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Abstract

The problem of reconstruction of ancestral states given a phylogeny and data from extant species arises in a wide range of
biological studies. The continuous-time Markov model for the discrete states evolution is generally used for the
reconstruction of ancestral states. We modify this model to account for a case when the states of the extant species are
uncertain. This situation appears, for example, if the states for extant species are predicted by some program and thus are
known only with some level of reliability; it is common for bioinformatics field. The main idea is formulation of the problem
as a hidden Markov model on a tree (tree HMM, tHMM), where the basic continuous-time Markov model is expanded with
the introduction of emission probabilities of observed data (e.g. prediction scores) for each underlying discrete state. Our
tHMM decoding algorithm allows us to predict states at the ancestral nodes as well as to refine states at the leaves on the
basis of quantitative comparative genomics. The test on the simulated data shows that the tHMM approach applied to the
continuous variable reflecting the probabilities of the states (i.e. prediction score) appears to be more accurate then the
reconstruction from the discrete states assignment defined by the best score threshold. We provide examples of applying
our model to the evolutionary analysis of N-terminal signal peptides and transcription factor binding sites in bacteria. The
program is freely available at http://bioinf.fbb.msu.ru/̃nadya/tHMM and via web-service at http://bioinf.fbb.msu.ru/
treehmmweb.
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Introduction

The task of reconstruction of ancestral states given a phylogeny

and discrete states for extant species is known as a common

biological challenge. The examined states could be any morpho-

logical or behavioral features of the organisms [1–4]. In the area of

molecular evolution, the problem arises in the context of

reconstructing ancestral amino acids at particular sites [5] or gene

repertoire in ancestral genomes [6]. The most popular software for

this kind of task is BayesTraits (BT) program [5]. It implements the

standard Bayesian MCMC analysis applied to the Continuous-

time Markov model for the traits evolution [7,8]. Bayesian

inference enables careful handling of the ancestral states uncer-

tainties as compared to parsimony and ML strategies.

In many cases, the problem of phylogenetic uncertainty is

relevant. Indeed, the phylogeny is never known exactly, as far as it

is reconstructed rather than observed. The BT program solves this

by its possibility of taking a set of possible phylogenies as an input;

this set is then included into the sampling process as a additional

parameter with the flat prior. Another approach to this problem is

implemented in the BEAST Software where the joint reconstruc-

tion of phylogeny from the sequences and the traits is considered

[9,10].

The model described above does not cover cases when the

discrete states are not known for sure. Although similar to the

phylogenetic uncertainty, such an uncertainty in the extant states

data is also possible. The situation often arises in the field of

bioinformatics when, after the computational analysis of genomes,

some biological features are predicted. A typical example is an

evolutionary analysis of transcriptional regulation: the program

predicting the presence or absence of the transcription factor

binding site (TFBS) produces a score that reflects a biological state;

however, it does not identify precisely the states themselves. The

simplest approach to this kind of problem would be to define a

score threshold, transform the scores at the leafs into discrete

states, and analyze the discrete data. However, even with a

perfectly chosen threshold, the scores falling into the (i.e. near

threshold) would be, with nearly 50% probability, wrongly

transformed into the discrete states. Moreover, the data with

mistakes in the assignment of the states to leafs provides

significantly worse results (we test it here by simulations). The

situation can be improved by smarter models.
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In [11], the authors aimed to improve the prediction of

transcriptional regulatory networks. They developed an iterative

two-step likelihood-maximizing algorithm that used evolutionary

information to refine the leaf states.

The Hidden Markov Model (HMM) strategy for this task was

originally proposed by [12] in a study of the evolution of CRP

binding sites in intergenic regions of E. coli, S. typhium and Y.

pseudotuberculosis. This HMM considered the presence of neutral or

negative selection affecting the given locus as a hidden state, and

the TF binding energy was the emitted value, which was observed

at the leafs of the evolutionary tree. The probability distribution of

the TF binding energy was supposed to be known for both hidden

states. Transition probabilities between states were identified

through simulations of the TFBS energy changing under the two

selection modes. In a similar model [13], two modes of sequence

character evolution were explicitly used to calculate the transition

probabilities between states. Another implementation of this

approach was performed by [14] in a study of the evolution of

transcriptional regulation in three animal species (human, mice

and cow). However, these probabilistic evolutionary models could

consider only a few (up to four) species on an evolutionary tree.

The application of these approaches for an arbitrary number of

species is hindered: the constraint of only one event on a tree used

in [12] and [13] is inappropriate for large trees; in a general case

[14] the amount of the calculations grows exponentially with the

number of species.

Here we represent our novel, unified tHMM approach that

combines the ancestral state reconstruction and the statistical

prediction of the leaf states. tHMM intends to simultaneously

reconstruct the leaf states, the ancestral node states and the

evolution rates given the observed scores at the leafs and the

phylogeny. The core of the approach is a HMM model on the

evolutionary tree [12,14], which is, in turn, a special case of

Bayesian networks [15], where the hidden states at leaves underly

the observed score values (Fig. 1). An important feature of the

suggested model is its applicability for large tree problems.

Below we provide (1) the description of the tHMM model and

the algorithms for states reconstruction, (2) simulations showing

tHMM’s advantage over the BayesTraits reconstruction from the

corresponding discrete states, (3) two examples of applying the

model to real biological systems, (4) the standalone program and

the web service implementation of the algorithms.

Materials and Methods

Evolutionary model
Continuous-time Markov model of discrete trait

evolution. A continuous-time Markov model of trait evolution

consists of a set of possible states and transition probabilities

between these states per a unit of time. For the case of two states,

the probability of the state transition in time t (or tree branch

length) can be written as

P(t) ~pij(t)~
l0zl1e{mt l1{l1e{mt

l0{l0e{mt l1zl0e{mt

� �
;

m ~azb, l0~
b

azb , l1~
a

azb

ð1Þ

where a and b are the transition rates for state0?state1 and

state1?state0, respectively [16].

The evolutionary processes on every branch of the tree are

considered to be independent. This assumption allows easy

calculation of the probability of observing a given set of states at

the leaves of the evolutionary tree

Figure 1. Models for the ancestral state reconstruction. 0 and 1 are two possible states at the tree nodes. The solid edges reflect transitions for
the optimal states assignment; the dotted edges are non-optimal edges. The blue boxes denote optimal states at the nodes. B is the start point. (a)
The discrete state model with observable states at the leaves; (b) the HMM model with observable scores and a hidden layer of states at the leaves.
Note that in (b) optimal states at the leaves are chosen from the full set of states, while in (a) they are fixed to observable states.
doi:10.1371/journal.pone.0065012.g001

Figure 2. The Up-Down algorithm. Partitioning of a tree relative to
state 1 at the node Y is shown by dashed lines.
doi:10.1371/journal.pone.0065012.g002
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P(S1, . . . ,SnDSnz1, . . . ,S2n{1)~

P
2n{1

i,j~1
P(Si?Sj) j is a child of i½ �

ð2Þ

where fSig is the set of states at tree nodes; the leaves are

enumerated from 1 to n, the ancestral nodes – from nz1 to

2n{1; P(Si?Sj) is the transition probability from state Si to state

Sj ; and z is notation for the indicator function that is 1 if the

predicate is true, or 0 otherwise [P1].

In this model the input values are states at the leaves; if these

states were defined from the prediction scores x with the threshold

d , the states Sobs
k are defined as

Sobs
k ~

0, xkvd

1, xk§d

�

Within the specified model, the ancestral states probabilities can

be evaluated given observed states at the leaves [5,7]. The

program mode that implements only this model will be referred to

as dumbtHMM mode. It is useful for the data with discrete states

assigned to leaves.

tHMM modification for hidden states. In our model, in

contrast to the standard one described above, the input values are

prediction scores; therefore, to calculate the probability of the

input scores, the emission probabilities of scores for each state

should be additionally defined. At this point our model becomes a

Hidden Markov Model, as we observe data generated by

underlying unobservable states. A schematic illustration of the

standard problem of ancestral state reconstruction and our

modification is shown in Fig. 1.

When the states at all nodes are defined, the probability of the

observed scores can be calculated as

P(x1, . . . ,xnDS1, . . . ,S2n{1)~

P
2n{1

j,i~1
P(Si?Sj) j is a child of i½ � P

k~n

k~1
p(xk DSk)

ð3Þ

where xk are the predicted scores at the leaves, fSig is the set of

states at tree nodes (including the terminal ones), P(Si?Sj) is the

transition probability from state Si to state Sj , and p(xk DSk) is the

emission probability of xk for state Sk.

The total probability to observe the data is the sum of

probabilities under all possible sets of states at nodes:

P(x1, . . . ,xn)~
X

S1,...,S2n{1

P(x1, . . . ,xnDS1, . . . ,S2n{1) ð4Þ

Usually, the observed scores are values of a continuous random

variable. In this case the emission probabilities are given as

probability densities; hence, the probabilities in equations (3–4)

should also be considered as probability densities.

Now we can define the problem.

Given:

N An evolution tree

N Score observations at the leaves

N Prior probability distribution of scores for states P(xDi)

Get:

N States at all nodes of the tree including the leaves.

In the HMM theory, the general decoding problem can be

formulated in two different forms: to find the state assignment that

maximizes the probability to observe the data, and to find the

posterior probabilities for states at each node. The first approach

yields the Viterbi algorithm; the second one, the posterior

decoding algorithm.

Algorithms for the Reconstruction of the Node States
The Viterbi algorithm. In the common maximum likeli-

hood approach, the desired set of states is the one that maximizes

the probability of the observed data. For our model, the likelihood

function is given by equation (3), and the ML estimate can be

found by a modification of the Viterbi algorithm. The Viterbi

variables vi
Y for each node Y and state i correspond to the

maximum probability of the data on the leaves of the subtree

starting at the node Y at the state i. The transition probabilities

from the start point B are the prior probabilities v(i) for the states.

The Viterbi recursion for this case can be written as

v i
Y ~

P(xDi)~ri(x), Y is a leaf

max
j

pij(tR):vj
R

� �
:max

k
pik(tL):vk

L

� �
, Y is not a leaf

vB~ max v(j)v
j
root

� �
, termination

0
BBB@ ð5Þ

piR
Y ~ arg max

j
pij(tR):vj

R

� �
, right subtree

piL
Y ~ arg max

k
pik(tL):vk

L

� �
, left subtree

pB~ arg max v(j)v
j
root

� �
, termination

0
BBBBBB@

ð6Þ

Here superscripts indicate states, subscripts indicate tree nodes;

R is the right child node, L is the left child node; tY is the distance

from the node Y to the parent node X , pij(t) is the transition

probability from the state i to the state j in time t defined by

equation (1), P(xDi) is the probability of observing x in the state i,

ri(x) is the score probability distribution for the state i. The

traceback variables pi.
Y store transitions from the state i at the node

Y to the child node that provided the vi
Y value. v(i) is the prior

probability of the state at the root. This probability can be defined

as the equilibrium probability li defined by equation (1).

The recursion starts from leafs and propagates to the root.

When the upward process is finished, the variables p are used to

reconstruct the states in the reverse passage to the leafs.

Posterior decoding. Up-down algorithm. Similarly, to

infer the states probabilities at nodes, the forward-backward

posterior decoding algorithm can be modified for a tree. We call

this algorithm the Up-Down algorithm.

The probability of a state i at a node Y is the ratio of the overall

probability of state sets with the fixed state i at the node Y to the

total observation probability:

Hidden Markov Models for Evolutionary Analysis
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Figure 3. The comparison of the tHMM, dumbtHMM and BayesTraits on simulated data sets. (a) The nodes, leaves and total accuracy of
states reconstruction for simulations with varying transition rates and with fixed score distributions overlap value = 0.19. (b) The nodes, leaves and
total accuracy of states reconstruction for fixed transition rate = 0.2 and varying score distributions overlap values. The red lines represent the tHMM
results; the blue lines, BayesTraits results; the yellow lines, the results of dumbtHMM; and the green lines represent the results of the dumbtHMM
reconstruction from the known assignment of states to leaves. The dashed lines show the accuracy for internal nodes reconstruction; the dotted line,
the accuracy of leaves assignment (the yellow dotted line coincides with the blue dotted line); and the solid line, the mixed accuracy for all the nodes
of the tree. (c) The number of reconstructed events normalized by the total tree length in the set for the same settings as in (a). (d) The number of
reconstructed events normalized by the total tree length in the set for the settings as in (b). In (c) and (d), the green line represents the real number
of events; the blue line, the number of events reconstructed by the BayesTraits algorithm; the red line, by the tHMM algorithm; and the yellow line, by
the dumbtHMM algorithm. (e) The Matthews correlation coefficient(MCC) for the accuracy of events reconstruction for the same settings as in (a). (f)
The MCC for the accuracy of events reconstruction number of reconstructed events for the settings as in (b). In (e) and (f), the green line represents

Hidden Markov Models for Evolutionary Analysis
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Pi
Y ~

P
S1,...,Si{1,Siz1,...,Sr

P(x1, . . . ,xnDS1, . . . ,i, . . . ,Sr)

P(observation)

The overall probability of sets having the state i at the node Y
can be written as a product of two factors: the probability of the

subtree where the node Y is the root (the bottom tree in Fig. 2; di
Y )

given the state i at this root, and the probability of the subtree

where the node Y is a leaf (the top tree in Fig. 2; ui
Y ) given the

state i at this leaf :

Pi
Y ~

P(up treeDi at Y ):P(down treeDi at Y )

P(observation)

~
u i
Y
:di

Y

P(observation)

ð7Þ

The up and down variables can be calculated recursively.

d i
Y ~

P(xDi)~ri(x), Y is a leafP
j

pij(tR):dj
R

� �
:P

k

pik(tL):dk
L

� �
, Y is not a leaf

dB~
P

j

v(j):dj
root

� �
, termination

0
BBBBB@

ð8Þ

u i
Y ~

v(i), Y is the root

P
j

u
j
X
:pji(tY ):

P
k

pjk(tS):dk
S

� �� �
, Y is not the root

0
B@ ð9Þ

Here Y is the current node; L and R are the left and right child

nodes; X is the parent node; S is the sister node. The down

variables d are calculated upward from the leafs to the root; the up

variables are calculated downwards from the root to the leafs. The

total probability of an observation is

P(observation)~dB~
X

i

ui
Y P(xY Di), VY[leafs

The posterior decoding approach allows for prediction of the

probabilities of states on the nodes as well as evaluation of the

probabilities of state transitions, i.e. the probabilities of evolution-

ary events. The posterior probability of an evolutionary event on a

branch X?Y of the evolutionary tree can be calculated using the

equation

P
ij
XY ~

ui
X
:pij(tY ):dj

Y

P(observation)
ð10Þ

The described algorithms generalize the existing algorithms for

the case with uncertain states at the leaves. Our variant of the

Viterbi algorithm is a direct analogue of the weighted parsimony

method [17] used for the standard problem, where the leaves

states are assigned with certainty. Similarly, an analogue of the

upward part (8) of the Up-Down algorithm was described by

Felsenstein as a pruning algorithm [18].

The Parameters Evaluation
The algorithms (5, 8, 9) depend on the following parameters: (a)

the prior score distributions ri(x); (b) the transition rate

parameters a, b in equation (1). The first parameter reflects a

priori knowledge about the biological problem and will be discussed

later. The transition rates can be estimated by the standard

likelihood maximization (ML) approach. Here we used the

Bayesian inference of the posterior probability distribution of

model parameters using Metropolis-Hastings MCMC (Markov

Chain Monte Carlo) sampling technique, following [5].

The Dataset
Signal peptides data set. Protein sequences of Gram-

negative bacteria were downloaded from GeneBank release 175

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). Orthologous protein

groups were downloaded from the NCBI Protein Clusters

database [19] release Jan 2010 (ftp://ftp.ncbi.nih.gov/genomes/

CLUSTERS/). The data set contained 717455 proteins from 593

the results of the dumbtHMM reconstruction from the known assignment of states to leaves; the blue line, the results of the BayesTraits algorithm;
the red line, by the tHMM algorithm; and the yellow line, by the dumbtHMM algortihm.
doi:10.1371/journal.pone.0065012.g003

Figure 4. Score distributions for states. The blue line corresponds
to the SignalP Dscore distribution of the N state (no signal peptide); the
red one, to the distribution of the SP state (signal peptide present).
doi:10.1371/journal.pone.0065012.g004

Table 1. Events statistic for the both data sets.

Signal data set TFBS data set

parsimony tHMM parsimony tHMM

Number of events 7015 2778 16854 3984

Number of gain events – 1253 – 2678

Number of loss events – 1525 – 1306

Clusters with events 2588 1010 1977 1160

doi:10.1371/journal.pone.0065012.t001

Hidden Markov Models for Evolutionary Analysis
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genomes. Multiple alignments were constructed by Muscle [20].

Protein phylogenetic trees were created using the protdist and

neighbor programs in the PHYLIP package [21]. Signal peptide

scores were calculated by SingalP 3.0-NN [22]. In the evolutionary

analysis, we considered a subset of orthologous clusters where

different discrete predictions of signal peptides were present.

CRP transcription factor binding sites data

set. Orthologous groups and the phylogenetic trees were

downloaded from the MicrobesOnline resource [23]. Transcrip-

tion factor binding scores were downloaded from the RegPrecize

database [24].

Results

Simulations
To test the ability of tHMM to improve the state reconstruction

accuracy and to define the range of tHMM applicability,

computer simulations were performed. We compared the efficacy

of tHMM itself, the dumbtHMM and the BayesTraits Mulitstate

software on a set of different simulated datasets.

The simulation parameters were rates of the state changes

(transition rates) and the score distributions for states. 16 sets of

simulated data (phylogeny and scores at the leaves) were generated

(see Text S1), each consisting of 400 trees.

Phylogenies were generated by sampling the branch lengths

from the distribution that was obtained from the Signal peptides

Table 2. The number of entries in the grey zone for both data sets.

all entries prior probability in [0.4;0.6] posterior probability in [0.4;0.6]

Signal peptides 133345 5207 1207

TFBS 307903 13005 1788

doi:10.1371/journal.pone.0065012.t002

Figure 5. The results of the dumbtHMM (left) and tHMM (right) algorithms applied to the signal peptide reconstruction at the
amidase othologous cluster (PRK07056) tree. The black segment of a circle reflects the posterior probability of state N (non-signal) at a
particular node. The column with circles at the right shows the prior probability of state N at the leaves, calculated from the score distributions. The
remaining columns left to right: Dscore, prior state, posterior state from the tHMM algorithm at the leaves.
doi:10.1371/journal.pone.0065012.g005

Hidden Markov Models for Evolutionary Analysis
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dataset. The speciation process was terminated and a leaf was

created if the distance from the root to the current node exceeded

0.5. This constraint restricted the tree sizes to the range of 83+54
leaves. For each new node, one of the two states was assigned

according to its parent node state and to the transitions

probabilities from Eq. (1).

The score distributions that modeled the outer prediction

program were chosen to be b-distributions, and the leaf scores

were sampled from the corresponding score distribution (see Text

S1, Fig. S1). S1. For the BayesTraits and dumbtHMM model, the

discrete state mapping for the leaves was defined with a score

threshold derived from the respective (as in simulations) score

distributions to satisfy the rule P(xD0)~P(xD1). For the tHMM,

scores themselves were taken as an input, and the same score

distributions as in simulations were used, as if they were known or

inferred with perfect precision. This situation, of course, never

happens in real life, but it was done to infer the maximum

improvement that can be achieved by using the new model.

For each tree, the reconstruction procedures by the three

algorithms were run and the results were aggregated in each

dataset into the following characteristics: The nodes accuracy was

calculated as the proportion of correctly restored states. The

overall number of events was normalized by the sum of all the tree

lengths to monitor the number of restored events. The Matthews

correlation coefficient (MCC) [25] characterists were calculated

for the reconstruction of the state change events.

The results of the simulations are shown an Figure 3. First,the

accuracy of the tHMM prediction of states outperforms other

option for both inner nodes and leaves (panels (a) and (b)).
Second, discrete methods dramatically overpredict the number of

events but tHMM does not (panels (c) and (d)). Third,a tHMM

reconstructs the events on the tree better than the discrete methods

(panels (e) and (f)). Nevertheless, it appears (f) to be useless to

apply any of these methods to the data with 1/4 or more percents

of mistakes in the leaves assignment.

The possible reasons why the BayesTraits algorithm performs

worse even than discrete dumbtHMM is considered in Discussion.

Signal Peptides
Bacterial signal peptides are 15–30 aa sequences at the N-

terminus of a protein that direct it to the export from the

cytoplasm [26]. Here we consider Sec-type signal peptides, which

can be predicted by the SignalP 3.0 program [22,27]. We used a

simple model having two biological states: state N corresponding

to the signal peptide absence, and state SP to the signal peptide

presence. The observed values were theDscores predictions of

SingalP3.0-NN. To determine the score distributions for the states,

we represented the Dscore distribution on the entire dataset as a

weighted mixture of two beta distributions (Text S2, Fig. S2). One

of these distributions was assigned to the SP state, the other to the

N state (Fig. 4).

For the the discrete case we assigned the DScore threshold to

the value x satisfying P(xDSP)~P(xDN) instead of using the

default SignalP value.

The event statistics for the whole dataset,shown in Table 1,

show that the number of reconstructed events is 2.5-fold lower

than for the parsimony. It illustrates the filtering out of the noise

events.

The comparison of the distribution of posterior and prior

probabilities of states at the leaves over all the data set shows a

significant decrease in the number of predictions with state N

probability that are in the interval [0.4; 0.6], i.e., that are in the

‘grey zone’ (Table 2).

Figure 5 shows the results of the tHMM and dumbtHMM

methods applied to the amidase orthologous protein cluster

(PRK07056). The dumbtHMM algorithm reconstructs six evolu-

tionary events, five gains and one loss of a signal peptide, while

Figure 6. The results of tHMM for the TFBS reconstruction of the AsnB (L-asparaginase) tree. Notation as in Fig. 5. The score values are Z-
scores.
doi:10.1371/journal.pone.0065012.g006
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tHMM yields only one loss event, with seven prediction

corrections at leaves. The ancestral node reconstructions differ

only at the Burkholderia nodes.

As an additional argument in favor of the tHMM reconstruc-

tion, sequence alignments of the branches where algorithms differ

in their predictions may be considered (Fig. S3). At the N-terminus

of the Burkholderia branch alignment, where tHMM rejected

several events, the Dscore fluctuations near the decision threshold

were produced by small sequence changes and are unlikely to be

the reason for several biological state changes during such a short

period of time. An opposite situation occurs at the Ralstonia branch

where tHMM confirmed an event: there is no good N-terminal

alignment with the closest neighbors, but, due to large scores and

relatively long branch length,this event was accepted.

TFBS
The binding motif of the CRP transcription factor is known to

have low specificity and when applied to genomic data produces

numerous false positives [28,29]. On the other hand, some

experimentally determined sites have low scores [30]. Applying an

evolutionary probabilistic model could help to increase the

prediction quality and simultaneously identify the gain/loss events.

The prediction score for a gene was defined as the best PWM

score in the gene’s upstream region. The background score

distribution was defined for each gene separately as a distribution

of the maximum score on a random sequence whose length

equaled the length of the gene’s upstream region, whereas the

positive distribution was the same for all species and genes and was

set to the normal approximation of positive experimental data

scores.

A brief summary of the reconstructed events is presented in

Tables 1 and 2. For the TFBS case, an even stronger decrease in

events number (four-fold) is observed, which is in line with a

weaker accuracy of the TFBS predictions compared to the signal

peptides predictions.

Figure 6 shows the results for the AsnB (L-asparaginase) group

of orthologs. The example was selected to demonstrate the tHMM

power to account for the evolutionary context of predictions.

Here, the Proteus mirabilis HI4320 paralogs have close scores, 3.54

and 3.56, but, in different evolutionary contexts, different

underlying states are inferred. It is clear that a pair of nearly

equal scores from a middle-value interval can easily be produced

by different underlying states. Such cases can not be properly

resolved using threshold-based methods. The tHMM approach

allows for the inference of different underlying states for the same

score depending on the context.

Program
The tHMM program is available as a standalone program at

http://bioinf.fbb.msu.ru/̃nadya/tHMM and as a web service at

http://bioinf.fbb.msu.ru/treehmmweb. All userguide instructions

and format requirements are present at the specified resource.

Discussion

Here we present and analyze a novel tHMM approach for

reconstruction of states of a known tree. The approach explores all

possible combinations of the states on the leaves in a Bayesian way.

The phylogeny consistency analysis provides the prior; and the

correspondence of hidden leaf states to the observed score provides

the likelihood for each combination.

The method allows reconstruction of evolutionary events and

states in the tree nodes from the prediction scores. The method

takes into account the prediction program accuracy and does not

overestimate the rate parameters and the number of events. It is

especially significant when the feature prediction program has low

accuracy, and a large part of the observed scores belongs to a gray

zone. However, there is the risk of losing very recent events.

In the present work, we used the tHMM version that works with

a defined tree to demonstrate the advantages of the method on a

basic case, although. the Bayesian approach we used can

incorporate the phylogenetic uncertianity in a common way [5].

During the simulation, we found that the BayesTraits algorithm

performs worse than discrete dumbtHMM (see Figure 3). How-

ever, the overall tree likelihood for these two methods was exactly

the same for each tree (not shown). The difference is probably

because BayesTraits reconstructs the node states only from the

node’s subtree while dumbtHMM (as well as tHMM) provides

forward-backward analysis for this task.

Supporting Information

Figure S1 Score distributions for states used in simu-
lations. Distribution for state 0 is at the left; for state 1, at the

right.

(EPS)

Figure S2 Dscore histogram approximation. a) Approx-

imation of the Dscore histogram (red circles) by a weighted sum of

Beta distributions (black). b) Approximation of extra counts in the

high Dscore area (red circles) by a Beta distribution (black).

(EPS)

Figure S3 N-terminus of (A) Burkholderia and (B)
Ralstonia nodes alignment. Signal peptides predicted by

SignalP 3.0. are shown in red. Pink denotes signal peptides with

Dscore lower than the threshold.

(EPS)

Text S1 Data simulation parameters.

(PDF)

Text S2 Reconstructing score distributions for Signal
peptides dataset.

(PDF)
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