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Abstract

Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent
Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine
the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the
standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously
calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization
chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to
determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined
with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses
up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were
lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with
ionization chamber, film and TLDs.

Citation: Del Lama LS, de Góes EG, Petchevist PCD, Moretto EL, Borges JC, et al. (2013) Prevention of Transfusion-Associated Graft-versus-Host Disease by
Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System. PLoS ONE 8(6): e65334. doi:10.1371/journal.pone.0065334

Editor: Vassiliki A. Boussiotis, Beth Israel Deaconess Medical Center, Harvard Medical School, United States of America

Received November 25, 2012; Accepted April 24, 2013; Published June 7, 2013

Copyright: � 2013 Del Lama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was partially funded by CAPES (http://www.capes.gov.br/) and the Regional Blood Center of Ribeirão Preto, Brazil. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Co-author DC currently serves as an editor for PLOS ONE. This does not alter the authors’ adherence to all the PLOS ONE policies on
sharing data and materials.

* E-mail: lucasdellama@gmail.com

Introduction

Transfusion-Associated Graft-Versus-Host Disease (TA-

GVHD) is a rare, but fatal potential complication that occurs

when viable donor T lymphocytes proliferate and engraft in

susceptible patients after transfusion [1–3]. At least three factors

appear to be directly related to the risk of TA-GVHD [4]: 1) the

susceptibility of the patient immune system to the engraftment, 2)

the degree of Human Leukocyte Antigen (HLA) similarity between

donor and recipient and 3) the number and viability of donor T

lymphocytes present in the transfused components.

According to the literature, cases of TA-GVHD have been

reported in severely immunocompromised patients, including

patients with congenital immunodeficiencies, in bone marrow

transplant recipients, as well as in cancer patients treated with

chemotherapy or radiotherapy [2,5–15]. This serious transfusion

associated adverse reaction has also been reported in presumed

immunocompetent patients who received blood from homozygous

donors with shared HLA haplotypes or from a family member

[16–35].

Although the minimum concentration of lymphocytes in the

donor blood that can initiate TA-GVHD is unknown, a number of

lymphocytes as low as 16104/kg of the recipient weight may be

sufficient to cause TA-GVHD [36]. The referred report corrob-

orates with other works and indicates that even leukocyte-depleted

blood products can promote this reaction [37,38]. Because there is

no effective treatment for TA-GVHD [39,40], irradiation of whole

blood and blood components prior to transfusion is the only

proven method to prevent the reaction [41,42]. Ionizing radiation

breaks the DNA molecules of T lymphocytes and prevents an

immune response against the recipient [3,43,44].

Blood irradiation can be performed using commercial irradia-

tors specifically designed for this purpose, which are usually

located in blood banks. These dedicated blood irradiators use

radioactive isotopes such as 137Cs or 60Co, which emit gamma-

rays, or linear accelerators, which emit X-rays. Based on previous

data about the elimination of allogeneic reactivity using Mixed

Lymphocyte Culture analysis (MLC), at least 15 Gy was

recommended for irradiation of blood components [45,46].

However, at least three cases of TA-GVHD were reported in

patients who received blood irradiated with doses between 15 and

20 Gy [47–49]. More recently, studies on the radiosensitivity of T-

cells to gamma and X-rays, assessed by Limiting Dilution Analysis

(LDA), have shown that an absorbed dose of 25 Gy is necessary to

prevent TA-GVHD [28,44,50]. Under this exposure condition,

damages are minimal to granulocytes and anucleate cells as
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erythrocytes (RBCs) and platelets (PLTs). Thus, Food and Drug

Administration (FDA) [51] and the American Association of Blood

Banks (AABB) [52] specify a dose of 25 Gy at the middle plane of

the blood component. Similarly, the European and the British

guidelines state that a minimum dose should be 25 Gy and no

more than 50 Gy for each blood bag [53–56]. In order to meet

these requirements, a dosimetric system must determine 1) the

dose rate and the dose in the blood bags and 2) the spatial dose

distribution in the irradiated blood volume.

A Fricke dosimeter is a chemical dosimeter, first proposed in

1927 by Hugo Fricke and Sterne Morse [57] as an acidic

oxygenated ferrous sulphate solution. The absorbed dose is

inferred through the radiation induced oxidation process, in

which ferrous ions (Fe+2) oxidize to ferric ones (Fe+3) due to water

decomposition [58,59]. This dosimeter has been recommended by

the American Association of Physicists in Medicine (AAPM) [60]

and the International Commission on Radiation Units and

Measurements (ICRU) [61] as an alternative clinical dosimeter

owing to its water-equivalent radiological characteristics and

achievable absoluteness.

At the end of the last century, many researchers proposed tissue-

equivalent dosimeters based on the original Fricke liquid solution,

some with gelatin and polymeric matrices instead of liquid. Gelatin

dosimetry has been studied since 1950’s [62,63], when the gel

molecular proprieties began to be studied after ionizing radiation

exposures. Some of these gelatins were used to prepare Fricke gel

dosimeters, becoming the first dosimetric system able to three-

dimensionally map the absorbed dose in a non-destructive and

non-invasive manner [64–66]. In fact, one of the most common

recipes to prepare this type of dosimeter adds porcine skin gelatin

and Xylenol Orange dye to the original solution. This dosimeter is

known as Fricke Xylenol Gel (FXG) and was proposed by Gillboy

et al in 2000 [67]. The FXG has a linear absorbance response for

doses from 0 up to 30240 Gy. It has advantages over the liquid

solution when spatial resolution and natural oxidation stability are

crucial. In addition, the FXG dosimeter allows quantitative and

qualitative analysis of the absorbed dose spatial distribution over

an irradiated volume [68,69] with various analysis techniques,

including UV/visible spectroscopy [67,70–75], magnetic reso-

nance [64–66,71,76–80], Charge-Coupled Device (CCD) [69,81–

90] and photoacoustics [91,92].

Because the standard FXG optical response saturates for

absorbed doses higher than 30240 Gy, we have developed a

modified recipe for the FXG dosimeter, which includes lowering

the pH, increasing the metal dye concentration and adding

sodium chloride to the solution. These modifications provide

linear responses for doses up to 50 Gy, as recommended by the

blood irradiation guidelines.

Materials and Methods

Irradiation Sources and Calibration
In this study, the standard FXG [67], TLDs (LiF-100, Harshaw

Chemical Co., Ohio, USA), radiochromic film (Gafchromic-

EBT2, International Specialty Products, New Jersey, USA) and

the modified FXG dosimeter were irradiated using one sealed
60Co source (effective energy of 1.25 MeV) from a cobalt

teletherapy unit (Theratron-780C, MDS Nordion, Ontario,

Canada). Calibration of the 60Co source was accomplished with

a calibrated clinical ionization chamber (Farmer-N30001, PTW,

Freiburg, Germany) and an electrometer (K35617EBS, Keithley

Instruments Inc., Ohio, USA), in accordance with the Interna-

tional Atomic Energy Agency (IAEA) protocol recommendations

[93]. Also following this protocol, the standard FXG, TLDs and

film were calibrated in terms of absorbed dose in water and their

responses were compared with those obtained with the modified

FXG dosimeter. In this sense, the standard FXG, TLDs and film

were employed as reference dosimeters to validate the modified

FXG response for dosimetry of a gamma blood irradiator

(GammacellH 3000, Best Theratronics Ltd., Ontario, Canada).

This irradiator contained one sealed 137Cs source (effective energy

of 0.662 MeV) with nominal activity of 53.7 TBq (1,450 Ci), inside

of a steel-encased lead shield, able to deliver up to 5.0 Gy per

minute at the canister central plane, for default rotation rates

(approximately 30 cycles per minute). The blood irradiator

dosimetry setup consisted of two different radiation phantoms

proposed here.

Since blood and blood components are usually chilled or frozen,

standard and modified FXG dosimeters were used for different

irradiation temperatures, employing the 60Co teletherapy unit and

a water phantom, maintained at the desired temperature (3 and

2361uC were evaluated). FXG samples were located inside

1.061.064.5 cm3 acrylic cuvettes (PlastibrandTM, Sigma-Aldrich,

Missouri, USA), which were positioned 0.5 cm under the water

surface, in accordance with IAEA build-up procedures [93]. The

dosimeters were isolated from water by a thin PVC plastic film, in

order to avoid possible contamination.

FXG Dosimeter System
The modified FXG recipe was prepared considering

124.38 mM of porcine skin gelatin (270 Bloom, Gelnex, Santa

Catarina, Brazil), 0.63 mM of ferrous ammonium sulphate

hexahydrate (Merck, Darmstadt, Germany), 0.20 mM of Xylenol

Orange, XO, (Merck, Darmstadt, Germany), 48.78 mM of

sulphuric acid (J.T. Baker, New Jersey, USA), 0.63 mM of sodium

chloride (Sigma-Aldrich, Missouri, USA) and Milli-Q water

(Millipore, Massachusetts, USA). Owing to its convenient melting

point (40uC, approximately) and visible light transparency, porcine

skin gelatin was chosen as the matrix gel. Ferrous ammonium

sulphate is the crucial component of the FXG dosimeter because

its oxidation (transformation from Fe+2 ions to Fe+3 ones) is

proportional to the absorbed dose in the irradiated dosimeter.

These chemical changes produce a visible light spectral band due

to XO, a metal ion salt indicator, which bonds only to the Fe+3

ions. The FXG induced absorbance after a radiation exposure

allows the use of optical techniques, such as spectrophotometry

and the CCD system described here. In order to prevent

immediate aggregation between XO and naturally oxidized Fe+3

ions, sulphuric acid is necessary to reduce the solution pH. Sodium

chloride was added to the modified solution to minimize influences

from organic impurities and to increase the system reproducibility.

In this research, we studied solutions with pH between 1.0 and

2.5 and XO concentrations between 0.05 and 0.25 mM, in order

to reach an adequate FXG recipe for blood irradiation, which is

stated hereafter. Considering the modified FXG dosimeter and

100.0 ml of Milli-Q water, dissolve 5.0058 g of gelatin and

0.0037 g of sodium chloride in 75.0 ml of water. Heat the mixture

up to 45uC and continuously stir until a clear solution is obtained.

Then, dissolve 0.0152 g of XO in 26.0 ml of sulphuric acid and

add 12.5 ml of water to this solution. Finally, dissolve 0.0196 g of

ferrous ammonium sulphate hexahydrate in the remaining

12.5 ml of water and add the last two solutions to the warm

gelatin one. After thorough mixing, fill the appropriate cuvettes for

the desired application and cool to obtain a consistent gelatin.

Analysis depends on the fact that, after ionizing radiation

exposure, the XO molecules bond 1:1 with Fe+3 ions, which result

in dyed regions with Optical Densities (ODs) directly proportional

to the absorbed dose at every point in the volume. The pre- and

New Blood Irradiation Dosimetric System
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post-irradiation images were registered with a CCD image system

using a 24 mm focal length, a f/18 aperture and a shutter speed of

1/100 [86–90]. Later, both images were superimposed and the OD

variations were processed by a MATLAB
H (MathWorks, Massachu-

setts, USA) computational routine, considering the red and green

channels for the modified FXG and film, respectively. We used the

following expression:

OD(x,y)~log
I0(x,y)

I(x,y)

� �
, ð1Þ

where OD(x,y) is the optical density of the pixel at (x, y), i.e., the OD

of the xth line crossing the yth column of the acquired image. The

quantities I0 (x,y) and I(x,y) are the color levels of the (xth, yth) pixel

corresponding to the pre- and post-irradiation samples, respec-

tively. Thereby, it was possible to establish a relationship between

the absorbed dose and the generated OD for any radiochromic

dosimeters, such as FXG and film. Additionally, a spectropho-

tometer (UltrospecTM 6300, General Electric Co., Buckingham-

shire, England) was used to compare the absorbance responses

between the standard and the modified FXG dosimeters, selecting

the 585 nm spectral band and computing the quantity:

DA~A{A0, ð2Þ

in which DA is the absorbance difference between irradiated, A,

and non-irradiated, A0, samples.

Dosimetry of the Blood Irradiator
Two-dimensional maps, i.e., the absorbed dose spatial distribu-

tions, were determined considering a completely filled canister

with blood phantoms composed of water or appropriate plastic

materials, such as polystyrene or acrylic [41,45,94]. The dosim-

eters and their corresponding phantoms were positioned inside the

blood irradiator canister and irradiated for 1.0 minute. Analysis

used the mirrored middle plane dose distributions of the canister,

which were plotted as isodose curves.

A dedicated FXG phantom was constructed for the blood

irradiator dosimetry. In this phantom, the FXG dosimeter was

placed in a cubic cuvette (12.4619.461.0 cm3), surrounded by

two semi-cylindrical cuvettes filled with water, as shown in

Figures 1A and B. These cuvettes were manufactured with

2.0 mm-thick walls for adequate 137Cs build-up purposes [95].

The phantom geometry was chosen to match that of the canister

and simultaneously allow acquisition of the absorbed dose

distributions in the central middle plane of the volume.

The same acrylic phantom employed with the FXG dosimeter

(Figure 1) was used to perform the blood irradiator dosimetry with

film. Thus, a 12.4619.4 cm2 film sheet was inserted between the

cubic and one of the semi-cylindrical water filled cuvettes. Film

determined absorbed dose distributions were evaluated consider-

ing the same parameters as those applied for FXG dosimetry, i.e.,

absorbed doses were determined by the Optical Density method

described earlier and mirrored isodose curves were used to

represent dose distributions at the central middle plane of the

phantom.

A cylindrical homogeneous clear polystyrene phantom was also

manufactured, with size and shape matching those of the canister,

to measure absorbed doses with TLDs. Clear polystyrene plaques

were cut in accordance with the canister dimensions and attached

face to face with screws of the same material. Absorbed doses

along the central plane of the phantom were measured using three

TLDs per cavity, diametrically distributed along some plates

(Figure 2). After aligning the plates, the TLD-loaded phantom was

positioned inside the blood irradiator canister and then irradiated

for 1.0 minute. TLDs were previously annealed according to the

manufacturer recommendations, i.e., 1 h at 400uC followed by

2 h at 100uC. Dose readings were obtained with a Harshaw reader

Figure 1. The FXG dosimetric phantom assembly used in the
blood irradiator. (A) shows a central cubic dosimeter cuvette filled
with the dosimeter and surrounded by two semi-cylindrical water
phantoms. (B) shows the mounted FXG phantom.
doi:10.1371/journal.pone.0065334.g001
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(2000-B/2000-C, Thermo Fisher Scientific Inc., Massachusetts,

USA) and a cubic spline interpolation technique was used to

represent dose distribution along the central plane of the phantom.

Statistical Analysis
In our study, we considered ten replicated batches for each

delivered dose, which ranged from 0 up to 54 Gy. In order to

represent the results obtained here, statistical analyses were

performed considering averages and standard deviations. The

combined standard uncertainty was calculated according to the

method stated in the Guide to the Expression of Uncertainty in

Measurements [96] and in the ISO/EASTM Estimating Uncer-

tainty in Dosimetry for Radiation Processing [97].

Results

Calibration
Dosimetry of the 60Co beam was performed inside a water tank

with an ionization chamber using a 10610 cm2 field size, at 80 cm

source-to-dosimeter surface distance [93]. The ionization chamber

yielded a dose rate of 0.95 Gy per minute, with an uncertainty of

less than 3%. For the same irradiation setup, the dose rate

measurements were 0.94 Gy per minute with TLD, 0.93 Gy per

minute with film and 0.91 Gy per minute with the standard FXG,

all uncertainties lower than 5%. The dose rate measured with our

modified FXG was 0.97 Gy per minute, with an uncertainty of

4%.

Dose Response and Relative Sensitivity of the Modified
FXG Dosimeter

In a dark and temperature controlled (561uC) environment,

absorbances were found to fade exponentially with time after

irradiation for the standard FXG, while the modified dosimeter

showed no significant fading effects in the first 24 h (Figure 3).

After the first day of irradiation, the modified FXG dosimeter

showed a smooth linear fading, which persisted during five days of

storage.

Figure 4A presents the standard and the modified FXG

determined absorbed doses up to 54 Gy, using a spectrophotom-

eter to select the 585 nm absorbance band. The standard

dosimeter saturated for doses higher than 40 Gy, while our

modified FXG was linear through the full dose range, with linear

correlation coefficient (r2) better than 0.995. An absorbed dose

resolution of 0.2 Gy was attained with this setup. Figure 4B

presents the OD responses for the CCD optical-based technique,

compared with those measured by the spectrophotometer. The

results are in agreement with those acquired by the previous

technique, i.e., the standard FXG dosimeter saturates for higher

absorbed doses, while the modified one is linear over the whole

range (r2 = 0.997). For this analysis technique, a maximum

absorbed dose resolution of 0.5 Gy was attained.

The standard FXG dosimeter showed a sensitivity variation of

0.1360.01% per uC for the spectrophotometric data and of

0.2160.02% per uC for the CCD measurements. In contrast, for

the same temperature range, we observed no significant depen-

dencies for the modified FXG dosimeter.

Dosimetry of the Blood Irradiator Unit
The modified FXG and the film dosimeters were used in

combination with the water phantoms (Figure 1) and measured by

the OD method, while TLDs were used in combination with the

clear polystyrene phantom (Figure 2) and measured by the

Harshaw reader. The 137Cs blood irradiator central dose rates

measured with the modified FXG, film and TLDs dosimeters

Figure 2. Clear polystyrene phantom employed in blood
irradiation thermoluminescence dosimetry (TLD). Arrows show
some cavities where TLD dosimeters were allocated.
doi:10.1371/journal.pone.0065334.g002

Figure 3. Relative sensitivities for the standard (D) and for the
modified (0) FXG dosimeters versus time after irradiation.
Irradiations were performed considering a known 60Co therapy field.
doi:10.1371/journal.pone.0065334.g003
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resulted in 5.41, 5.49, and 5.41 Gy per minute, respectively. The

dose rate uncertainties associated with TLD and film dosimeters

were lower than 3.5%, while the modified FXG dosimeter

presented an uncertainty lower than 4.5%.

Figure 5 presents the dose distributions at the central middle

plane of the phantoms, in 10% step isodose curves and a color

scale. The modified FXG (Figure 5A), the film (Figure 5B) and the

TLDs (Figure 5C), show absorbed doses ranging from 74.263.7%

up to 138.364.4%, from 73.661.1% to 139.361.4% and from

77.760.9% to 137.962.8%, respectively.

Discussion

Ionization chambers present high accuracy (,3%) and are

employed as reference dosimeters by many protocols

[60,93,98,99]. For this reason, we used an ionization chamber

as a reference dosimeter to calibrate the modified FXG dosimeter

proposed here. According to the literature, film and LiF-100

Figure 4. Calibration curves obtained for the standard (D) and
the modified (0) FXG dosimeters. (A) presents the spectrophotom-
eter absorbance variations, while (B) presents the CCD ODs.
doi:10.1371/journal.pone.0065334.g004
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dosimeters also present appropriate features for dosimetric

purposes [100–103]. For these reasons, we also selected these

dosimeters to validate the modified FXG dosimeter when the

blood irradiator was used. Although the standard FXG can also be

used for this purpose, saturation effects for doses higher than

40 Gy are the main limitations for its use for blood irradiation. As

seen in the calibration results, the dose and dose rate values

obtained by the modified FXG dosimeter and those obtained by

the ionization chamber were not significantly different. In the

same manner, the dose rate associated with the 137Cs blood

irradiator determined by the modified FXG dosimeter was not

significantly different than those obtained by the standard FXG,

film and TLD dosimeters.

FXG is a spectrophotometrically feasible gel matrix [67], which

allows optical-based techniques to be applied for data acquisition.

Beyond that, the FXG dosimeter response presents low depen-

dence for energies up to 1.25 MeV [104], which avoids the

correction factors necessary when this dependence is not

negligible. Additionally, the porcine skin gelatin preserves the

spatial absorbed dose distribution integrity of the irradiated sample

and reduces ions diffusion after exposure. Furthermore, this

gelatin is chosen as the gelling agent because it helps to maintain a

low FXG effective atomic number (3.35 at 1 MeV) [105] and an

adequate mass density (1.05 g per cm3), which are similar to those

of whole blood (3.45 and 1.06 g per cm3, respectively) [106,107].

Lastly, this gelatin also provides two important features, a

reasonable melting point (40uC, approximately), which facilitates

preparation, and lower costs than other polymers. For all these

reasons, we have developed this dosimeter to optimize its

sensitivity, stability and linearity in dose response over the entire

dose range used in blood irradiation, besides proposing an

appropriate phantom for dosimetric measurements.

According to our findings, we observed a well stabilized relation

between the FXG dose response and its pH (non-published data).

The pH controls the chemical equilibrium of water radiolysis and

consequently the rate associated with the production of free

radicals. A higher pH value (.2.0), i.e., more alkaline solution,

promotes premature Fe+2 oxidation, which leads to early

saturations of the FXG response (&30240 Gy) and reduction

on its linearity (r2,0.985). In contrast, a lower pH (,1.8) seems to

decrease the free radicals production rate and to increase the

linear dose response range. This feature is desirable since it allows

determination of doses as high as 50 Gy, currently recommended

by the guidelines [51–56]. This low pH range also results in higher

values of linear correlation factors associated to the FXG response

(r2.0.995), which allows one to acquire information from the

response-curve in an effortless way. However, for very low pH

values (,1.3), XO2Fe+3 can dissociate and data related to dose

may be lost. Porcine gelatin structure appeared not to be affected

by the pH values investigated (1.0 up to 2.5).

Another important issue concerning the FXG dosimeter is the

relation between the solution acidity and its sensitivity. Consid-

ering the pH range used here, we observed that the sensitivity

associated with the solution was maintained constant

(&0.070 Gy21cm21) for pH values higher than 2.0, while it

decreased when the pH was reduced. Due to oxygen atoms

dissolved in the FXG solution, ferrous ions, Fe+2, are naturally

oxidized into ferric ones, Fe+3, which diffuse through the solution.

Both effects can be reduced when the solution pH is lowered,

although they continue to occur with time. We observed that a pH

value of 1.6 presents reduced natural oxidation and diffusion

effects. For these reasons, we propose a FXG recipe with a pH

value of 1.6.

We noted that higher Xylenol Orange concentrations yielded

wide linear dose ranges and decreased diffusion effects. As stated

earlier, XO bond to Fe+3 ions in a 1:1 ratio. Although the standard

FXG recipe presents a ferrous concentration able to provide

responses for doses as high as 100 Gy, its XO concentration does

not obey the referred ratio. In fact, similar to the dosimeter pH,

the standard XO concentration also contributes to the FXG

saturation effects for doses at 30240 Gy. For a 0.20 mM XO

concentration, we obtained adequate linearity for doses up to

54 Gy and reported no significant sensitivity dependence. In this

sense, considering the FXG optical response and its corresponding

linearity, we propose a FXG recipe with a XO concentration of

0.20 mM.

Sodium chloride aims to control the radiolysis chain reaction,

which is initiated in the solution by ionizing radiation. This occurs

since Cl atoms prefer to oxidize ferrous ions rather than producing

peroxides that accelerate the radiolysis process. We observed

better FXG repeatability responses (,3.5%) for a 0.63 mM

sodium chloride concentration and lower fading effects when

compared to the standard FXG dosimeter. Adequate repeatability

and fading are important features for any dosimetric instrument

that is intended to provide reliable measurements in a quality

control program.

According to our study, the standard FXG response showed a

dependence on temperature of 0.1360.01% per uC, for 3 up to

2361uC, in agreement (,8%) with results available in literature

[108–110]. On the other hand, dependence on temperature

showed by the modified FXG dosimeter was not significant.

Therefore, the modified FXG is a preferred dosimeter when

longer times, such as those for teletherapy blood irradiations

(.30 min), are required.

Usually, FXG samples are analyzed at 585 nm in a spectro-

photometer. In this study, we used a CCD system in order to

better investigate the proprieties related to the FXG dosimeter.

The CCD system used in this study allowed us to use three

different primary reading channels, namely Red (R), Green (G)

and Blue (B). We observed that the red and the green channels

presented optimum readings for the FXG and film dosimeters,

respectively, when linearity was considered, allied with acceptable

sensitivity responses. According to the results obtained here, the

CCD resolution in dose was almost 50% lower than that of the

spectrophotometer one. However, the linearity responses for both

techniques were similar (r2 = 0.995 for the spectrophotometer and

r2 = 0.997 for the CCD system). While the spectrophotometer is

recommended when a higher accuracy in dose is desirable, the

CCD system provided adequate linear responses for the FXG

dosimeters, as well as high spatial resolutions (,0.5 mm) [90],

being completely acceptable for blood dosimetry purposes.

Although blood irradiation has been suggested since 1970s

[111] and associated quality control for blood products is well

established among different agencies [51–53,55,56], limited

attention has been given to the dosimetric aspects of this practice.

Qualitatively, there are blood irradiation indicators, used routine-

ly, which only state whether or not the blood bag was irradiated.

Different quantitative dosimetric tools have been studied for blood

dosimetry in recent years: thermoluminescent dosimetry (TLD)

[94,112,113], Fricke solution [112], radiochromic film [114],

colorimetric dosimetry [115] and solid state dosimetry, including

methacrylate polymers (red perspex) [94], alanine [94,116–118],

mosfet [41] and diodes [119]. A quantitative method is

Figure 5. Isodose curves inferred at the canister central plane.
Irradiations were performed at the blood irradiator considering (A) the
modified FXG,(B) the film and (C) the TLD dosimeters.
doi:10.1371/journal.pone.0065334.g005
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commercially available for blood irradiators dosimetry (DOSE-

MAP
TM/Ashland Inc., Covington, Kentucky, USA). However,

data need to be mailed to the manufacturer for dosimetric results,

not at all desirable for quality control.

The blood dosimetric methods employed used phantoms made

of acrylic, water and clear polystyrene (Figures 1 and 2), easily

found materials. Simultaneously, they provide similar mass

attenuation coefficients to those of whole blood in the appropriate

radiation energy range (&2.0%; ,1.0% and ,2.5%, respectively)

[120], in accordance with ionizing radiation protocols [121].

Moreover, acrylic and clear polystyrene do not need highly

specialized equipment to be machined and are relatively

inexpensive. In fact, the proposed dosimetric phantoms can be

readily employed in any blood bank quality assurance program.

The isodose curves obtained with FXG, film and TLD

dosimeters were similar (Figure 5). The maximum difference in

dose observed among the dosimeters was 4%. Despite spatial

resolutions of these dosimeters are slightly different, those

differences are not relevant in comparison to the minimum and

maximum recommended doses. Although the TLD normalized

absorbed dose distribution was similar to the other dosimeters, its

spatial resolution was lower, because TLD dosimetry is commonly

accomplished through individual TLD dosimeters, meaning that

discrete readings need to be acquired and later interpolated. Each

dosimeter presented reasonable homogeneous regions at the

central irradiation area, due to continuous rotation of the canister,

and a highest isodose percentage values at the lower mid point of

the irradiated volume. Those dose values were presumed to be

related both to photon scattering and source alignment. Since the

canister top is without a cap, irradiations were not vertically

symmetric. However, the energy imparted by the 137Cs photons to

the phantom was relatively low (0.662 MeV) and indicates that

scattering was not the major contributor to the reported results.

Thus, data suggest that the 137Cs source or, at least, the

radioactive volume of the source may be misaligned from the

vertical center. Nevertheless, even if the available blood irradiator

presents a displaced source, the FXG, film and TLD percentage

dose distributions indicate that it is still able to irradiate blood at

acceptable homogeneity levels.

As recommended by different international guides [51–56],

blood is currently irradiated from 25 up to 50 Gy to prevent TA-

GVHD. According to our findings, the modified FXG dosimeter

provides feasible and linear responses for blood irradiation

applications in this absorbed dose range. In addition to dose rate

and dose distribution measurements, the proposed FXG dosimet-

ric system can be used by the blood bank staff for a quality

assurance method for blood irradiation. In summary, it has been

shown that the modified FXG dosimetric system proposed here

presents appropriate features for quality assurance control in the

clinical environment.
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