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Abstract

Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols,
attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis
(MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal
toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA
treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation
(OXPHOS) protein ATP synthase-b (AS-b) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH
dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by
78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS
protein, in tubular cells. Peroxisome proliferator-activated receptor-c coactivator (PGC)-1a, the master regulator of MB, and
mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription,
were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate
suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-b, ND3, COX-IV,
mtDNA copy number, PGC-1a mRNA and protein, decreased acetylated PGC-1a, and increased Tfam mRNA and protein. In
association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal
tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin
expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury
and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate CsA-induced
kidney injury, at least in part, through the stimulation of MB.
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Introduction

Cyclosporin A (CsA) is an important immunosuppressive agent.

Even with the development of new immunosuppressants, CsA is

still widely used after organ transplantation and for treatment of

autoimmune diseases [1–3]. Immunosuppressive therapy with CsA

is always long-term and results in a number of side effects, the most

frequent and severe being nephrotoxicity (e.g. renal dysfunction in

up to 30% of patients) [4–7].

The mechanisms by which CsA causes nephrotoxicity are not

well understood but are thought in part due to calcineurin

inhibition [8]. CsA causes acute reversible nephrotoxicity as well

as chronic, irreversible nephrotoxicity [7]. Acute CsA renal

toxicity is linked to increased renal vascular resistance due to

increased vasoconstrictors, decreased vasodilators, activation of

renal nerves, and mesangial cell contraction, hypoxia/reperfusion

(I/R) and free radical production [5,7,9–13]. Upregulation of toll-

like receptors (TLR) and TNF-a is also involved in CsA

nephrotoxicity [14]. Chronic CsA causes decreases of glomerular

filtration rates, tubulointerstitial injury, apoptosis, tubular micro-

calcification, arteriolar hyalinosis, fibrosis, and focal glomerular

sclerosis [7]. Mechanisms of CsA chronic damage are less clear

compared to the acute nephrotoxicity [7]. Cyclosporine A also

upregulates TGF-b expression [15].

Energy supply is essential for cell survival and function.

Mitochondrial dysfunction is a common cause of drug/toxicant-
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induced organ injury and CsA has profound effects on mitochon-

dria. At low concentrations/doses, CsA inhibits the opening of the

mitochondrial permeability transition (MPT) pores by binding to

cyclophilin D in the matrix and the inner membrane of

mitochondria, protecting against I/R injury [16–18]. However,

at high concentrations/doses, CsA inhibits mitochondrial respira-

tion and decreases ATP production in vivo and in vitro [19–21].

It is suspected that poor adaptation to altered mitochondrial

energy metabolism is linked to organ vulnerability to CsA toxicity

[19]. Mitochondrial biogenesis (MB) is an important adaptation,

counteracting mitochondrial dysfunction/toxicity. Calcineurin

plays an important role in the expression of peroxisome

proliferator-activated receptor-c coactivator (PGC)-1a [22–24],

the master regulator of MB. Whereas CsA is a potent calcineurin

inhibitor. it is possible that CsA suppresses MB to induce

nephrotoxicity.

Green tea polyphenols are free radical and singlet oxygen

scavengers. Beneficial effects of green tea polyphenols in the

prevention/treatment of cardiovascular, hepatic, renal, neural,

pulmonary and intestinal diseases, cancer, diabetes, arthritis,

shock, and decreases in ischemia/reperfusion injury and drug/

chemical toxicity in various organs/tissues have been widely

reported and many of these effects are presumably due to their

antioxidant and anti-inflammatory properties [25–40]. Our

previous study showed that a Camellia sinenesis (green tea) extract,

which contains high levels of plant polyphenols (e.g. epigalloca-

techin gallate, epigallocatechin, epicatechin, and catechin), atten-

uated CsA nephrotoxicity, in part, by scavenging free radicals

[31]. Recent studies showed that isoflavones are effective MB

stimulators and improve mitochondrial function after renal I/R

injury, diabetes, chronic heart failure, and aging [41–45].

Stimulation of MB increases mitochondrial proteins and mass,

improves function, and is an attractive strategy for promoting cell

repair and regeneration, preserving organ function and treating a

number of pathologies resulting from damage/inhibition of

mitochondrial function [42–50]. Thus, this study was designed

to explore the effects of green tea polyphenols on renal MB after

chronic CsA treatment.

Materials and Methods

Cyclosporin A and Polyphenol Treatments
CsA (Sandimmune oral solution) was obtained from Novartis

(Basel, Switzerland). Green tea extracts, produced by Taiyo

Kagaku Co. (Yokkaichi, Mie, Japan), contained 85% polyphenols

by weight. Components of polyphenols in the extract was

determined by high performance liquid chromatography (HPLC)

as described previously [31] and included epigallocatechin gallate

(47.2% of total polyphenols), epigallocatechin (11.0%), galloca-

techin gallate (11.0%), epicatechin gallate (10.8%), gallocatechin

(8.6%), epicatechin (8.4%), and catechin (3.0%).

Male Sprague-Dawley rats (200–250 g) were fed a semi-

synthetic powdered diet (AIN 76, Dyets Inc. Bethlehem, PA)

containing 0% or 0.1% green tea polyphenolic extract starting 3

days prior to and lasting throughout CsA or vehicle treatment.

Previous studies showed that 0.1% green tea extract in the diet

blunted CsA renal toxicity, hepatic I/R injury, cholestatic liver

fibrosis and inhibited development of renal cell tumors in rats

[29,31,40,51]. Daily food consumption was not different between

the groups with or without green tea polyphenolic extract

addition. Average polyphenolic extract intake calculated by the

daily food consumption and polyphenolic content in the diet was

,80 mg/kg/day. CsA oral solution or its vehicle (Cremophor EL

20 mg/ml in 12.5% dehydrated alcohol) was further diluted in

olive oil. Previous studies have shown that higher doses of CsA are

required in rats to cause renal damages that are similar to the

damages observed in humans [6,11,12]. Therefore, CsA (25 mg/

kg, 0.25 mL/100 g body weight) or an equivalent volume of

vehicles was gavaged daily for 21 days.

Serum Creatinine, Renal Histology and
Immunohistological Staining

At 21 days after CsA treatment, rats were anesthetized with

pentobarbital (50 mg/kg, i.p), and blood was collected from the

vena cava. Serum creatinine was determined using a kit from

Sigma-Aldrich Co. (St. Louis, MO). The left kidney was rinsed

with 5 ml normal saline, perfusion-fixed with 10% formaldehyde

in phosphate buffered saline, then removed and placed in the same

fixative for 48 h. Sections were stained with hematoxylin-eosin

(H&E) and analyzed microscopically for pathological changes.

Apoptosis was assessed by terminal deoxynucleotidyl transferase

dUTP nick-end labeling (TUNEL) using an in situ cell death

detection kit from Roche Diagnostics (Penzberg, Germany) [52].

Tubules in the cortex with and without injury (vacuolization, loss

of brush border, dilatation, necrosis, atrophy, and calcification),

leukocytes, and TUNEL-positive cells were counted in a blinded

manner in 10 randomly selected fields per slide under a Nikon

Optiphot-2 microscope (Nikon Instruments Inc., Melville, NY)

using a 40x objective lens after H&E and TUNEL staining,

respectively. Renal fibrosis was detected using the Masson’s

Trichrome staining. Immunohistological staining of cytochrome c

oxidase subunit IV (COX-IV), a nuclear DNA (nDNA)-encoded

mitochondrial oxidative phosphorylation (OXPHOS) protein, was

performed as described elsewhere [53] using a specific antibody

against COX-IV at a dilution of 1:200.

Detection of Mitochondrial DNA (mtDNA) Copy Number,
ATP Synthase-b (AS-b), NADH Dehydrogenase-3 (ND3),
PGC-1a, and Mitochondrial Transcription Factor A (Tfam)
mRNAs by Quantitative Real-time PCR (qPCR)

Relative quantities of mtDNA content in the kidney were

determined using qPCR [46]. Total genomic DNA was extracted

using a DNeasy Blood and Tissue kit (Qiagen, Valencia, CA).

Mitochondrial DNA copy number was assessed by quantification

of mtDNA-encoded NADH dehydrogenase-1 (ND1) gene using a

CFX96 Real Time-PCR Detection System (Bio-Rad, Hercules,

CA) and normalized against the nuclear-encoded POU class 5

homeobox 1 (Pou5f1) gene. Primer sequences used are listed in

Table 1.

Quantitative real-time PCR of mRNAs was performed as

described elsewhere [54]. After total RNA isolation from kidney

tissue with Trizol (Invitrogen, Grand Island, NY), single stranded

cDNAs were synthesized from RNA (2 mg) using a Bio-Rad iScript

cDNA Synthesis kit (Bio-Rad, Hercules, CA). Quantitative real-

time PCR was conducted using the primer sequences in Table 1.

The abundance of mRNAs was normalized against hypoxanthine

phospho-ribosyl-transferase (HPRT) using the DDCt method.

Immunoprecipitation of PGC-1a
Immunoprecipitation was performed as described elsewhere

[55]. Kidneys were homogenized and extracted in ice-cold lysing

buffer. Immunoprecipitations were carried out with protein lysate

(500 mg protein as determined by the Bradford assay) and PGC-1a
antibody (5 mg) using a Catch and Release v2.0 Reversible

Immunoprecipitation System (Millipore, Billerica, MA). Protein

content in the immunoprecipitates was determined by the

Bradford assay. Acetylated lysine residues and PGC-1a were
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determined by immunoblotting [54] using corresponding specific

antibodies (Cell Signaling Technology, Danvers, MA and Santa

Cruz Biotech., Santa Cruz, CA, respectively).

Immunoblotting
Proteins in renal tissue extracts were detected by immunoblot

analysis as previously described [54] using primary antibodies

specific for AS-b, neutrophil gelatinase-associated lipocalin

(NGAL), Tfam (GenWay Biotech, San Diego, CA), cleaved

caspase-3 (Cell Signaling Technology, Danvers, MA), ND3 and

PGC-1a (Santa Cruz Biotech., Santa Cruz, CA) at concentrations

of 1:100 to 1000, and actin (ICN, Costa Mesa, CA) at a

concentration of 1:3000 at 4uC over night, respectively. Horse-

radish peroxidase-conjugated secondary antibodies were applied

afterwards, and detection was by chemiluminescence (Pierce

Biotec., Rockford, IL).

Statistical Analysis
Groups were compared using ANOVA plus a Student-New-

man-Keuls posthoc test. There were 4 rats per group for all

parameters. Data shown are means6S.E.M. Differences were

considered significant at p,0.05.

Ethics Statement
All animals were given humane care in compliance with

institutional guidelines using protocols approved by the Institu-

tional Animal Care and Use Committee of the University of North

Carolina. All surgery was performed under sodium pentobarbital

anesthesia (50 mg/kg, i.p.).

Results

CsA Decreases mtDNA Copy Number in the Kidney:
Reversal by Green Tea Polyphenols

CsA treatment causes changes in high-energy phosphate

homeostasis in tissues [19–21]. Mitochondrial DNA is responsible

for synthesis of crucial mitochondrial OXPHOS proteins, and

proper function of mitochondrial respiration requires an adequate

copy number of mtDNA per cell [49,56]. Therefore, we examined

the alterations in mtDNA in the kidney after vehicle and CsA

treatment. Renal mtDNA copy number decreased by 78% after

chronic CsA treatment (Fig. 1). Polyphenols increased mtDNA

copy number by 19% in rats treated with the vehicle and

recovered mtDNA copy number to ,90% of control levels after

chronic CsA treatment (Fig. 1).

CsA Decreases Mitochondrial OXPHOS Proteins in the
Kidney: Reversal by Green Tea Polyphenols

The majority of mitochondrial proteins are encoded by nuclear

DNA (nDNA) [56,57]. We examined a subunit of F0F1ATPase,

AS-b, that is encoded by nDNA after chronic CsA treatment. CsA

decreased AS-b by 48% (Fig. 2A,B). Polyphenols increased AS-b
15% above control levels in the kidneys from vehicle-treated rats

and recovered AS-b to ,91% of control levels in the kidneys from

CsA-treated rats. ND3, a mtDNA-encoded mitochondrial OX-

PHOS protein, decreased 88% after chronic CsA treatment

(Fig. 2A,C). Polyphenols increased ND3 to 31% above control

levels in the kidneys of vehicle-treated rats and recovered ND3 to

61% of control levels in the kidneys of CsA-treated rats (Fig. 2A,C).

Expression of COX-IV, a nDNA-encoded mitochondrial

OXPHOS protein, was observed in various renal cells by

immunohistochemical staining (Fig. 2D). In control rats,

immunoreactivity of COX-IV was localized throughout the

tubular cells in kidney cortex and the medulla, particularly in

the proximal tubules. COX-IV staining in tubular cells was

punctate, consistent with mitochondrial localization. In contrast,

immunoreactivity of COX-IV was low in glomeruli (data not

shown). After CsA treatment, COX-IV immunoreactivity

decreased substantially in tubular cells in the cortex and

Table 1. Real-Time PCR Primers.

DNAs/mRNAs Primers

AS-b Forward: 59- TTG CTG AGG TCT TCA CAG GTC ACA-
39

Reverse: 59- CAG CCT TTG CCA CAG CTT CTT CAA-39

ND1 Forward: 59- TTA ATT GCC ATG GCC TTC CTC ACC-39

Reverse: 59- TGG TTA GAG GGC GTA TGG GTT CTT-
39

ND3 Forward: 59- CAA CAA GTT CTG CAC GCC TTC CTT-39

Reverse: 59- TTG TTT GAA TCG CTC ATG GGA GGG-
39

Tfam Forward: 59- GAT GAG TCA CCT CAA GGG AAA TTG-
39

Reverse: 59- GTC ATC TAG TAA AGC CCG GAA GGT-
39

Pou5f1 Forward: 59- AGG TGT TCA GCC AGA CAA CCA TCT-
39

Reverse: 59- TCT CGT TGT TGT CAG CTT CCT CCA-39

HPRT Forward 59- TCG AAG TGT TGG ATA CAG GCC AGA-
39

Reverse: 59-TAC TGG CCA CAT CAA CAG GAC TCT-39

AS-b, ATP synthase-b; ND1, NADH dehydrogenase-1; ND3, NADH
dehydrogenase-3; Tfam, mitochondrial transcription factor-A; Pou5f1, POU class
5 homeobox 1; HPRT, hypoxanthine phospho-ribosyl-transferase.
doi:10.1371/journal.pone.0065029.t001

Figure 1. Decreases of mitochondrial DNA copy numbers by
cyclosporin A (CsA): reversal by green tea polyphenols. Rats
were fed semi-synthetic powdered diets containing 0% (control) or
0.1% polyphenol extracts (polyphenols) starting 3 days prior to CsA
treatment (25 mg/kg, i.g. for 3 weeks). Renal mitochondrial DNA copy
numbers were determined by qPCR. a, p,0.05 vs. control diet+vehicle;
b, p,0.05 vs. polyphenol-containing diet+vehicle; c, p,0.05 vs. control
diet+CsA (n = 4 per group).
doi:10.1371/journal.pone.0065029.g001
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medulla. Polyphenols increased COX-IV immunoreactivity in

tubular cells after CsA treatment.

CsA Decreases AS-b and ND3 mRNAs in the Kidney:
Recovery by Green Tea Polyphenols

Since AS-b and ND3 were decreased by CsA, we investigated

the mRNA levels of these proteins. AS-b mRNA decreased 55%

by CsA treatment (Fig. 3A). Polyphenols increased AS-b mRNA

22% above control levels in the kidneys of vehicle-treated rats and

recovered AS-b mRNA to 89% of control values in the kidneys of

CsA-treated rats. Renal ND3 mRNA was 64% lower in CsA-

treated rats compared to vehicle-treated rats (Fig. 3B). ND3

mRNA increased 21% in vehicle-treated rats and recovered to

,90% of control values in CsA-treated rats. Together, we suggest

that decreases in AS-b and ND3 proteins are due, at least in part,

to suppression of their mRNAs and these effects were reversed by

green tea polyphenols.

Green Tea Polyphenols Increase PGC-1a mRNA and
Activation after CsA Treatment

PGC-1a plays a key role in the control of MB and mtDNA

maintenance [58]. We investigated whether CsA alters PGC-1a
levels in the kidney. PGC-1a was 42% lower in the kidneys of

CsA-treated than vehicle-treated rats (Fig. 4A and B). Polyphe-

nols increased PGC-1a by 34% in the kidneys of vehicle-treated

rats and increased PGC-1a to control levels in the kidneys of

CsA-treated rats. We further examined whether polyphenols

increased PGC-1a mRNA. CsA decreased PGC-1a mRNA by

67% (Fig. 4C). Polyphenols slightly increased PGC-1a mRNA

in the kidneys of vehicle-treated rats and recovered PGC-1a
mRNA in the kidneys of CsA-treated rats to 87% of control

levels.

PGC-1a activity is higher after de-acetylation [46]. PGC-1a was

immunoprecipitated and acetylated lysine residues were detected

by immunoblotting (Fig. 5A and B). Acetylation of PGC-1a was

increased substantially after chronic CsA treatment and polyphe-

Figure 2. Decreases of mitochondrial oxidative phosphorylation proteins by CsA: reversal by green tea polyphenols. Rats were fed
semi-synthetic powdered diets containing 0% (Control) or 0.1% polyphenol extracts (Polyphenols) starting 3 days prior to CsA treatment (25 mg/
kg, i.g. for 3 weeks). Renal mitochondrial oxidative phosphorylation proteins ATP synthase-b (AS-b, 55 kDa) and NADH dehydrogenase-3 (ND3,
24 kDa) were determined by immunoblotting and representative images are shown in A. AS-b (B) and ND3 (C) were quantified by densitometry. a,
p,0.05 vs. control diet+vehicle; b, p,0.05 vs. polyphenol-containing diet+vehicle; c, p,0.05 vs. control diet+CsA (n = 4 per group). Cytochrome c
oxidase subunit IV was detected by immunohistochemistry (D). Representative images of 4 rats per group are shown.
doi:10.1371/journal.pone.0065029.g002
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nols decreased acetylation of PGC-1a, indicating enhanced PGC-

1a activation.

Green Tea Polyphenols Increase Tfam Synthesis after CsA
Treatment

Tfam is a transcription factor that regulates the replication

and transcription of the mitochondrial genome, thus playing a

critical role in controlling MB [59]. Tfam decreased by almost

90% after CsA treatment (Fig. 6A and B), consistent with

decreased mtDNA copy number and mtDNA-encoded ND3

transcription. Expression of Tfam is controlled by PGC-1a [59].

Consistent with decreased PGC-1a expression and activity,

Tfam mRNA also decreased after CsA treatment (Fig. 6C),

indicating suppressed Tfam transcription. Polyphenols elevated

renal Tfam mRNA and protein modestly in vehicle-treated rats

and largely reversed the decreases of renal Tfam mRNA and

protein in CsA-treated rats.

Green Tea Polyphenols Attenuate Kidney Injury and
Improve Kidney Function after CsA Treatment

Renal histology was examined after treatment with CsA for 3

weeks (Fig. 7). The kidneys of rats on the control and polyphenol

diets that received vehicle treatment exhibited normal histology (A

and B). CsA treatment caused a loss of brush border and dilatation

of proximal tubules (C), tubular atrophy (C and F), vacuolization

(E), calcification (G), cast formation, arteriolar hyalinosis (H) and

leukocyte infiltration, most overtly in the cortex, consistent with

previous reports [31,60]. Pathological changes occurred in 39% of

tubules in the cortex and leukocytes increased from 10/high power

field (hpf) to 66/hpf after CsA treatment (Fig. 8A,B). Polyphenols

decreased tubular injury after CsA treatment to 7% and leukocyte

to 25/hpf (Fig. 8 A,B).

Cleaved caspase-3 was barely detectable in the kidneys from

vehicle-treated rats with or without polyphenol treatment. CsA

increased cleaved caspase about 7-fold (Fig. 8C) and this effect was

largely blunted by polyphenols. TUNEL-positive cells in the cortex

were 0.5–0.8/hpf in vehicle-treated rats with or without polyphe-

nol treatment. TUNEL-positive cells increased to ,14/hpf after

CsA treatment in the absence of polyphenols and was decreased to

3/hpf in the presence of polyphenols (Fig. 8D). These data show

that CsA caused apoptosis and this effect was blunted by

polyphenols.

Renal fibrosis was revealed using Masson’s Trichrome staining

(Fig. 9). In the kidneys from vehicle-treated rats with or without

polyphenol treatment, Trichrome staining was rare in the

Figure 3. Decreases of ATP synthase-b and NADH dehydroge-
nase-3 mRNAs by CsA: reversal by green tea polyphenols. Rats
were fed semi-synthetic powdered diets containing 0% (Control) or
0.1% polyphenol extracts (Polyphenols) starting 3 days prior to CsA
treatment (25 mg/kg, i.g. for 3 weeks). Renal ATP synthase-b (AS-b) and
NADH dehydrogenase-3 (ND3) mRNAs determined by qPCR are shown
in A and B, respectively. a, p,0.05 vs. control diet+vehicle; b, p,0.05
vs. polyphenol-containing diet+vehicle; c, p,0.05 vs. control diet+CsA
(n = 4 per group).
doi:10.1371/journal.pone.0065029.g003

Figure 4. Suppression of peroxisome-proliferator-activated
receptor gamma coactivator-1a (PGC-1a) expression by CsA:
reversal by green tea polyphenols. Rats were fed semi-synthetic
powdered diets containing 0% (Control) or 0.1% polyphenol extracts
(Polyphenols) starting 3 days prior to CsA treatment (25 mg/kg, i.g.
for 3 weeks). Renal PGC-1a (90 kDa) and actin (43 kDa) were
determined by immunoblotting. Representative images are shown in
A and quantification by densitometry is shown in B. PGC-1a mRNA was
determined by qPCR (C). a, p,0.05 vs. control diet+vehicle; b, p,0.05
vs. polyphenol-containing diet+vehicle; c, p,0.05 vs. control diet+CsA
(n = 4 per group).
doi:10.1371/journal.pone.0065029.g004
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interstitium. A small amount of blue Trichrome staining appeared

in the brush borders, perhaps reflecting the microfilaments in the

microvilli of tubular cells. After CsA treatment, blue staining in the

brush borders of tubular cells disappeared and was replaced with

wide-spread interstitial fibrosis, most overtly in the cortex but also

observable in the medulla. Thickening of Bowman’s capsule also

occurred in some glomeruli. Renal fibrosis was blunted markedly

by polyphenols.

Neutrophil gelatinase-associated lipocalin (NGAL), a sensitive

marker of acute kidney injury and a potential indicator of chronic

kidney disease progression [61–64], was barely detectable in

vehicle-treated rats with or without polyphenol treatment. NGAL

increased by 5.5-fold after CsA treatment (Fig. 10 A and B). This

effect was blunted by polyphenols.

Serum creatinine was 0.47 mg/dL in vehicle-treated rats and

was not altered by polyphenols alone (Fig. 10C). After CsA

treatment, serum creatinine increased to 1.4 mg/dL and poly-

phenols decreased serum creatinine to 0.78 mg/dL in CsA-treated

rats. Together, CsA-induced pathological changes in the kidney

were consistent with tubulointerstitial injury and these effects were

markedly attenuated by polyphenols.

Discussion

Suppression of MB by CsA Treatment
The calcineurin inhibitor CsA is the basis for many immuno-

suppressive protocols, but its adverse effects (i.e. severe nephro-

toxicity) are a major barrier in long-term immunosuppressive

therapy [4,5,7]. The mechanisms of CsA nephrotoxicity are not

well understood. CsA at high concentrations inhibits respiration

and damages proteins and lipids in isolated mitochondria

[17,65,66]. After in vivo treatment CsA decreases ATP levels in

the rat kidney [19,21]. Decreased oxidative phosphorylation could

cause cell damage and inhibit renal function. Another important

side effect of CsA, neurotoxicity, is linked to decreased mitochon-

drial metabolism [20,67].

Mitochondrial homeostasis is crucial for maintaining proper

energy supply and function of tissues. The abundance of

mitochondria in a cell is determined by biogenesis, fission/fusion,

and mitophagy [56]. When increased tissue energy demand

exceeds mitochondrial ATP-producing capacity (e.g. exercise) or

replacement of damaged mitochondria is needed, MB is stimu-

lated. Mitochondria cannot be made de novo but require synthesis

of new organelle constituents and the integration of these

components (i.e., proteins and lipids) into preexisting mitochon-

dria. MB requires synthesis and import of nDNA-encoded

OXPHOS proteins (e.g. AS-b and COX-IV) into mitochondria

as well as expression of mtDNA-encoded OXPHOS proteins (e.g.

ND3) [56,68,69]. Suppression of MB could sensitize a tissue to

toxicants and diseases.

Figure 5. Suppression of peroxisome proliferator-activated
receptor gamma coactivator-1a (PGC-1a) activation by CsA:
reversal by green tea polyphenols. Rats were fed semi-synthetic
powdered diets containing 0% (Control) or 0.1% polyphenol extracts
(Polyphenols) starting 3 days prior to CsA treatment (25 mg/kg, i.g.
for 3 weeks). Renal PGC-1a was immunoprecipitated, equally loaded,
and acetylated lysine (Ac-Lys) and PGC-1a were determined by
immunoblotting. Representative images are shown in A and quantifi-
cation by densitometry is shown in B. a, p,0.05 vs. control diet+vehicle;
b, p,0.05 vs. polyphenol-containing diet+vehicle; c, p,0.05 vs. control
diet+CsA (n = 4 per group).
doi:10.1371/journal.pone.0065029.g005

Figure 6. Suppression of mitochondrial transcription factor A
(Tfam) expression by CsA: reversal by green tea polyphenols.
Rats were fed semi-synthetic powdered diets containing 0% (Control)
or 0.1% polyphenol extracts (Polyphenols) starting 3 days prior to CsA
treatment (25 mg/kg, i.g. for 3 weeks). Renal Tfam protein (30 kDa) was
determined by immunoblotting. Representative images are shown in A
and quantification by densitometry is shown in B. Tfam mRNA was
determined by qPCR (C). a, p,0.05 vs. control diet+vehicle; b, p,0.05
vs. polyphenol-containing diet+vehicle; c, p,0.05 vs. control diet+CsA
(n = 4 per group).
doi:10.1371/journal.pone.0065029.g006
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A previous study showed that low dose of CsA protected against

doxorubicin-induced heart dysfunction but did not alter MB [70].

In contrast, we observed that after chronic CsA treatment,

mtDNA copy number was decreased substantially (Fig. 1), which

was accompanied by a marked reduction in nDNA- and mtDNA-

encoded OXPHOS proteins and their associated mRNAs (Figs. 2–

3). Taken together, these data are consistent with the conclusion

that renal MB is suppressed after CsA treatment.

CsA Treatment Decreases PGC-1a Expression and Activity
MB is tightly regulated by a signaling system connecting

different pathways [49,71–74]. The transcriptional coactivators

(PGC-1a and b) and the PGC-1-related coactivator (PRC)

modulate the expression of target genes encoding OXPHOS

enzymes [58,75,76]. PGC-1a induces and coordinates expres-

sion of nuclear regulatory proteins (e.g. nuclear respiratory

factor (NRF)-1 and NRF-2) that activate target genes encoding

OXPHOS proteins, PGC-1a itself, and Tfam. Tfam is a

transcription factor that acts on the promoters within the non-

coding (D-loop) region of mtDNA and regulates the replication

and transcription of the mitochondrial genome [59,77]. Over-

expression of PGC-1a leads to mitochondrial proliferation in

the heart, adipocytes, myoblasts and renal proximal tubular cells

[47,50,76,78,79]. AMP-activated kinase (AMPK), sirtuin 1

(SIRT1), nitric oxide and cGMP, and other signaling kinases

(e.g. Ca2+/calmodulin-stimulated protein kinase (CaMK), p38

MAPK and protein kinase C) regulate PGC-1a expression and/

or activity [80–84].

Studies showed that calcineurin activation increases PGC-1a
gene transcription [22]. Also, over-expression of constitutively

active calcineurin in mouse skeletal muscle or cardiac myocytes

leads to increased expression of PGC-1a [23,24]. A coordinate

increase of PGC-1a and its downstream transcription factors as

well as gene expression of mitochondrial proteins were observed

in association with calcineurin activation in human muscle after

long term exercise [85]. PGC-1a and calcineurin activation also

Figure 7. Dietary polyphenols minimize CsA-induced pathological changes in the kidney. Rats were fed semi-synthetic powdered diets
containing 0% (Control) or 0.1% polyphenol extracts (Polyphenols) starting 3 days prior to CsA treatment (25 mg/kg, i.g. for 3 weeks).
Representative images of H&E-stained kidney sections are shown. A, control diet plus vehicle; B, 0.1% polyphenols plus vehicle; C, E, F, G, and H,
control diet plus CsA; D, polyphenols plus CsA. E, tubular cell vacuolization; F, tubular atrophy; G, calcification; H, arteriolar hyalinosis.
doi:10.1371/journal.pone.0065029.g007
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play an important role in MB in both healthy and diseased

human skeletal muscles [85,86]. Calcineurin stimulates members

of the myocyte enhancer factor 2 (MEF2) family of transcription

factors which bind to and activate the PGC-1a promoter and

enhance a positive feedback loop between PGC-1a and MEF2

in muscle [22,87]. In contrast, little is known concerning the

effects of calcineurin inhibition on MB and mitochondrial

homeostasis. In this study chronic exposure to CsA altered

PGC-1a signaling in the kidney by decreasing PGC-1a protein

and mRNA, and increasing PGC-1a acetylation (Figs. 4–5).

PGC-1a also controls the expression of Tfam and Tfam

decreased after CsA treatment (Fig. 6), consistent with decreased

mtDNA copy number and suppressed expression of mtDNA-

encoded ND3 (Figs. 1 and 3). In total, these data are consistent

with PGC-1a depletion mediated suppression of MB. Because

mitochondria are abundant in proximal tubular cells, decreases

in mitochondrial OXPHOS proteins and pathological changes

after CsA treatment were most overt in these cells (Figs. 2, 7

and 8).

Green Tea Polyphenols Enhance MB after CsA Treatment
Stimulation of MB could counteract disease- or toxicant-

induced mitochondrial suppression, enhance recovery of mito-

chondrial function, decrease tissue injury and promote tissue

repair and regeneration. Some natural and synthetic molecules

have been found to stimulate MB, such as small molecule SIRT1

activators, nitric oxide, isoflavones, b2-adrenergic receptor ago-

nists, AMPK activators, cAMP and cGMP analogues, and 1-(2,5-

dimethoxy-4-iodophenyl)-2-aminopropane [41,46,88–92]. Epica-

techin improves MB and attenuates mitochondrial dysfunction in

rodents and in patients with diabetes and chronic heart failure

[42,43]. Epicatechin also enhances fatigue resistance and oxidative

capacity in aged mouse muscle [44]. Here we investigated the

effect of green tea polyphenols, which was shown to protect against

CsA nephrotoxicity [31], on MB. Polyphenols increased molecules

regulating MB (PGC-1a, Tfam), mtDNA and OXPHOS proteins

in control and CsA-treated rats, and these effects were associated

with decreased kidney injury and improved renal function after

CsA treatment (Figs. 7, 8, 9, 10). Therefore, in addition to their

effects as antioxidants, green tea polyphenols may also protect

and/or promote renal function by stimulating MB.

Interestingly, in addition to increasing PGC-1a mRNA and

protein, polyphenols also increased PGC-1a activation as indicat-

ed by decreased acetylated PGC-1a (Fig. 5). This reduction in

acetylated PGC-1a was not due to decreased PGC-1a protein

since PGC-1a was equally loaded in the gels for immunoblotting

after immunoprecipitation. A similar effect was observed in

isoflavone-treated renal proximal tubular cells, isoflavones in-

creased activity and protein content of SIRT1, a member of the

histone deacetylase (HDAC) family [41]. Green tea polyphenol

epigallocatechin gallate also increases HDAC activity and HDAC-

2 expression in regulatory T cells [93]. Thus polyphenols may

Figure 8. Dietary polyphenols minimize CsA-induced tubular injury and leukocyte infiltration in the cortex. Rats were fed semi-
synthetic powdered diets containing 0% (Control) or 0.1% polyphenol extracts (Polyphenols) starting 3 days prior to CsA treatment (25 mg/kg, i.g.
for 3 weeks). Tubules with and without injury, leukocytes, and TUNEL-positive cells in the cortex were counted in a blinded manner in 10 randomly
selected fields per slide using a 40x objective lens after H&E and TUNEL staining, respectively. Percentages of tubules with injury are shown in A. The
average numbers of leukocytes and TUNEL-positive cells per high power field (hpf) are shown in B and D, respectively. Cleaved caspase-3 (CC3) in
kidney tissue was detected by immunoblotting (17 kDa) and quantified by densitometry (C). a, p,0.05 vs. control diet+vehicle; b, p,0.05 vs.
polyphenol-containing diet+vehicle; c, p,0.05 vs. control diet+CsA (n = 4 per group).
doi:10.1371/journal.pone.0065029.g008
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increase SIRT1 activity, decrease PGC-1a protein acetylation and

increase PGC1a transcription.

A recent study showed that green tea polyphenols can bind to

and stimulate a 67-kDa laminin receptor, leading to activation of

NADPH oxidase and generation of reactive oxygen species in

PC12 cells subjected to oxygen-glucose deprivation [94]. Red wine

polyphenols at a low concentration but not at a high concentration

stimulated MB and angiogenesis, and this effect depended on the

estrogen receptor-a activation [95]. However, it is unclear whether

estrogen receptor-a activation by red wine polyphenols is a direct

Figure 9. Dietary polyphenols attenuate CsA-induced renal fibrosis. Rats were fed semi-synthetic powdered diets containing 0% (Control)
or 0.1% polyphenol extracts (Polyphenols) starting 3 days prior to CsA treatment (25 mg/kg, i.g. for 3 weeks). Representative images of Trichrome-
stained kidney sections are shown. 1st row, control diet plus vehicle; 2nd row, 0.1% polyphenols plus vehicle; 3rd row, control diet plus CsA; 4th
row, polyphenols plus CsA (n = 4 per group).
doi:10.1371/journal.pone.0065029.g009
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or indirect effect. As discussed above, isoflavones have been shown

to increase SIRT1 activity and protein content and may induced

MB through this mechanism. In the present study, polyphenols

increased MB in tubular cells which originally have abundant

mitochondria but did not increase MB in glomeruli which have

lower levels of mitochondria, and this stimulation of MB depended

on the PGC-1a signaling pathway. Whether polyphenols act

directly or indirectly to increase MB and whether this stimulation

of MB requires binding of polyphenols to a specific receptor

remain to be investigated.

The green tea extract contains several polyphenols. The major

polyphenol in the extract was epigallocatechin gallate (,50%).

Our previous studies showed that epicatechin and epicatechin

gallate had similar protective effects on liver ischemia/reperfusion

injury and liver transplantation as green tea extracts containing

multiple polyphenol components [29,30]. In some other studies,

the relative activities of the various polyphenolic components to

inhibit oxidation and injury were variable [96]. It was also shown

that a combination of epigallocatechin gallate, epicatechin gallate,

epigallocatechin, and epicatechin in the molar ratio 5:2:2:1

provided optimal protective effects against lipid peroxidation

[97]. Studies should be performed in the future to evaluate the

efficacies of each polyphenolic component and various combina-

tions of polyphenols on MB in cultured renal cells and in vivo.

Conclusion
Taken together, MB is suppressed in the kidney after chronic

CsA treatment, which may contribute to the development of CsA

nephrotoxicity. Green tea polyphenols protect against CsA

nephrotoxicity, at least in part, by enhancing MB.
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