of High Conflict (see Fig. 2) (Low

Risk6High Conflict: b = 0.39, SE = 0.15, z = 2.63, p = .008). No

pair-wise contrasts were significant within either level of Conflict

(ps..11). Thus, Low Risk impaired performance when cognitive

control demands were low, but enhanced performance when the

cognitive control demands were high. High Risk did not reliably

differ from either No Risk or Low Risk.

To formally characterize the shape of the relationship between

Punishment Risk and accuracy, a polynomial model was

inspected. A negative sign for the quadratic term indicate that

accuracy is a concave function of Punishment Risk, i.e., the

relationship has an inverted-U shape, while a positive quadratic

term indicate that the relation is convex. The model showed that

the effect of Punishment Risk was convex during Low Conflict

(Low Conflict6Punishment Risk‘2: b = 0.19, SE = 0.08, z = 2.39,

p = .017), and concave during High Conflict (High Conflict6Pun-

ishment Risk ‘2: b = 20.23, SE = 0. 1, z = 22.20, p = .028). In

summary, Punishment Risk had an inverted-U like effect on

accuracy during High Conflict, while the reverse was true during

Low Conflict. This pattern of results was partially predicted, i.e.,

the enhancing effect of Punishment Risk on performance during

High Conflict. However, this effect was most pronounced for Low

Risk (note however that High Risk did not differ significantly from

Low Risk).

Behavior: Response Time
Response time (RT) was analyzed with a LMM with

Punishment Risk (No/Low/High) * Conflict (Low/High) terms.

There was a main effect of Conflict (x2 (1) = 197, p,.001), no main

effect of Punishment Risk (x2 (2) = 3.39, p..1), which was qualified

by a significant Punishment Risk6Conflict interaction (x2

(2) = 8.49, p = .003) (See Fig. 3). This interaction reflected slightly

slower RT for Low Risk during Low Conflict (B = 8.21, SE = 3.52,

z = 2.33, p = .019) as compared to No Risk, whereas the

detrimental effect of High Conflict was attenuated for Low Risk

(Low Risk6High Conflict: b = 210.60, SE = 3.78, z = 22.82,

p = .004), and for High Risk (High Risk6High Conflict:

b = 27.88, SE = 3.79, z = 22.078, p = .019) relative to No Risk.

Similar to the effects on accuracy, Low Risk impaired

performance by causing response slowing during Low Conflict

compared to No Risk and enhancing it during High Conflict by

speeding up RT relative to No Risk. High Risk specifically speeded

up RT during High Conflict.

Corrugator EMG: Prediction 1–3
To address Predictions 1 (high response conflict . low response

conflict), 2 (Punishment Risk . no Punishment Risk), and 3 (high

punishment risk x high response conflict . all other combinations

of punishment risk and response conflict,) we fitted the

corresponding three models; (i) Conflict (Low/High), (ii) Punish-

ment Risk (No/Low/High), and (iii) Conflict (Low/High) *

Punishment Risk (No/Low/High) to average EMG peak ampli-

tude from all time-bins (899 ms Pre-response to 599 ms Post-

response).

Prediction 1. There was no main effect of Conflict, (x2

(1) = 1.62, p = .43 (b = 0.02, SE = 0.02) on average cEMG peak

amplitude over the whole trial. Because the neural indices of

response conflict are most apparent prior to the response on

correct trials [39], we conducted a fine-grained analysis of cEMG

limited to the Pre-response period for correct trials. This analysis

supported the prediction, in showing the predicted effect of conflict

on cEMG. The model, Conflict (Low/High) * Time-bin (899-

800 ms Pre-response to 99-0 ms Pre-response [coded as 0:8]),

showed a Conflict x Time-bin interaction, x2 (1) = 7.93, p = .005.

This interaction was attributed to higher cEMG amplitude at the

earliest Time-bins (i.e., at the intercept) for High relative to Low

Conflict (b = 0.10, SE = 0.05, z = 2.08, p = .037), and this differ-

ence declined linearly with time toward response onset (High

Conflict x Time-bin: b = 20.02, SE = 0.007, z = 2 2.82, p = .005).

There was no effect of Time-bin on cEMG during Low Conflict

(z = 0.13). These results suggest that cEMG during High Conflict

reflects within-trial conflict resolution. Punishment risk showed no

interaction with Conflict in the Pre-response period.

If pre-response cEMG actually reflects within-trial conflict

resolution during High Conflict, one would expect cEMG

amplitude to be predictive of behavioral accuracy. To directly

test this hypothesis, we fitted a logistic GLMM to response

accuracy. The model, (Conflict (Low/High) * cEMG * Time-bin

(899-800 ms Pre-response to 99-0 ms Pre-response [coded as 0:8]),

showed a cEMG x Time-bin interaction (x2 (1) = 7.04, p = .007)

and a Conflict x cEMG x Time-bin interaction (x2 (1) = 4.49,

p = .033), which together showed that Pre-response cEMG

amplitude early in the intra-trial time-course significantly predict-

ed accuracy (b = 0.56, SE = 0.16, z = 3.56, p,.001) during High

Conflict and that the effect was completely abolished during Low

Conflict (cEMG x Low Conflict interaction: b = 20.57, SE = 0.26,

z = 22.23, p = .026). As above, the positive relation between

cEMG and accuracy during High Conflict declined with temporal

proximity to the response (cEMG x Time-bin interaction:
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b = 20.08, SE = 0.03, z = 22.23, p = .026). Thus, Pre-response

cEMG activity was amplified by High Conflict, and this activity

significantly predicted performance accuracy. These effects was

most prominent at trials with longer RT, i.e., at the earliest time-

bins.

Prediction 2. There was a statistical trend towards a main

effect of Punishment Risk, x2 (2) = 5.61, p = .061. Providing partial

support for prediction 2, simple effects showed that while EMG

amplitude during Low Risk was not clearly differentiated from No

Risk (b = 0.09, SE = 0.07, z = 1.44), EMG amplitude was higher

during High Risk than No Risk (b = 0.13, SE = 0.07, z = 2.09,

p = .038). Thus, High, but not Low, Punishment Risk amplified

cEMG.

Prediction 3. The interaction model (Conflict * Punishment

Risk) showed an interaction between Conflict and Punishment

Risk (x2 (2) = 18.6, p,.001) (see Fig. 4). In line with prediction 3,

follow up contrasts of the parameter estimates showed that the

largest mean difference was between High Risk vs. No Risk during

High Conflict (estimate: 0.13, SE = 0.07, z = 1.8, p = .035 [one

tailed]). Furthermore, cEMG amplitude was lower for High

Conflict than Low conflict for No Risk (estimate: 0.06,

SE = 0.02, z = 2.33, p = .02). No other pair-wise contrasts were

significant.

To summarize, our results provided support for predictions 1

and 2, and partial support for Prediction 3. Cognitive conflict

strongly interacted with the time-course of the cEMG, where

cEMG in the earlier time-bins was sensitive to Conflict and

predictive of performance accuracy during High Conflict. In

contrast to the High Risk, condition, the Low Risk condition had

little impact on overall cEMG amplitude. In line with Prediction 3,

the largest difference was between No vs. High Risk during High

Conflict.

Corrugator EMG: Prediction 4–7
To test Predictions 4 (error responses . correct responses), 5

(error responses during Punishment Risk . No Risk), 6 (error

cEMG predicts post-error slowing), and 7 (error responses .

correct responses driven by Punishment Risk) we fitted a series of

models to the Post-response cEMG amplitude.

Prediction 4. The model, Accuracy (Correct/Error) * Time-

bin (0–4), provided support for the prediction. The model showed

a main effect of Accuracy (x2 (1) = 4.27, p = .038), and a strong

Accuracy x Time-bin interaction (x2 (1) = 15.39, p,.001) (see

Fig. 5). Simple effects showed that cEMG amplitude 0–99 ms

following the response (i.e., at the intercept) was higher for Error

responses relative to Correct responses (b = 0.19, SE = 0.09,

z = 2.1, p = .035). The slope of the Time-bin effect was negative

for Error trials (b = 20.10, SE = 0.03, z = 23.93, p,.001), which

was reversed for Correct trials (Time-bin x Accuracy: b = 0.11,

SE = 0.03, z = 3.9, p,.001). As predicted (see Fig. 5), the cEMG

was larger for Error than Correct responses within the first

100 ms, corresponding to the time course of the ERN [33].

To further examine this predicted effect, we limited the

following analyses to the first time bin (0–99 ms). In order to rule

out confounds unrelated to post-response cEMG, we used

residualization to decorrelate the cEMG following the response

(0–99 ms Post-response) from activity prior to the response (99-

0 ms Pre-response). Consequently, the resulting residual cEMG

Post-response vector is orthogonal to the Pre-response cEMG and

thereby unaffected by any differences in Pre-response amplitude.

Figure 2. Performance accuracy as a function of Punishment Risk x Conflict. High and Low Conflict is plotted separately to visualize the
Punishment Risk x Conflict interaction. Error bars denote SE.
doi:10.1371/journal.pone.0065692.g002
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Figure 3. Response time as a function of Conflict and Punishment Expectancy. High and Low Conflict is plotted separately to visualize the
Punishment Risk x Conflict interaction. Error bars denote SE.
doi:10.1371/journal.pone.0065692.g003

Figure 4. The effect of Punishment Risk x Conflict on cEMG (averaged over the whole trial). Error bars denote SE.
doi:10.1371/journal.pone.0065692.g004

Cognitive Control and Avoidance Motivation

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e65692



A model with Accuracy as single predictor showed a main effect

(x2 (1) = 4.14, p = .042), where Error response (residual) cEMG

amplitude was higher than Correct response (residual) cEMG

amplitude (b = 0.14, SE = 0.067).

In sum, we found two kinds of support for Prediction 4; cEMG

was amplified following response errors within 100 ms post-

response, and the error-amplified cEMG was independent from

the cEMG activity preceding the erroneous response.

Prediction 5. We fitted an Accuracy (Correct/Error) *

Punishment Risk (No/Low/High) LMM to asses if post-response

(residual) cEMG was modulated by the expected consequences of

errors. The results based on non-residualized data were highly

similar, but we focused here on the residualized EMG to fully

control for any effects due to pre-response differences.

The model showed a main effect of Accuracy (x2 (1) = 4.13,

p = .042, a main effect of Punishment Risk (x2 (2) = 7.92, p = .019),

and critically, an Accuracy x Punishment Risk interaction (x2

(2) = 8.57, p = .013) (See Fig. 6). Simple effects showed that this

interaction was driven by a tendency to lower cEMG for Correct

relative to Error responses for No Risk (b = 20.11, SE = 0.07,

z = 1.57, p = .058 [one tailed]) and Low Risk (as indicated by the

non-significant simple interaction; z = 0.63), which was amplified

for High Risk (Accuracy x High PE: b = 20.10, SE = 0.05,

z = 22.14, p = .03). Follow up contrasts of the parameter estimates

showed that EMG amplitude following Errors was higher for High

Risk than No Risk (estimate: 0.16, SE = 0.06, z = 2.64, p = .008)

and Low Risk (estimate: 0.17, SE = 0.05, z = 3.55, p,.001). The

Error EMG amplitude did not differ between No Risk and Low

Risk (z = 0.12). Thus, in support of Prediction 5, error-amplified

cEMG was enhanced by the perceived risk of punishment

following errors.

Prediction 6: Post-error slowing. The ERN is often

associated with subsequent performance adjustments, where a

larger ERN on an error trial is related to slower performance on

the following trial (Post-Error Slowing [33]). Therefore, we

assessed if the Post-error cEMG was similarly functionally related

to performance following errors. This prediction was supported: A

model predicting RT (correct trials) from the accuracy and Post-

response cEMG (0–99 ms residual) on the preceding trial (Pre-

Accuracy: Error/Correct * Post-response cEMG) showed the

predicted significant interaction (x2 (1) = 7.39, p = .006). The

interaction showed the predicted positive relation between slowing

of RT and cEMG if the preceding trial was an Error (b = 6.02,

SE = 2.28, z = 2.64, p = .008), but not Correct (Post-response

cEMG x Pre-Accuracy: b = 26.51, SE = 2.39, z = 22.72,

p = .006). Thus, post-error cEMG is predictive of Post-Error

slowing. The subsequent model including Punishment Risk

showed no additional interactions (ps..23). We also ran the

corresponding analyses for post-error accuracy adjustments, and

found no significant effects.

Prediction 7: Control group comparison. To validate that

the modulation of Post-error cEMG by Punishment Risk was

driven by the expected consequences of errors rather than shock

anticipation or other factors unrelated to performance, we include

a control group in the analysis (see Method for details). We

analyzed post-response cEMG in the first time-bin (0–99 ms) with

an Accuracy (Correct/Error) * Group (Control/Experimental)

model. The model showed a main effect of Accuracy (x2

(1) = 34.52, p,.001) and an Accuracy x Group interaction (x2

(1) = 13.72, p = .0001). Simple effects showed that Accuracy had no

significant effect for the Control group (b = 0.02, SE = 0.02,

z = 0.77, p = .22), that cEMG amplitude did not differ by Group

Figure 5. Time course of Error main effect Post-response. The cEMG was amplified directly within 0–99 ms following error responses (p,.05).
Error bars denote SE.
doi:10.1371/journal.pone.0065692.g005
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for Correct responses (b = 20.01, SE = 0.01, z = 20.65, p = .515),

while, critically, the Experimental group x Error interaction

(b = 0.12, SE = 0.03, z = 3.70, p,.001) showed that the effect of

Errors was amplified for the Experimental group (see Fig. 7). Thus,

as predicted, the amplification of cEMG by response errors was

directly related to the expected consequences of error.

Discussion

The present study had two main objectives; to characterize how

avoidance motivation impacts cognitive control through a para-

metric manipulation of perceived punishment risk, and (2) investigate

the cEMG as a novel index of this process by means of testing a set

of specific hypotheses derived from recent work on the neural

underpinnings of motivated cognitive control [21]. First, as

predicted, we showed that the perceived risk of punishment for

error commissions attenuated the detrimental effect of high

response conflict on performance. This effect was non-linear: Low

Risk enhanced performance, while High Risk had little effect.

Second, the cEMG was highly sensitive to both punishment risk and

response conflict, showing the predicted properties of a signal that

integrates cognitive control demands and avoidance motivation. In

particular, the present study provides the first report of cEMG

activity as a correlate of error monitoring, and shows that this

correlate (i) operates on a similar time-scale as the ERP index of

error processing, the ERN, (ii) is modulated by the expected aversive

consequences of errors, and (iii) related to post-error slowing.

Behavioral results
The effect of punishment risk on behavior was dependent on the

level of response conflict. Whereas Low Risk impaired perfor-

mance in the Low Conflict condition, the reverse was true for

High Conflict (see Fig. 2). Together with the pattern of RT results

(see Fig. 3), which showed response slowing at Low Risk during the

Low Conflict condition and faster responses in the High Conflict

condition for both Low and High Punishment Risk, the accuracy

results indicate that participants traded Low Conflict accuracy for

higher accuracy during the difficult High Conflict condition.

Viewed in a framework where evidence for each choice is

gradually and stochastically accumulated over time, such a trade-

off could be implemented pro-actively either by changing the

starting point for evidence accumulation (i.e., akin to a shift in the

subjective probabilities of each target type) or lowering the

decision boundary for High Conflict targets, both which would

predict more errors during Low Conflict [53]. This trade-off

between Low and High Conflict accuracy during Low Risk blocks

indicate that punishment risk affected proactive, rather than

reactive cognitive control [54]. Proactive control, where a strategy

is implemented prior to control demands, can be contrasted

against reactive, ‘‘just-in-time’’ control (e.g., the last moment stop

response to a red traffic light) [40,55], where the former is

considered more relevant for goal-directed behavior [55]. Reactive

control, which would only be initiated at the onset of High

Conflict targets, should not affect the processing of Low Conflict

targets, which none the less occurred in the present study. This

conclusion is strengthened by the fact that punishment risk did not

affect post-error slowing and intra-trial adjustments (as indexed by

cEMG, see Results), both commonly thought to index reactive

cognitive control that is elicited by performance errors or detection

of conflict [56]. Similar proactive cautionary behavior in a Go/

No-Go task has been described in a task where errors were

punished by monetary loss, and was argued to be reflected by

Figure 6. Error x Punishment Risk interaction within 0–99 ms after the behavioral response. The cEMG was amplified by High Risk
following Errors but not Correct responses (p,.05). Error bars denote SE.
doi:10.1371/journal.pone.0065692.g006

Cognitive Control and Avoidance Motivation

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e65692



sustained, rather than phasic, ACC activity [18], suggesting that

the ACC/aMCC proactively modulates behavior to avoid

punishment [21]. More generally, the suggestion that cognitive

control is a system that enables organisms to proactively alter

behavior to avoid aversive outcomes [35,57] and thereby reduce

uncertainty in the service of optimal behavior [58] underscores the

significance of our behavioral findings.

The effect of punishment risk on performance accuracy could

be formally described by an inverted-U shape during High

Conflict, as performance was facilitated by Low Risk, while High

Risk had no reliable effect on performance (see Fig. 2). This effect

resembles the classical Yerkes-Dodson law, which states that

arousal impact performance efficiency according to an inverted-U

shape [59]. This relation between external demands and

performance is often termed ‘‘choking under the pressure’’ [60].

For example, an athlete can be more prone to miss a well-trained

throw in a high-stake match rather than in a practice match at the

home arena. Commonly, choking under pressure is explained

either by resource consumption (e.g., of working memory) or

distraction [60]. Distraction effects are most likely to be produced

under outcome-pressure, for instance if the consequences of errors

are aversive [60]. A possible neurophysiological account of such

distraction is provided by Aston-Jones and Cohen [61], who posits

that the locus coeruleus – norephinephrine (LC-NE) system

regulates arousal to optimize performance. Tonic LC-NE activity

has an inverted-U like effect of performance, where elevated tonic

NE levels are related to increased distractibility and errors

commissions [60]. The ACC regulate the LC-NE based on the

utility of current behavior, serving to optimize performance

following, for example, error commissions. The theory predicts

that prolonged disutility, which could supposedly be exemplified

by repeated errors commissions when errors are costly, will drive

the LC-NE system into the tonic mode [60]. One might speculate

that High Risk might have driven the LC-NE system into an

elevated tonic state, possibly because repeated errors despite high

risk of punishment in a given context might serve as an imperative

signal to exchange that context for a more beneficial one. Our

SCL findings, which showed that punishment risk had a strong

and linear effect on physiological arousal, are in line with this

proposal (see also [62]). An important goal with future studies

should be to fully describe the relationship between cognitive

control and punishment risk by using a more fine-grained

parametric manipulation of punishment risk.

Corrugator EMG Results
We hypothesized that activity in the corrugator superscilii

muscle would index the integration of cognitive control and

avoidance motivation. This hypothesis was based on (1) similarities

between the previously described response properties of the cEMG

and neural activity in the aMCC [21], and (2) the influence of the

aMCC on the corrugator supercilii muscle via projections from the

facial nucleus [21,25]. Our hypothesis was specified by the

formulation of 7 detailed predictions that were tested. All seven

predictions received support, and are discussed sequentially below.

As stated in Prediction 1, cEMG was amplified for High

Conflict, but this effect was most evident in the early time-course

in trials with longer RT. Furthermore, the amplified cEMG

predicted performance accuracy during High, but not Low

Conflict trials. Thus, the pre-response cEMG likely reflected

within-trial performance adjustments when response conflict was

high. One of the most prominent theories of ACC function, the

Conflict Monitoring theory, argues that pre-response ACC activity

in conflict conditions (the N2 ERP) is directly related to post-

response activity following errors (the ERN), suggesting that both

Figure 7. The cEMG was amplified following Errors in the Experimental, but not the Control, group (p,.0001). Error bars denote SE.
doi:10.1371/journal.pone.0065692.g007
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reflect the activity of a system monitoring conflict between

response tendencies [39]. Both components are responsive to

conflict and share a common neural-generator in the ACC. The

N2 potential is seen prior to responses on correct trials with high

conflict, and thus reflects the timely resolution of conflict. In

contrast, the ERN which follows an erroneous response reflects the

very conflict that led to an error being elicited. The time to

respond in correct trials (i.e., RT) has been shown to be directly

proportional to the amount of conflict, as the response is delayed

by the higher levels of conflict [39]. This fits well with the temporal

characteristics of the pre-response cEMG on correct trials in our

results, where the effect of conflict was visible only during high

conflict trials with longer RT. Further support for this interpre-

tation was that the amplified pre-response cEMG during High

Conflict directly predicted behavioral accuracy [39].

In accordance with our Prediction 2, average cEMG was

sensitive to punishment risk. However, rather than showing a

linear increase with punishment risk level (No , Low , High),

cEMG was amplified only for High Risk (No/Low , High). The

amplification of cEMG by punishment risk is in concordance with

previous findings using a threat-of-shock paradigm [20,63] and the

substantial body of research relating cEMG activity to negative

emotions [64]. Interestingly, the non-linear effect of punishment

risk on cEMG dissociates it from SCL which increased linearly

with punishment risk level. However, the cause of this dissociation

is currently unknown.

As stated in Prediction 3, punishment risk and response conflict

interacted in the effect on cEMG, with the largest difference

between High Risk and No Risk during High Conflict (see Fig. 4).

However, these results were complicated by the fact that activity

was lower for High than Low Conflict during No Risk, whereas

there was no difference between Low and High Conflict during

Punishment Risk blocks. Previously, high conflict No-Go trials

have been shown to elicit amplified cEMG activity compared to

low conflict Go trials [32], but not in the Simon conflict task [65].

Taken together with the present findings, this suggests that

additional factors, such as the within-trial time course (see above)

or other task-specific parameters, might modulate the effect of

conflict on cEMG activity.

In sum, our results largely support Prediction 1–3; cEMG was

responsive to High Conflict (Prediction 1), especially early in the

within-trial time-course. Importantly, this pattern of results can be

accounted for by established theory. Furthermore, cEMG was

responsive to punishment risk (Prediction 2), and showed the

hypothesized difference between No and High Risk during High

Conflict (Prediction 3).

We derived predictions 4–7 from the properties of a known

index of motivated cognitive control; the ERN [38]. Specifically,

we hypothesized that cEMG should be higher following response

errors than correct responses (Prediction 4); that this effect should

be potentiated by Punishment Risk (Prediction 5); predictive of

Post-error slowing (Prediction 6); and directly related to the

expected consequences of errors (Prediction 7). In line with

prediction 4, cEMG was reliably higher for errors than correct

responses within the first 100 ms following the behavioral response

(see Fig. 5). This difference was robust also when statistically

controlling for the cEMG level prior to the response. The ERN

also peaks between 50 and 100 ms following errors [33], which

indicate that the error-potentiated cEMG is unlikely to reflect

processes ‘‘down-stream’’ of the ERN, such as a secondary

conscious reaction to errors. Rather, given that the corrugator

supercilii muscle in part is innervated by the ACC/aMCC via the

brainstem facial nucleus [26], the temporal concurrence of the

ERN and the error cEMG suggest that they might share a

common generator, possibly in the aMCC [21]. Obviously, the

lack of simultaneous EMG and EEG recordings in the present

study precluded us from conclusively establishing this link. The

similarity between the error cEMG and the ERN was further

reinforced by the shared relation to post-error slowing (prediction

6). Gehring and colleagues [33] showed that the magnitude of the

ERN predicted the amount of behavioral slowing on the following

trial, which was interpreted to reflect the strategic recruitment of

control (but see [66]) for a contrasting view on the mechanisms

underlying post-error slowing). Similarly, the cEMG activity

following errors, but not correct responses, significantly predicted

longer RT on the following correct trial. The cEMG activity did

not predict post-error accuracy, in line with recent literature

arguing that post-error slowing and post-error accuracy increases

can occur independently [67]

The ERN is modulated by the motivational value of error

commissions [38]. For example, errors punished with loss of

money [68] or an aversive noise [37] elicits a stronger ERN [39].

Such findings provide critical support for the TACH [21], as they

indicate that information about cognitive conflict or response

errors is integrated in the ACC/aMCC with information related

to the motivational value of different actions. Based on these

premises, we expected (Prediction 5) that punishment risk would

potentiate the error-amplified cEMG. In support of this predic-

tion, error cEMG was most pronounced during High Risk blocks,

and differentiated from both No Risk and Low Risk (See. Fig. 6).

In fact, pair-wise contrasts indicated that cEMG only was reliably

larger for erroneous as compared to correct responses during high

punishment risk The lack of a general main effect of error across

levels of punishment risk might reflect either a threshold effect (i.e.,

that cEMG is a relatively insensitive proxy for brain-based error-

monitoring processes and only High Risk elicited strong enough

post-error activity to be visible in the cEMG), or that the cEMG

primarily indexes the integration of negative affect and error

monitoring rather than all aspects of cognitive control. Our results

support the former explanation as there was no effect of

punishment risk on pre-response cEMG. An alternative possibility

is that the participants in the control group learned that errors had

absolutely no consequences, as they were explicitly informed that

there was no contingency between their performance and the

shocks they would receive. This might differ from how errors are

interpreted in real-world settings, where errors typically have some

form of consequences, either internal or external [69]. This

possibility could be addressed by a replication experiment without

an external manipulation of motivation. Such an experiment

would further clarify the relation between the ERN and the error-

potentiated cEMG.

Finally, we included a critical control group to confirm that the

error cEMG was driven by the expected aversive consequences of

errors, rather than shock anticipation or general anxiety (Predic-

tion 7). Both groups performed the identical experimental task as

in the main experiment, with one critical difference; the control

group knew that errors had no bearing on the amount of shocks

they received. As predicted, only the experimental group showed

error-potentiated cEMG (see Fig. 7), indicating that the effect was

driven by the expected aversive consequences of error commis-

sions, rather than anticipation of pain or anxiety per se. Funneled

interviews indicated that all participants in the experimental group

believed there was a contingency between their performance and

the amount of punishment they received, whereas the Control

group reported no contingency between their performance and

the amount of punishment (see Method for details). Based on the

results of our control experiment and the post-experimental

interviews, we conclude that the group-level effects of punishment
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risk on post-error cEMG likely reflects the proactive motivation to

avoid aversive consequences, rather than being driven by mere

pain anxiety, which should have been equal for both groups.

A possible caveat concerns how specific these effects are for the

corrugator supercilii, or if also other facial muscles (e.g., the

zygomaticus major) would exhibit a similar pattern of activation.

We consider this to be unlikely for several reasons. First, a large

literature show that the corrugater supercilii, but not the

zygomaticus major or other muscles in the lower part of the face,

is activated by aversive images [64] and threat of shock [20,63].

Second, the muscles of the lower face are innervated by different

brain regions than the muscles of the upper face (including the

corrugator supercilii) [26], which together with our anatomically

grounded apriori hypothesis (see ‘‘The Present Study’’) about the

functional overlap between the cEMG response and the ERN,

suggest considerable specificity in the response pattern of the

corrugator muscle to punishment risk and cognitive control. Even

so, an important goal for future studies is to investigate

convergence and divergence between different measures related

to punishment risk and cognitive control.

In summary, the post-response cEMG conformed to the

predicted properties of a signal that integrates cognitive control

and avoidance motivation in striking resembles to the ERN

(prediction 4), both regarding time-course, relation to post-error

slowing, and sensitivity to error consequences (prediction 5–7). In

concert with the support for predictions 1–3 (see above), these

results strongly suggest that cEMG might reflect the integration of

cognitive control and avoidance motivation, and thus possibly

aMCC activity, as described by TACH. Further confirmation of

this hypothesis is however needed. In particular, concurrent

cEMG and EEG/fMRI recordings are critical to conclusively tie

cEMG and aMCC activity during potentially dangerous situations

when control is at demand. However, these preliminary results are

in line with TACH [21], as they provide new evidence for

functional convergence of cognitive conflict and avoidance

motivation, and that the corrugator supercilii, innervated by the

aMCC, is sensitive to this convergence.

To conclude, the current study showed that aversive motivation

has a substantial impact on cognitive control behavior. This

finding stresses the importance of considering not only the goals of

behavior, but also the potentially aversive or harmful consequenc-

es of failure, to fully characterize cognitive control. We also for the

first time demonstrate that cEMG is sensitive to the interaction of

cognitive control and avoidance motivation. This finding is

concordant with the proposed integrative role of the aMCC in

potentially dangerous and control demanding situations [21], and

suggest that further investigation of the response properties of the

cEMG might be highly fruitful.
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