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Abstract

Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and
pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully
elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using
co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR),
but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding
experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding
affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream
consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include
basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-
reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto
the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater
modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus
ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA
loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists
and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs
and a critical factor regulating transcriptional programs.
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Introduction

The glucocorticoid receptor (GR) is a ligand-dependent

transcription factor that mediates the effects of both endogenous

glucocorticoids (GCs) as well as synthetic GCs used to treat

inflammatory diseases [1–3]. Despite the fact that the GC

concentration in the bloodstream is equal at any specific time

point and that GR is present in every major tissue [4,5], there are

considerable tissue specific [6], inter-individual [7,8] and diseased

compared to healthy tissue [9] differences in GC response. GR

levels [10] are amongst the factors [11–19] shown to influence the

degree and tissue specificity of transcription via the GR.

GR is down-regulated in response to GC exposure in most

tissues [20–23] and in some tissues down-regulation is linked to

aging [24,25], exercise [24] and psychological stress [26,27], while

up-regulation in some tissues is linked to HIV infection [28],

muscle sepsis [9], dietary restriction [29], adrenalectomy [30] and

cancer [10]. In addition, GR expression levels differ greatly

between tissues [5,31] and inter-individual variances are found

within the same tissue type [8,32]. Physiologically, decreased GR

levels are associated with GC resistance in rheumatoid arthritis

[33,34], lupus nephritis [35], bronchial asthma [36] and sepsis

[37], while increased GR levels are linked to GC sensitivity in a

range of cancers.

In most cases increased GR levels have simply been linked to an

increase in the efficacy of ligand, however, raising GR concen-

tration has also been shown to result in enhanced potency of GR-

mediated transcription [38–40] and bio-character shifts of partial

agonists to more efficacious ligands [41,42]. In addition, a shift

from non-cooperative to positive cooperative ligand-binding as

GR levels increase has also been shown in vitro [43], which would

suggest an increase in affinity. However, the relationship between

GR levels and ligand-binding affinity is controversial with some

authors indicating that increased GR levels result in increased

affinity [31], while others find a decrease in affinity [44,45].

Although studies on the influence of GR concentration on

transcription have shown clear shifts in the potency of agonists and

bio-character of partial agonists, none have defined the specific
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GR concentrations at which these shifts occur nor have they

attempted to correlate the changes in GR-induced transcription

with a change in ligand-binding affinity or shift from non-

cooperative ligand-binding to positive cooperative ligand-binding.

Furthermore, the molecular mechanism responsible for coopera-

tive ligand-binding has not been demonstrated experimentally.

Here we show that ligand-independent dimerization of the GR at

high concentrations is responsible for the phenomena of positive

cooperative ligand-binding and concomitant increase in affinity.

Furthermore, we demonstrate that ligand-independent dimeriza-

tion significantly increases the potency of GC-induced transactiva-

tion, as well as causing a shift in the bio-character of partial

agonists. However, our work reveals that the magnitude of the

increase in transactivation potency is greater than would be

expected from the observed increase in ligand-binding affinity

alone and that basal priming of the GR-signaling system through

ligand-independent loading of the GR onto DNA with consequent

ligand-independent transactivation contributes to the increase in

transactivation potency.

Materials and Methods

Reagents
Dexamethasone (DEX), cortisol (F), progesterone (Prog),

medroxyprogesterone acetate (MPA) and mifepristone (RU486)

were purchased from Sigma. Compound A (CpdA) or 2-(4-

acetoxyphenyl)-2-chloro-N-methylethylammonium chloride was

synthesized as described previously [46]. The [3H]-DEX (specific

activity of 68–85 Ci/mmol) was obtained from AEC Amersham

Biosciences.

Plasmids
pGL2-basic (empty vector) was purchased from Promega. pRS-

hGRa (GRwt) was a gift from R. M. Evans [47], pHisGRA458T

(GRdim) and pEFFlaghGRa (Flag-GR, molecular mass, 96 kDa)

[48] were gifts from K. De Bosscher (University of Ghent,

Belgium). pEGFP-C2-GR (GFP-GR, molecular mass, 128.5 kDa)

was provided by S. Okret (Karolinska Institute, Sweden) [49].

ECFP-hGRa (CFP-GR) and pEYFP-hGRa (YFP-GR) were gifts

from J. Cidlowski [50]. pTAT-GRE2-E1b-luc was a gift from G.

Jenster [51] and pDODLO was a gift from D. Pearce [52].

pEGFP-C2-GRA477T (GFP-GRdim) was cloned by excising the

wild type GR from pEGFP-C2-GR with XmaI and SalI and

replacing it with the mutated GRdim sequence from pHis-

GRA458T. The presence of the mutation was confirmed through

sequencing (primer used: 59-AGCTTCAGGATGTCATTATG-

GAG-39).

Cell culture and DEAE-dextran transfection
COS-1 cells (purchased from ATCC) were cultured in DMEM

with 2 mM glutamine, 44 mM sodium bicarbonate, and 1 mM

sodium pyruvate (un-supplemented DMEM) supplemented

with 10% fetal calf serum (FCS), 100 IU/ml penicillin and

100 mg/ml streptomycin (complete DMEM). Cells were trans-

fected with the indicated amounts of GR using the DEAE-dextran

method [53] in 10 cm plates (26106 cells/10-cm plate) made up

to 12 mg total plasmid with empty vector unless otherwise stated.

GR levels were monitored throughout using whole-cell saturation

binding, immunoblotting and fluorescent intensity (Fig. S1 in File

S1). Pixels from digitized immunoblots were used to compare the

expression levels of transiently transfected GR to levels determined

in saturation binding assays (cpm/mg protein) and revealed a good

correlation (R2 = 0.97) between the two methods of determining

GR concentration (Fig.S1A in File S1) in accordance with a

comparative study by O9Donnell [30], which compared immu-

noblots and radioactive ligand-binding as means of GR quanti-

fication. For FRET assays, using fluorescently-tagged GRs, CFP

fluorescent signal was used to quantify GR levels (Fig. S1B in File

S1).

Whole-cell Saturation binding
Cells were transfected with 40 ng (low), 400 ng (medium) or

12 mg (high) GRwt, or 40 ng (low) or 12 mg (medium) GRdim.

Cells were replated 24 h later (1x105 cells/well in 24-well plates) in

medium with 10% dextran-coated charcoal stripped FCS (High-

veld Biologicals, South Africa) and 1% Pen/Strep (charcoal-
stripped DMEM). Twenty four hours after replating cells were

incubated for 4 h at 37uC with increasing concentrations of [3H]-

DEX only (total binding), or [3H]-DEX together with a constant

concentration of 60 mM unlabeled DEX (non-specific binding) in

un-supplemented DMEM. Washing and lysis of cells was as

described in Robertson et al [48]. Binding was normalized to

protein concentration [54]. Specific binding (total binding 2

nonspecific binding) was plotted against nM [3H]-DEX and

curves fitted using one site binding hyperbola to obtain Kd and

Bmax values. Bmax values and a counting efficiency of 43% was

used to calculate fmol GR/mg protein. To obtain Hill slopes

specific binding was plotted against logM [3H]-DEX and curves

fitted using sigmoidal dose-response (variable slope).

Immunoblotting
COS-1 cells were transfected with low, medium or high GRwt

or low or medium GRdim for promoter-reporter, real-time PCR

and ChIP studies. Twenty-four hours after transfection cells were

replated either for immunoblotting or for promoter-reporter, real-

time PCR or ChIP studies. For immunoblotting cells were replated

into 10 cm tissue culture plates (2.56106 cells/plate) in charcoal-

stripped DMEM. Twenty-four hours after replating and without

induction cells were washed twice with PBS before being lysed on

ice in BufferA (10 mM Hepes pH 7.5 (Invitrogen), 1.5 mM

MgCl2, 10 mM KCl, 0.1% Nonidet P-40 (Roche Applied

Science), and Complete Mini protease inhibitor mixture (Roche

Applied Science)). After two cycles of freeze-thaw the lysate was

centrifuged at 14,0006 g for 15 min, and the supernatant

collected. In addition, Co-IP input lysates were also immuno-

blotted to control for GR levels. Protein concentrations of all

lysates were determined using the Bradford method [54]. Protein

(20 mg) was loaded and separated on a 10% SDS-PAGE gel.

Following electrophoresis, proteins were electroblotted and

transferred to Hybond-ECL nitrocellulose membrane (Amersham

Biosciences), which were probed for GR with H-300 anti-GR

(Santa Cruz Biotechnology) diluted 1:3000 in 5% (w/v) casein in

TBST buffer followed by ECL peroxidase-labelled anti-rabbit

antibody (AEC-Amersham Biosciences) diluted 1:10000 in 5% (w/

v) casein in TBST buffer. Blots were visualized with ECL Western

blotting detection reagents (GE Healthcare) on Hyperfilm

(Amersham Biosciences). Densitometric analysis of the immuno-

blots was carried out using UN-SCAN-IT gel 6.1 software (Silk

Scientific).

Promoter-reporter transactivation
Cells were transfected with low, medium or high GRwt, low or

medium GRdim and 3000 ng pTAT-GRE2-E1b-luc filled to

14550 ng total plasmid with empty vector. Cells were replated

24 h later into 96-well plates (46104 cells/well) in charcoal-

stripped DMEM. Twenty-four hours after replating, cells were

induced with vehicle (ethanol) or increasing concentrations (10214

to 1025 M) of DEX, cortisol, MPA, or RU486 in charcoal-
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stripped DMEM for 24 h. Cells were lysed with 30 ml of passive

lysis buffer (Promega), and subjected to a freeze thaw cycle.

Luciferase activity was determined using a luciferase assay kit

(Promega). Light emission was measured in a Veritas microplate

luminometer (Turner Biosystems). Luciferase relative light units

were normalized against protein concentrations [54]. Sigmoidal

dose-response curves were fit to the experimental data which

generated basal induction (bottom), maximal induction (top-

bottom), fold-induction (top/bottom), and log EC50.

Co-immunoprecipitation (Co-IP)
Cells were transfected with low levels of GR (34.22 ng Flag-GR

and 4.28 ng GFP-GRdim or GFP-GRwt); medium levels of GR

(342.2 ng Flag-GR and 42.8 ng GFP-GRdim or GFP-GRwt) or

high levels of GR (10266 ng Flag-GR and 1284 ng GFP-GRdim

or GFP-GRwt). Twenty-four hours later cells were steroid starved

in charcoal-charcoal stripped DMEM for 24 h then treated with

vehicle (ethanol), 1026 M DEX, or 1025 M CpdA for 1 h. Cells

were lysed and protein determination was carried out as described

in Robertson et al. [48]. Cell lysate (600 mg of protein from the low

GR samples or 200 mg of protein from medium and high GR

samples) was added to 30 ml EZview Red ANTI-FLAG M2

Affinity Gel beads (Sigma), pre-washed 4 times with Buffer A in

the presence of 2.5% (w/v) casein protein and Complete Mini

protease inhibitor mixture (Roche). The final volume was topped

up to 400 ml/sample with Buffer A containing 2.5% (w/v) casein

protein and Complete Mini protease inhibitor mixture and rotated

for 16 h at 4uC. Beads were washed and immune precipitates

prepared and processed as described in Robertson et al. [48].

Densitometric analysis of the immunoblots was carried out using

UN-SCAN-IT gel 6.1 software (Silk Scientific) and GFP-GR pull

down was normalized against their respective Flag-GR levels.

Fluorescence resonance energy transfer (FRET)
Cells were transfected with low levels of GR (19.25 ng CFP-GR

and 19.25 ng YFP-GR), medium levels of GR (192.5 ng CFP-GR

and 192.5 ng YFP-GR) or high levels of GR (5775 ng CFP-GR

and 5775 ng YFP-GR). Twenty-four hours after transfection cells

were replated (36104 cells/well) into 8-well Lab-Tek chambered

coverglass plates (Nunc, Denmark) in charcoal-stripped DMEM.

Twenty-four hours after replating cells were analyzed in the

temperature-controlled chamber (37uC) of an IX-81 Olympus

Cells system with YFP, CFP and FRET filter sets as described in

Robertson et al. [48]. Cells were selected which expressed both

CFP-GR and YFP-GR. Cells were induced with 1026 M DEX in

un-supplemented DMEM. CFP, YFP and FRET images were

taken every minute over a 30 min period. An exposure time of

1500 ms at 100% light intensity was used and the entire cell area

as defined by the cellular membrane was selected as the region of

interest. The F-don signal (CPF) was used to select cells for analysis

(Fig. S1B in File S1). Cells with an F-don emission of 0–600 were

selected from the low GR population, F-don signals between 600–

1200 from the medium GR population and F-don of .1200 from

the high GR population. The FRET signal was corrected for bleed

through as described in Robertson et al. [48].

Real-time PCR
Cells were transfected with low, medium or high GRwt or low

or medium GRdim and replated 24 h after transfection (56105/

well/12 well plate) in charcoal-stripped DMEM. Twenty-four

hours after replating cells were induced with vehicle (ethanol) or a

range of DEX concentrations for 8 h. RNA isolation, cDNA

synthesis and quantitative PCR was carried out on the glucocor-

ticoid induced leucine zipper (GILZ) and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as housekeeping gene as

previously described [55]. The GILZ primers were purchased

through QuantiTect primers (Qiagen) and have an amplicon size

of 69 bp. The GAPDH primers were synthesized by Integrated

DNA Technologies (forward, 59- TGA ACG GGA AGC TCA

CTG G-39 and reverse 59-ATT CGT TGT CAT ACC AGG-39)

(13) and have an amplicon size of 307 bp.

Chromatin Immunoprecipitation (ChIP) Assay
COS-1 cells were transiently transfected in T75 flasks with no

GR, low, medium or high GRwt and low or medium GRdim and

filled to 12 mg total plasmid with empty vector. Cells were replated

24 h later onto 10 cm plates (3.56106 cells/well) in charcoal-

stripped DMEM. Twenty-four hours after replating cells were

induced with vehicle (ethanol) or 1026 M DEX for 1 h, before

being cross-linked with 1% formaldehyde. The formaldehyde was

quenched with glycine, where after the cells were washed and re-

suspended in nuclear lysis buffer. Cells were sonicated on 75%

power, for 20 cycles at 20 sec per cycle, with 20 sec intervals

between pulses, using the Misonix SonicatorH S-4000 sonicator

with cup horn. After sonication, the lysates were centrifuged to

remove the cellular debris. An aliquot of the supernatants (15 mg

of chromatin) was removed and used as input, while 50 mg of the

chromatin was immunoprecipitated overnight with 5 mg of anti-

GR antibody (H300, Santa Cruz Biotechnology), as well as an

anti-IgG antibody (Santa Cruz Biotechnology) as a negative

control. After incubation with protein A/G beads (Santa Cruz

Biotechnology) and extensive washing, the immunoprecipitated

DNA was eluted from the beads using elution buffer. After the

cross-links were reversed overnight, the samples were treated with

proteinase K (Roche) and the DNA was purified using the Qiagen

PCR purification kit. The purified DNA was subjected to

quantitative real-time PCR, using specific primers for the

promoter of the endogenous GILZ gene, spanning the equivalent

of GREs 3–6 (GILZ F, 59-AGT TAA GCT CCT GAT TTA

AGA AG-39; GILZR, 59-CCC GAT CTC AGG ACA TTC-39)

and based on homology among the human, chimp, and rhesus

monkey GILZ promoter sequences [56].

Statistical analysis
Statistical analyses were carried out using GraphPad Prism

software, using one-way analysis of variance (ANOVA) with either

Bonferroni, Dunnett or Newman-Keuls post-tests or two tailed

unpaired t tests as indicated in legends.

Results

Increasing GR concentration results in a greater than
expected increase in efficacy and potency of promoter-
reporter assay

Three physiologically relevant, yet statistically (P,0.05) differ-

ent, concentrations of human GR wild type (GRwt), were

established by transient transfection in COS-1 cells. These GR

concentrations were designated as low, medium and high GRwt

concentrations and saturation binding (Fig. 1A) established (i) that

these GR concentrations of 67.068.8, 152.6616.8, and

283.9623.8 fmol GR/mg protein, respectively, fall within the

physiological range of GR concentrations of 4–900 fmol GR/mg

protein [28,57], and (ii) that the concentrations increase two-fold

from low to medium GRwt concentration, and four-fold from low

to high GRwt concentration.

However, fluorescence microscopy showed that roughly 20% of

cells in a population were transfected in our studies (results not

shown). Thus in order to acknowledge this fact we have calculated

Impact of Glucocorticoid Receptor Density
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the average of the fmol GR/mg protein in transfected cells to be

five-fold higher, i.e. 335, 763 and 1420 fmol/mg protein for low,

medium and high GR levels, respectively, while the GR/cell is

26200, 59600 and 111000, respectively. GR reported in bone

marrow ranges from 1106 to 27000 GR/cell [8] while another

study revealed GR levels as high as 893 fmol GR/mg protein in

healthy skin, rising to 2777 fmol GR/mg protein in the skin of

AIDS patients [28]. Cytotrophoblasts (epithelial stem cells) have

been shown to contain GR concentrations as high as 16200 fmol

GR/mg protein [58] well above the highest concentration

achieved in our system. Furthermore, MCF-7, a breast cancer

cell line, has been reported to contain 29995 GR/cell [59], while

SiHa, a uterine cervical cancer cell line, and Hep3B, a hepatoma

cell line, contain 81000 and 43000 GR/cell, respectively [10]. We

can therefore argue that our low GR concentrations reflect

physiological GR levels when compared to GR levels in bone

marrow [8] or MCF-7 cells [59], while our medium and high GR

levels reflect physiological GR levels in normal and AIDS patient

skin [28] or Hep3B and SiHa cells [10], respectively.

To assess the effect of GR concentration on transcription, DEX

transactivation of a multiple glucocorticoid-response element

(GRE) containing promoter-reporter, pTAT-GRE2-E1b-luc, was

studied at the three GRwt concentrations established (Fig. 1B).

This type of promoter represents the majority of direct GR DNA

interactions [60] and provides a robust transactivation response.

The promoter of this construct consists of two copies of the GRE

from the tyrosine amino transferase gene (TAT) as well as the

TATA box from the E1b promoter, which serves as a generic

docking site for secondary transcription factors [51,61]. Data from

the dose response curves indicate larger than expected increases in

basal induction (Fig. 1C) and efficacy (Fig. 1D), as well as in

potency (Fig. 1E), but not in fold-induction (Fig. 1F), due to

increased GRwt concentrations. Specifically, basal induction

increased three- and ten-fold, efficacy four- and 12-fold, and

potency (EC50) 650- and 2600-fold, respectively, as GRwt

concentration increased only two- and four-fold. In contrast,

fold-induction remained relatively constant at between 9-and 11-

fold for all GRwt concentrations. The fact that the magnitude of

the increases in dose-response parameters were greater than

predicted from the increase in GRwt concentrations alone,

prompted us to further investigate the mechanism whereby

increased GRwt concentrations could affect GR signalling.

Especially the exponential increase in potency of transactivation

at higher GRwt concentrations suggested a co-operative mecha-

Figure 1. Linear increase in GRwt concentration leads to exponential increase in potency of transactivation. (A) COS-1 cells were
transiently transfected with GRwt (low, medium or high levels) to establish three statistically different, yet physiologically relevant, GRwt
concentrations. Saturation binding was used to determine specific binding from which fmol GR/mg protein was calculated. Statistical analysis was
carried out using one-way ANOVA followed by Newman-Keuls multiple comparisons post-test. Conditions with different letters are statistically
different from one another (P,0.05). Results represent two independent experiments performed in triplicate (6SEM). (B) COS-1 cells were transiently
transfected with GRwt (low, medium or high levels) and the GRE-containing promoter-reporter pTAT-GRE2-E1b-luc. Cells were induced with ethanol
or increasing concentrations (10214 to 1025 M) of DEX for 24 hours. Luciferase relative light units (RLU) were normalized against protein
concentrations and sigmoidal dose-response curves fit to the experimental data to generate (C) basal (bottom) and (D) maximal induction (top-
bottom) as well as (E) log EC50 and (F) fold-induction (top/bottom). Statistical analysis for C–F was carried out using one-way ANOVA followed by
Dunnett’s post-test against the low GRwt condition. Results represent a minimum of three independent experiments performed in triplicate (6SEM).
doi:10.1371/journal.pone.0064831.g001
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nism, which may require more than one ligand-binding site, and

we thus hypothesised that increased GRwt concentrations may

lead to ligand-independent dimerization of the GRwt and

cooperative ligand-binding.

The ability of the GR to dimerize is a prerequisite for
positive cooperative ligand-binding

A previous study [43] had shown in vitro that positive

cooperative ligand-binding occurs at higher concentrations of rat

GRwt. We sought to confirm this finding with human GRwt.

Furthermore, as cooperative ligand-binding presupposes the

presence of more than one ligand-binding site, where ligand-

binding to the first site facilitates a conformation change that

results in the cooperative binding of the second ligand [62], we

wanted to establish that dimerization of the GR is a prerequisite

for cooperative ligand-binding. To this end we included the DNA

binding domain (DBD) dimerization-loop mutant GR (GRdim)

[63] in our study.

COS-1 cells were transiently transfected with the established

low, medium and high levels of GRwt (Fig.1A) and with GRdim.

Whole-cell saturation binding assays verified that the GRdim

levels obtained corresponded to the low and medium GRwt levels

(Fig.2A). The receptor concentration (Bmax) and affinity (Kd) of

the expressed GRs were derived from the saturation binding

curves (Fig.2A), while the Hill slope was obtained from the semi-

logarithmic plot of specific binding versus log M tritiated DEX

(Fig. 2B).

Positive cooperative ligand-binding (Hill slope .1) was indeed

observed at the higher GRwt levels, specifically at the medium and

high levels (Fig.2C), confirming previous results with rat GR [43].

In contrast, the GRdim levels corresponding to the medium GRwt

concentrations did not display cooperative ligand-binding (Hill

slope ,1), suggesting that the ability to dimerize is a requirement

for cooperative ligand-binding.

Furthermore, there was a concomitant significant (P,0.05)

increase in ligand-binding affinity (Kd) of GRwt as its concentra-

tion increased which mirrors the shift to greater positive

cooperative ligand-binding at the medium and high GRwt

concentrations (Fig.2C). Although a similar trend occurs for the

GRdim, the Kd at medium GRdim remained statistically similar

(P.0.05) to that of low GRwt and GRdim (Fig.2C). The Kd-value

obtained in our study for high GRwt (16.8 nM) agrees with the Kd

of 12.6 nM found in a previous study of COS-1 cells transiently

transfected with high levels of GRwt [64].

These results suggest that the shift to positive cooperative

ligand-binding and the associated increase in ligand-binding

affinity as GRwt concentrations increase are dependent on the

ability of GR to dimerize. As our Hill slopes fall between 1 and 2

this indicates binding to GR monomers as well as preformed GR

dimers. Moreover, as the Hill slopes and Kd of the low GRwt and

Figure 2. Increased concentration of GRwt, but not GRdim, displays cooperative ligand-binding. COS-1 cells were transiently transfected
with GRwt (low, medium or high) or GRdim (low or medium) before saturation binding was carried out with the depicted [3H]-DEX concentrations. (A)
Specific binding was plotted against nM [3H]-DEX and curves fitted using one site binding hyperbola to obtain Kd and Bmax values. (B) Specific
binding was plotted against logM [3H]-DEX and curves fitted using sigmoidal dose-response (variable slope) to obtain Hill slopes. (C) Summary table
of saturation binding results. Statistical analysis of maximal binding (Bmax), Hill slope and Kd comparing GRwt and GRdim levels were carried out
using one-way ANOVA followed by Newman-Keuls post-test. Conditions with different letters are statistically different from one another (P,0.05). All
results represent a minimum of two independent experiments performed in triplicate (6SEM).
doi:10.1371/journal.pone.0064831.g002
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the low and medium GRdim concentrations were statistically

similar (P.0.05) and around one, it would suggest that at low

concentrations GRwt is predominantly monomeric.

GR-dimers predominate at GRwt concentrations
displaying cooperative ligand-binding

Having established a link between the ability of GR to dimerize

and to bind ligand cooperatively, we sought to explore this

phenomenon further using two approaches, Co-IP and FRET. As

the GR forms a homodimer it was necessary to use differentially

tagged GRs in order to differentiate between GR monomers and

dimers.

We firstly utilized Flag-tagged and GFP-tagged GRwt, co-

transfected and expressed at the same levels as GRwt (Fig.3A), to

perform Co-IP by immunoprecipitating with anti-Flag anti-body

followed by immunoblotting with anti-GR anti-body. Similarly to

the GRwt (Fig.2C), this combination of differentially tagged GR’s

demonstrate a significant (P,0,001) shift towards greater positive

cooperative ligand-binding and an increase in ligand-binding

affinity at the medium and high GR concentrations (Fig.3A).

Along with the pairing of Flag-GRwt and GFP-GRwt we also

examined the Flag-GRwt and GFP-GRdim pair in parallel. In

order to confirm that low, medium and high levels of GR were

expressed, GR levels for each experiment were monitored by

immunoblotting of Co-IP inputs and compared to those of the

GRwt (Fig.S1A in File S1). Co-IP controls demonstrated that no

non-specific pull down of either GFP-GRwt or GFP-GRdim

occurred at any of the three GR concentrations studied (Fig.3B).

Cells were induced with vehicle (ethanol) to test for ligand-

independent dimerization (Fig. 3C). In addition, induction with

the potent synthetic agonist, DEX, was used to ascertain maximal

dimerization [65], while induction with the selective GR agonist,

CpdA, which has previously been shown to abrogate GR

dimerization [48], was used to establish minimal dimerization

(Fig.3C). GFP-GR pull-down was normalized against its respective

Flag-GR band in order to correct for differences in GR loading

(Fig.3D&E).

There was a significant (P,0.05) increase in the level of ligand-

independent dimerization at medium and high concentrations of

the GFP-GRwt/Flag-GRwt pair, but not at similar concentrations

of the GFP-GRdim/Flag-GRwt pair. In addition, significantly

(P,0.05) lower ligand-independent dimerization via the GFP-

GRdim/Flag-GRwt pair than via the GFP-GRwt/Flag-GRwt pair

was observed at medium and high GR concentrations (Fig.3D).

Induction of low levels of GR with DEX resulted in a significant

(P,0.01) increase in GFP-GRwt pull-down, which was not

observed through GFP-GRdim (Fig.3E). However, as GR levels

increased, DEX-induction did not increase the level of GFP-GRwt

pull-down, indicating that ligand-independent dimerization had

reached its maximal level prior to DEX-induction. CpdA, which

abrogates GR dimerization [48], was very effective in abolishing

ligand-independent dimerization at the medium and high GR

concentrations, but not at the low GFP-GRwt concentration

where ligand-independent dimerization was minimal (Fig.3E). At

the low concentration, GFP-GRdim displayed similar ligand-

independent dimerization as GFP-GRwt, which was not appre-

ciably affected by either DEX or CpdA addition (Fig.3E). The

pull-down of GFP-GRdim showed an increase (36 to 66%) in

ligand-independent dimerization as receptor levels increased from

low to high GR concentration (Fig.3E). DEX addition also

resulted in a trend, albeit not reaching significance, towards

increased dimerization at the medium and high GRdim concen-

trations (Fig.3E), while CpdA addition at the high GRdim

concentration resulted in a slight decrease in dimerization (Fig.3E).

These results imply that in this system the GRdim is capable of

some dimerization at medium and high GR concentrations. Much

work has been done on this specific D-loop mutation [52,66-68]

and it is generally assumed to be incapable of dimerization.

However, its ability to dimerize has never been tested directly until

recently [69]. Our Co-IP studies, however, like those of Jewell et al.

[69] reveal that the GFP-GRdim is capable of some ligand-

independent as well as ligand-dependent dimerization to the Flag-

GRwt which increases as GR concentration increases. Although

GFP-GRdim dimerization is most probably enhanced by binding

to the wild type Flag-GR, our results indicate that this mutation

(A458T) actually results in an impairment of dimerization rather

than abolition of dimerization as previously thought [70,71]. In

summation, these Co-IP results establish that at GRwt concen-

trations (medium and high) that result in cooperative ligand-

binding (Fig.2C), ligand-independent dimerization is observed,

which is not further increased by addition of DEX, but which is

decreased by the addition of CpdA.

To confirm the results obtained with Co-IP we conducted

FRET experiments with CFP- and YFP-tagged GRwt. These

constructs were co-transfected into COS-1 cells and were

expressed at levels similar to the low, medium and high GRwt

(Fig.4A & Fig.2C). In addition, a significant (P,0.05) increase in

the Hill slope was also observed at medium and high GR levels

(Fig.4A), similar to that evinced by GRwt (Fig.2C). The induction

of FRET through CFP-GRwt and YFP-GRwt was measured

before and at 1 minute intervals for 30 minutes after the addition

of DEX, which induces dimerization (Fig.4B). As dimerization

levels of the heterodimer pair CFP-GR and YFP-MR have been

shown to be influenced by ligand concentration [72], we used

1026 M DEX to induce complete dimerization as this is a

saturating concentration of the ligand [55]. Cells were selected

from within each population group (low, medium or high), which

expressed similar levels of the two fluorescently-tagged GRs and

were screened in order to ensure that the CFP-GRwt concentra-

tion within each cell fell within a predetermined range established

from transfection populations used for saturation binding (Fig.S1B

in File S1). The FRET images (Fig.4B) clearly show ligand-

independent dimerization of GR before addition of DEX, mainly

in the cytoplasm but also in the nucleus (most visible at medium

and high GR concentrations), while addition of DEX results in

substantial nuclear localization of dimerized GR that is fully

achieved by 30 min at all concentrations of GR.

Due to the nature of our studies, direct comparison of FRET

levels between the three receptor concentrations cannot be made

without first normalizing for differences in GR expression. In

order to correct for this, the average FRET data (Fig.4C) for each

cell was normalized over its un-induced FRET value (Fig.4D).

This generated curves which represent the fold-increase in FRET

at each of the three GR concentrations (Fig.4D). By fitting

sigmoidal dose-response variable slope curves to this normalized

FRET data, maximal fold-induction data of FRET was generated

for each of the three GR concentrations (Fig.4E). The levels of

maximal fold-induction following DEX-stimulation decreased

significantly (P,0.001) as GR concentration increased (Fig.4E).

This reflects the increase in ligand-independent FRET values we

see as GR concentrations increase (Fig.4B&C). In order to

quantify ligand-independent dimerization we developed a math-

ematical model which calculates the level of GR dimerization

prior to DEX administration (Supplementary model S1 in File S1).

The model indicated that at low GR concentrations roughly two

thirds of the receptors are monomers and that this drops to around

one third monomers at the medium and high GR concentrations

(Fig.4F).
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The FRET results showing a significant decrease in maximal

DEX-induced dimerization (Fig.4E) and a significant increase in

percentage dimers prior to induction (Fig.4F) at medium and high

GRwt concentrations suggest that ligand-independent dimeriza-

tion occurs at these levels of GR. This is supported by the Co-IP

results showing significant un-induced dimerization (Fig.3D) and

maximal dimerization, which is not further increased by DEX, but

is abrogated by CpdA, at these same levels of GRwt (Fig.3E). Thus

together the FRET and Co-IP results suggest that at GR

concentrations that show an increase in cooperative ligand-

binding (Fig.2C, 3A & 4A), ligand-independent dimerization

increases and is probably a prerequisite for cooperative ligand-

binding.

Transactivation of a multiple GRE-containing promoter-
reporter reveals that the increase in potency and shift in
the bio-character of partial agonists requires preformed
GR dimers

Having established that a significant increase in the transactiva-

tion potency of the multiple GRE-containing promoter-reporter,

pTAT-GRE2-E1b-luc, occurs at medium and high GRwt

concentrations (Fig.1E) and that these concentrations of GRwt

bind ligand cooperatively (Fig.2C) as a result of preformed GR-

dimers (Fig.3D & Fig.4F) we were interested in the effect of

dimerization on potency of transactivation. To this end we

repeated the experiment in Fig1B and compared the effects of

GRwt to that of the GRdim mutant with its diminished ability to

dimerise. GR levels were once again monitored throughout by

immunoblotting to ensure that low, medium and high GRwt as

well as low and medium GRdim concentrations were expressed

(Fig. S1A in File S1).

Dose response curves of DEX-induced transactivation were

normalised to maximal induction for easy comparison and

illustrate the clear left shift in response at medium and high

GRwt concentrations (Fig. 5A), while at the comparable medium

GRdim level the same did not occur (Fig.5B). Statistical

comparison of transactivation potency (Fig.5C) indicated signifi-

cantly (P,0.001) increased potency at medium and high GRwt

concentrations, but not at the medium concentration of GRdim,

despite the fact that this concentration of GRdim is equivalent to

that of the medium GRwt concentration (Fig.2C). In addition,

GRdim in contrast to GRwt, showed no significant change in

potency as its concentration increased from low to medium levels

(Fig.5C). Thus there appears to be a direct correlation between

Figure 3. Ligand-independent dimerization of GRwt increases significantly at GR concentrations displaying cooperative ligand-
binding. COS-1 cells were transiently transfected with GFP-GRwt and Flag-GRwt at low, medium or high levels. (A) Summary table of GFP-GRwt and
Flag-GRwt saturation binding results. Statistical analysis of maximal binding (Bmax) compared to GRwt levels (Fig. 2C) was carried out using one-way
ANOVA followed by Newman-Keuls post-test. Conditions with different letters are statistically different from one another (P,0.01). Statistical analysis
of Hill slope and Kd against the low GR concentration condition were carried out using one-way ANOVA followed by Newman-Keuls post-test
(P*,0.05, P**,0.01). Results represent a minimum of two independent experiments performed in triplicate (6SEM). (B–E) Co-IP was performed on
COS-1 cells expressing low, medium or high concentrations of GFP-GRwt and Flag-GRwt or GFP-GRdim and Flag-GRwt using anti-flag beads to
precipitate flag-tagged proteins. Precipitated fractions were analyzed with immunoblotting with an anti-GR antibody. Flag-GR and GFP-GR
concentrations were quantified using UN-SCAN-IT software. GFP-GR pull down was then normalized over Flag-GR levels. (B) Co-IP controls and their
inputs containing Flag-GRwt or GFP-GRwt or GFP-GRdim only at low, medium or high concentration. Cells were induced for 1 hour with 1026 M DEX.
(C) Co-IP after induction with ethanol (EtOH), 1026 M DEX or 1025 M CpdA for 1 hour. (D) Quantification of ligand-independent (EtOH) dimerization.
Statistical analysis was through two tailed unpaired t tests of GRwt against GRdim (*P,0.05) and one-way ANOVA followed by Dunnett’s post-test
against low GR concentration within GRwt (1P,0.05, 11P,0.01) or GRdim populations. (E) Normalized GFP-GR pull down, following induction with
with ethanol (EtOH), 1026 M DEX or 1025 M CpdA, was expressed relative to DEX GRwt set at 100 percent, at each receptor level. Statistical analysis
was carried out using ANOVA followed by Dunnett’s post-test against DEX stimulation of GRwt at each receptor level (P*,0.05, P**,0.01). Results in
(D) and (E) are representative of three independent experiments (6SEM).
doi:10.1371/journal.pone.0064831.g003
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increased potency in transactivation, positive cooperative ligand-

binding and the presence of pre-existing GR dimers, which only

occur at the medium and high GRwt concentrations. As

cooperative ligand-binding is implicated in the increased potency

observed at medium and high GRwt concentrations, we wondered

if cooperative behaviour would also be evident for transactivation.

However, no change in the Hill slope of transactivation is seen,

with values at all GR concentrations reflecting non-cooperative

behaviour (Fig.5D).

To establish whether the shift in potency in the transactivation

of the multiple GRE-containing promoter-reporter seen with

DEX at medium GRwt, but not GRdim, concentrations also holds

for other ligands we induced with cortisol, the endogenous human

GR ligand, MPA, a GR ligand purported to have partial agonist

activity and RU486, a GR antagonist with partial agonist activity

[73]. Although their potency shifts are less extreme, we saw the

same trend emerging for cortisol, MPA and RU486 as for DEX

(Table S2 in File S1) in that an increase in potency occurred at the

medium GRwt, but not the GRdim, concentration (Table S1 in

File S1). Specifically, the fold-increase in potency from low to

medium GRwt concentrations for these ligands was 48-, 2.6- and

1.9-fold for cortisol, MPA and RU486, respectively, which is less

than that seen with DEX and raises the question of whether

positive cooperative ligand-binding, which was only demonstrated

for DEX, occurs for partial agonists and antagonists. In addition

the lower increase in EC50 seen with MPA and RU486 as a result

of increased GR concentration suggests that positive cooperative

ligand-binding and the potency increase it elicits may be ligand

specific. Furthermore, as others had previously shown a shift in

bio-character of partial GR agonists at higher GR concentrations

[41,42] we expressed maximal transactivation of cortisol, MPA

and RU486 as a percentage of the maximal DEX induction at the

same concentration of GRwt and GRdim (Fig.5E). The partial

agonists MPA and RU486, but not the full agonist cortisol,

Figure 4. Ligand-induced dimerization decreases as GRwt concentration increases reflecting a higher percentage of ligand-
independent dimerization. COS-1 cells were transiently transfected with CFP-GRwt and YFP-GRwt (low, medium or high levels). (A) Summary
table of CFP-GRwt and YFP-GRwt saturation binding results. Statistical analysis of maximal binding (Bmax) compared to GRwt levels (Fig. 2C) was
carried out using one-way ANOVA followed by Newman-Keuls post-test for Bmax. Conditions with different letters are statistically different from one
another (P,0.01). For Hill slope and Kd, Newman-Keuls post-test (P*,0.05) against the low GR concentration condition was performed. Results
represent a minimum of two independent experiments performed in triplicate (6SEM). (B–F) FRET was carried out on cells expressing CFP-GRwt and
YFP-GRwt at low, medium or high concentrations. Cells were treated with 10-6 M DEX for 30 minutes while F-don, F-acc and FRET was monitored at
37uC. (B) Representative corrected FRET signals from cells expressing CFP-GRwt and YFP-GRwt at low, medium and high levels. The outer white lines
in the FRET images designate the cellular membrane which has been used as the ROI. The nucleus in each cell has also been delineated with a white
line. (C) Average FRET signal plotted against time and fitted to a sigmoidal dose-response variable slope curve. (D) Fold-increase in FRET response was
calculated by normalizing each experiment to its un-stimulated FRET signal and fitted to a sigmoidal dose-response variable slope curve which
generates (E) maximal fold-induction of FRET. Statistical analysis was carried out using one-way ANOVA followed by Newman-Keuls multiple
comparison test (***P,0.001). (F) Mathematical derivation of FRET data (supplementary information in File S1) yields percentage moles of GR
occurring as either monomers or homodimers prior to ligand stimulation. Statistical analysis was through one-way ANOVA followed by Dunnett’s
post-test against low GR concentration within monomers (1P,0.05) or dimers ({P,0.05) and two tailed unpaired t tests comparing percentage
monomers against percentage dimers at each GR concentration (*P,0.05). Results from C–E are representative of seven independent experiments
(6SEM), while results in (F) represent a minimum of four independent experiments (6SEM).
doi:10.1371/journal.pone.0064831.g004
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displayed significant (P,0.05) increases in maximal efficacy

relative to DEX at GRwt concentrations, which displayed positive

cooperative ligand-binding due to preformed dimers (Fig.5E).

Further strengthening the argument for the influence of ligand-

independent dimerization on these bio-character shifts is the fact

that no shift in the bio-character of either MPA or RU486

occurred as the concentration of GRdim increased (Fig.5E).

We also examined transactivation through a single GRE-

containing promoter-reporter, pDODLO (Fig.S2 in File S1), and

although no significant ligand-induced activation through GRdim

was observed, the transactivation efficacy generally increased with

an increase in GRwt concentration (Fig.S2B in File S1), as was

seen with the multiple GRE-containing promoter-reporter

(Fig.1B). Ligand-independent activation also displayed a signifi-

cant (P,0.001) GR concentration-dependent increase through

both GRwt and GRdim, although this was significantly (P,0.01)

reduced via the GRdim (Fig.S2A in File S1).

To sum up, preformed GR dimers, such as found at the

medium and high GRwt, but not at the medium GRdim

concentration, are required for the significant increase in the

potency of transactivation of a multiple GRE-containing promot-

er-reporter and the shift in bio-character of partial GR agonists.

Cooperative ligand-binding coupled to ligand-
independent loading of GRwt, but not GRdim, on the
endogenous GILZ gene promoter contributes to shift in
potency and ligand-independent transactivation

Given that preformed GR dimers (Fig.3D & Fig.4F), with the

ability to bind ligand cooperatively (Fig.2C), were shown to be

Figure 5. GR dimerization is required for shift in potency and bio-character in transactivation of a GRE-containing promoter-
reporter. COS-1 cells were transiently transfected with (A) GRwt (low, medium or high levels) or (B) GRdim (low or medium high levels) and the GRE-
containing promoter-reporter pTAT-GRE2-E1b-luc. Cells were induced with ethanol or increasing concentrations (10212 to 1025 M) of DEX for
24 hours. Luciferase relative light units (RLU) were normalized against protein concentrations and maximal induction to generate % transactivation
data. Sigmoidal dose-response curves were fitted to the experimental data to generate (C) log EC50 and EC50 values. Statistical analysis of Log EC50

compared GRwt or GRdim to the low GRwt condition using one-way ANOVA followed by Dunnett’s post-test (***P,0.001). (D) To generate Hill slope
values for DEX transactivation, response (RLU/mg protein) was plotted against Log (M) DEX and analyzed using sigmoidal dose-response variable
slope curves. (E) To investigate bio-character shift cells were induced with increasing concentrations (10212 to 1025 M) of ligand for 24 hours and
dose response curves generated. Percentage induction of cortisol (F), MPA or RU486 represents maximal induction of each of these test compounds
relative to that of DEX (set at 100 percent) at the same GR concentration and via the same GR construct. Statistical analysis was through two tailed
unpaired t tests (*P,0.05). Results represent a minimum of three independent experiments performed in triplicate (6SEM).
doi:10.1371/journal.pone.0064831.g005
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necessary for the increase in potency of transactivation of a

synthetic GRE-containing promoter-reporter (Fig.5C) and that

ligand-independent transactivation of the same promoter was

shown to increase exponentially with increased GRwt concentra-

tions (Fig.1C), we sought to test these parameters on the

endogenous GILZ gene. The GILZ protein is a potent anti-

inflammatory regulatory protein [74], the promoter of which is

known to contain multiple GRE’s [75] shown to be under the

direct control of activated GR [56,76].

As before COS-1 cells were transiently transfected with low,

medium and high GRwt or low and medium GRdim levels and

GR expression levels were monitored by immunoblotting (Fig.S1A

in File S1). Cells were induced with a range of DEX concentra-

tions and GILZ mRNA expression plotted relative to un-induced

vehicle (ethanol) levels (Fig.6A). Similarly to the promoter-reporter

assay (Fig.5A&B), a left shift in dose response curves was seen with

increased concentrations of GRwt, but not with GRdim (Fig. 6A).

At medium and high GRwt concentrations, but not at medium

GRdim concentrations, a significant (P,0.01) increase in the

potency of transactivation of the GILZ gene was observed (Fig.6B).

Specifically, at medium GRwt concentrations an 80-fold increase

was observed, which escalated to a 500-fold increase at high GRwt

levels. Furthermore, although no significant (P.0.05) difference

was seen between the potency values at low GRwt and GRdim

levels, at medium GR levels there was a significant (P,0.05) 25-

fold difference between the GRwt and GRdim (Fig.6B). In

addition, ligand-independent transactivation increased significant-

ly (P,0.01) as GRwt concentration increased, but not as GRdim

concentration increased (Fig.6B). Moreover, the ligand-indepen-

dent transactivation at the medium concentration of GRwt was

significantly (P,0.05) greater than that at the medium concen-

tration of GRdim (Fig.6B), highlighting the importance of

dimerization in ligand-independent transactivation.

The increase in ligand-independent transactivation at GRwt

concentrations shown to have increased ligand-independent

dimerization (Fig.3D & Fig.4F), coupled to the fact that the

magnitude of the increase in transactivation potency of 500-fold at

high GRwt levels appears to exceed the magnitude expected from

a 4-fold increase in GR levels and a 3-fold increase in ligand-

binding affinity (Fig.2C) suggested that additional factors may be

involved in the increase in potency. As binding of the GR to DNA

is a primary requirement [77,78] for transactivation we examined

loading of the GR onto the promoter of the GILZ gene. COS-1

cells were transfected with GRwt (low, medium and high levels)

and GRdim (low and medium levels) and induced with vehicle and

DEX (1026 M) before ChIP was performed using the GR

antibody. Ligand-independent recruitment to the promoter was

evaluated by comparing loading after ethanol induction in the

absence of transfected GR to loading in the presence of the

transfected GR (Fig.6C, open bars). A significant (P,0.05) 2-fold

increase in loading of medium and high concentrations of GRwt

was observed, while no increase in loading was observed at

medium GRdim concentrations despite the fact that the GR

concentrations are not significantly (P.0.05) different from that of

medium GRwt (Fig.2C). It may be argued that an increase in

DNA loading reflects the increased GR pull-down at medium and

high GRwt levels, however, the low GRwt concentration displayed

no increase in non-specific DNA-loading when compared to the

no GR transfected condition and neither did the low or medium

GRdim concentrations (Fig.6C). In the presence of saturating

concentrations of DEX, however, similar loading of GRwt resulted

(Fig.6C, closed bars). Pursuant to this, calculation of the DEX-

induced fold-recruitment of GRwt (Fig.6D) showed a significantly

(P,0.01) increased loading at low GRwt concentration, due to the

significantly (P,0.05) lower basal, ligand-independent loading of

the GRwt (Fig.6C, open bars).

To conclude these results suggest that the ability of GRwt, but

not GRdim, to form ligand-independent dimers is a prerequisite

for cooperative ligand-binding and priming of the GILZ promoter

by ligand-independent DNA-loading of GRwt, which facilitates

ligand-independent transactivation and an increase in the potency

of transactivation.

Discussion

This study aimed to evaluate and quantify the impact of GR

concentration on GC sensitivity. We now report that at high

receptor density the GRwt undergoes ligand-independent dimer-

ization, which results in cooperative ligand-binding and basal

priming of transactivation, both of which produce a significant

increase in transactivation potency as well as a shift in the bio-

character of partial agonists. Furthermore, we show that if the

ability to form ligand-independent GR dimers is abrogated this

behaviour is attenuated.

We show that at higher (.153 fmol/mg protein) concentrations

of GRwt ligand-independent dimerization of the GR increases

significantly. Specifically, CoIP and FRET studies in living cells

indicate a 2- to 3-fold increase in ligand-independent dimerization

at these higher GRwt concentrations, which is not obtained with

similar concentrations of the dimerization deficient mutant,

GRdim (Fig.3D & Fig.4F). In the absence of ligand these

preformed GR-dimers are shown to have two immediate down-

stream effects. Firstly, a 2-fold increase in ligand-independent

GRwt loading on the GILZ promoter (Fig.6C), and secondly, a 2

or 10-fold increase in ligand-independent transactivation of the

GILZ gene (Fig.6B) or GRE-containing promoter-reporters

(Fig. 1C & Fig.S2A in File S1), respectively. The fact that at

similar concentrations the GRdim did not result in significant

ligand-independent loading of the GR onto the GILZ promoter

(Fig.6C), nor did it produce comparable ligand-independent

transactivation (Fig.6C & Fig.S2A in File S1) substantiates the

view that preformed GR dimers are required for this behaviour. In

the presence of ligand the preformed GRwt dimers, resulting from

higher GR concentrations, show cooperative ligand-binding (Hill

slope.1) and display up to a 3-fold increase in ligand-binding

affinity (1/Kd) for DEX (Fig.2C). Pursuant to ligand-independent

loading of GR onto promoter and cooperative ligand-binding the

potency (EC50) of DEX transactivation increases significantly, up

to 2600-fold for the multiple GRE-containing promoter-reporter

(Fig.5C) and up to 500-fold for the GILZ gene (Fig.6B).

Furthermore, preformed GRwt dimers potentiate the shift in

bio-character of partial agonists, such as MPA and RU486

(Fig.5E). Neither cooperative ligand-binding nor the increase in

transactivation potency or bio-character shift of partial agonists is

observed when GRdim is used at a higher concentration, which

supports our claim that preformed GR dimers are responsible for

these phenomena.

Model
Our results suggest two parallel mechanisms for GR signalling

governed by GR concentration (Fig.7). At low concentrations of

GR, monomeric GR predominates and non-cooperative ligand-

binding (Fig.7A) occurs, which then potentiates ligand-induced

dimerization (Fig.7B). In contrast, at high GR concentrations the

monomer-dimer equilibrium shifts and more dimers are present

(Fig.7C). These preformed, ligand-independent dimers display

positive cooperative ligand-binding (Hill slope.1), which implies

an increase in ligand-binding affinity (Fig.7D). Thermodynami-
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cally, the model is supported as the free energy (DG) to produce

ligand-bound dimerized GR is the same, whether proceeding via

preformed GR dimers or via ligand-induced dimerization (Fig.7

insert).

Once ligand-independent dimerization has occurred our model

suggests that association with DNA can occur and result in an

increase in basal transactivation (Fig.7E). Pursuant to ligand-

independent loading of GR to promoter or priming of the

promoter, added ligand will now result in a response with

increased potency (Fig.7F). In contrast at low GR levels where

priming does not occur, as GR monomers predominate in the

unliganded state, addition of ligand produces a response with a

lower potency (Fig.7G)

GR dimerization
Intrinsic to our model concerning GR dimerization are the

presumptions (i) that the GR can dimerize in the absence of ligand

and (ii) that GR can dimerize in the absence of DNA or (iii) that

unliganded, but dimerized, GR can bind DNA, albeit with lower

affinity than liganded, dimerized GR.

Ligand-independent dimerization
Few researchers have tackled the first presumption, that of

ligand-independent dimerization at high GR concentrations,

directly and furthermore their results are contradictory. One of

the few findings that directly support our CoIP (Fig.3D) and FRET

results (Fig.4F), indicating ligand-independent dimerization at high

GR concentrations, is that by Drouin et al. [79] who diluted

purified rat liver GR to shift the equilibrium of GR from homo-

dimers present in the concentrated GR preparation to monomers

in the diluted preparation. Unfortunately, no direct evidence for

this is provided in the published work. However, Savory et al. [65]

using high salt conditions to dissociate immunoprecipitated rat GR

from its chaperone complex also demonstrate ligand-independent

dimerization of the GR in the cytoplasm, although they did not

investigate the effect of GR concentration on this phenomenon. In

contrast, although Robblee et al. [80], using purified human GR in

the absence of ligand and analytical ultracentrifugation, observe a

species consistent with a GR dimer, they conclude that it reflects a

functionally incompetent species as its concentration (,7%) does

not increase with increased GR levels. Wrange et al. [81], however,

found that when using glycerol gradient centrifugation of purified

rat GR, ligand-bound GR-dimers were unstable unless stabilised

by either DNA-binding or glutaraldehyde cross-linking but when

gel filtration was used the dimer was stable. Furthermore, they also

found, using glycerol gradient centrifugation, that only the

preformed GR-dimer-DNA complex was stable in the absence

of ligand. Taken together the results from Robblee and Wrange

may suggest that the unliganded GR dimer is much less stable

Figure 6. Dimerization of GR is essential for ligand-independent loading of GR on endogenous GILZ gene promoter. (A–B) COS-1 cells
expressing GRwt (low, medium or high levels) or GRdim (low and medium levels) were induced for 8 hours with either ethanol or a range of DEX
concentrations. RT-PCR of the GILZ gene was conducted and expression calculated relative to GAPDH for each condition. Sigmoidal dose-response
curves were fitted to the experimental data. (A) Dose response curves of fold-induction of GILZ gene. (B) Summary table of GILZ transactivation
results. Ligand-independent activation of GILZ is expressed relative to cells with no transfected GR. Statistical analysis of GILZ transactivation
parameters comparing GRwt or GRdim to the low GRwt condition were carried out using one-way ANOVA followed by Dunnett’s post-test (**P,0.01,
***P,0.001) and two tailed unpaired t tests of low GRwt against low GRdim or medium GRwt against medium GRdim ({P,0.05). (C–D) COS-1 cells
transfected without or with GRwt (low, medium or high levels) or GRdim (low and medium levels) were induced for 1 hour with either ethanol or
1026 M DEX. ChIP was performed using anti-GR antibody. RT-PCR of the promoter of the GILZ gene was performed on input chromatin, as well as the
chromatin precipitated with anti-GR antibody. GILZ pull-down was normalized to input DNA. (C) GR recruitment to GILZ promoter expressed relative
to the ethanol-induced no GR transfection condition. (D) DEX-induced fold-recruitment of GRwt to the GILZ promoter expressed relative to the
ethanol condition within each transfection group. Statistical analysis of DNA-loading (C) comparing either ethanol- or DEX-induced conditions to
their respective no GR transfected condition were carried out using one-way ANOVA followed by Dunnett’s post-test (*P,0.05,**P,0.01,
***P,0.001). Fold-recruitment following DEX induction (D) statistical analysis comparing to low GRwt levels was through one-way ANOVA followed
by Dunnett’s post-test (*P,0.05). All results represent a minimum of three independent experiments performed in triplicate (6SEM).
doi:10.1371/journal.pone.0064831.g006
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than the ligand-bound dimer and that CoIP, such as used in the

present study, rather than centrifugation may be a better

technique to observe this GR species. Furthermore this would

further support our model by suggesting that the Kd for the

dimerization of unliganded GR (KdC in Fig.7) is greater than that

of ligand-bound GR (KdB in Fig.7).

Ligand-dependent dimerization without DNA
The second presumption that GR can dimerize in the absence

of DNA has most often been addressed in the literature by re-

phrasing the question as whether GR (ligand-bound in most

instances) binds to GREs as a preformed dimer or dimerizes

following binding of two GR monomers to each of the two half-

sites within the GRE. Here again the literature is controversial.

Our FRET results (Fig.4B) certainly confirm that GR dimerization

can occur in the cytoplasm and is therefore independent of DNA

binding. This finding is supported by immunoprecipitation [65]

and centrifugation [81] studies demonstrating association of

preformed ligand-induced GR-dimers to DNA. Robblee et al.

[80] refute these findings by suggesting that ligand-bound GR is

exclusively monomeric and that dimerization only occurs due to

cooperative binding of the GR-monomers to DNA, however, as

discussed above it may be that the ultracentrifugation technique

used in this study is not ideal for observing the GR-dimer. Ong et

al. [82] also strongly oppose the idea of pre-formed GR-dimers

binding to DNA, using both a theoretical (based on the fact that

multiple steps in the GR-signal transduction cascade preserve a

first-order Hill dose–response curve (FHDC), which cannot

theoretically be maintained if preformed dimers bind DNA) and

an experimental approach (showing that GRdim mutants main-

tain a FHDC). Although DNA-independent GR dimerization does

not preclude the binding of GR monomers to the DNA and their

subsequent dimerization, it would suggest that were GR dimer-

ization to be abrogated (by using GRdim mutants, for example) it

should lead to an increase in potency due to the increased

availability of monomers. Tellingly, however, results from Ong et

al. [82], as well as our own results (Fig.5C & Fig.6B), show far

greater potency through the GRwt than via the GRdim.

Ligand-independent dimers can bind to DNA
Further support not only for the binding of pre-formed GR

dimers, but also of unliganded GR dimers, to DNA comes from

electro mobility shift studies [79] showing not only that unliganded

GR can bind to DNA but that the affinity of the GR-monomer is

much lower than that of the GR-dimer (Kd = 62 nM versus

Kd = 1.21 nM [77] or 1nM versus 0.23nM [79]). Association

studies comparing the association of unliganded GR dimer to that

of GR monomer then also show slower kinetics for the binding of

Figure 7. Model comparing down-stream effects at high and low GRwt concentrations. Pathways (A), (B) and (G) denote conditions at low
GR concentrations. (A) Non-cooperative ligand-binding to GR monomers, followed by (B) ligand-dependent dimerization and (G) transactivation.
Pathways (C), (D), (E) and (F) denote conditions at high GR concentrations. (C) Ligand-independent dimerization of the GR, followed by either (E)
ligand-independent DNA loading and transactivation and/or (D) cooperative ligand-binding and (F) transactivation with increased potency. Graph
insert: Transactivation results from Fig. 1B reworked as percentage maximal transactivation. Indicated is fold-increase in ligand-independent
transactivation (E) and increase in transactivation efficacy and potency at higher concentrations of GR - difference between (G) and (F).
doi:10.1371/journal.pone.0064831.g007
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GR monomer to DNA [79]. This then supports our ChIP results

showing that unliganded GR dimers, but not GR monomers, load

onto DNA (Fig.6C). Further support for the presence of

unliganded GR dimers in the nucleus comes from our FRET

results (Fig.4B) that show the presence of GR dimers in the

nucleus, albeit at lower levels than in the cytoplasm, before

addition of ligand at medium and high GR concentrations.

Intriguingly, not-withstanding their assertion that this is via

sequential monomer association, the work by Robblee et al. [80]

suggests that in the presence of ligand the total binding affinity for

saturating a single DNA response element with two GR monomers

(Ka = 5.1861013 M22) is higher than that found in the absence of

ligand by Drouin [79] or Segrad-Maurel [77]. Together these data

suggest a hierarchy of binding affinities for the GR: ligand-bound,

dimerized GR . unliganded, dimerized GR $ ligand-bound,

monomeric GR . unliganded, monomeric GR which is consistent

with our model ((E) & (F/G) in Fig.7) and ChIP results (Fig.6C).

Cooperative ligand-binding
Theoretically, positive cooperative ligand-binding implies li-

gand-independent dimerization of the GR, which effectively

creates two ligand-binding sites where the association of the first

ligand facilitates the binding of the second in a more energetically

favourable reaction and thus increases the affinity of the receptor

for the ligand [83]. The Hill slope is known to provide a minimum

estimate of the number of binding sites involved [62] with a

theoretical maximum Hill slope for binding to a receptor with a

single binding site of 1, which increases to a maximum of 2 when

two binding sites are present. Our results demonstrated positive

cooperative ligand-binding to the GRwt as GR concentration

increased 4-fold (Fig.2C) with Hill slope values for untagged-GRwt

increasing up to 1.72 (Fig.2C), which closely matches in vitro

binding studies demonstrating a shift in Hill slope from 1.0 to 1.5

as GRwt concentrations increased 4-fold [43]. Furthermore, the

increase in Hillslope from 1.08 to 1.72 represents a 6-fold decrease

in the concentration of ligand required to shift receptor occupancy

from 10 to 90% and a 3-fold increase in ligand-binding affinity (1/

Kd) (Fig.2C). The canonical view of ligand-binding affinity has

been seen as ‘‘an invariant parameter across tissues within a

species’’ [1], however, there is mounting evidence that a variety of

factors may influence this parameter. The phosphorylation state of

the GR [84], the presence of proteins affecting the free

concentration of GCs such as CBG [85] and 11bHSD [11], and

co-modulators of the receptor such as Hsp90 [86], immunophilins

(FKBP52 and PP5) [87] and ubiquitin-congugating enzyme 9

(Ubc9) [43] have all been shown to alter ligand-binding affinity. In

addition, in a study investigating the GR levels in female Sencar

mice treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) a

4-fold reduction in GR levels was accompanied by a 2- to 4-fold

increase in Kd [22], supporting our results (Fig.2C) and

substantiating our model (KdA . KdD in Fig.7). Furthermore,

although dimerization of the GR [43] and ER [88] has been

linked to its ability to bind ligand cooperatively at high

concentrations, our results are the first to correlate this behaviour

with an increase in ligand-independent dimerization (Fig.3 &

Fig.4). Since positive cooperative ligand-binding implies ligand-

binding to more than one binding site, our results strongly suggest

that ligand-independent dimerization at high concentrations of

GRwt facilitates positive cooperative ligand-binding [83]. This is

supported by the fact that GRdim was unable to elicit cooperative

ligand-binding at higher GR concentrations (Fig.2C) and further

corroborates our model predicting preformed GRwt dimers at

higher concentrations (compare (A) to (D) in Fig.7).

Ligand-independent dimerization of the GR may not only

facilitate cooperative ligand-binding due to the creation of two

ligand-binding sites but may result in a receptor conformation

which results in the recruitment of co-modulators which enhance

ligand-binding affinity. It follows that a dynamic ligand-binding

affinity is also linked to the receptor’s ability to dimerize and may

be an evolutionary mechanism whereby tissue specific GC

sensitivity is achieved.

Down-stream effects on transactivation and
physiological relevance

Having elucidated the immediate effects of ligand-independent

dimerization of the GR at high concentrations, namely, ligand-

independent DNA-loading and cooperative ligand-binding, we

tested its down-stream consequences on ligand-independent and

ligand-dependent transactivation. The effect of ligand-indepen-

dent GR loading of preformed GR-dimers on the GILZ promoter

is evidenced through our RT-PCR results, which demonstrate

significantly increased ligand-independent transactivation of the

GILZ gene at higher GRwt, but not GRdim, concentrations

(Fig.6B). Furthermore, this increase in basal transactivation also

seen with the GRE-containing promoter-reporters (Fig.1C &

Fig.S2A in File S1) is similar to reports in the literature [89].

Intriguingly, since several recent reports have shown that the GR,

in response to a variety of effectors, can be transcriptionally

activated and recruited to endogenous promoters in the absence of

GCs [1,90,91,91–94,94], it is tempting to speculate that this may

involve increased GR loading of preformed GR-dimers onto the

DNA. While ligand-independent activation of the GR may be

especially relevant to the treatment of inflammatory diseases, the

mechanisms may not always involve ligand-independent GR

promoter recruitment [1,95]. However, Bain et al. [78] suggests

that the interaction of GR with DNA may be the primary

determinant of transcriptional activity, consistent with our model

(see (E) leading to (F) in Fig.7).

Our model suggests that pursuant to increased GRwt concen-

trations, ligand-independent dimers form, which results in ligand-

independent DNA-loading and basal transactivation. Addition of

ligand, which can then bind cooperatively to these preformed and

preloaded GR-dimers, causes an exponential increase in the

potency (EC50) of transactivation (see (F) in comparison to (G) in

Fig.7). Our results both on a GRE-containing promoter-reporter

(Fig.1E & Fig.5C) and an endogenous gene containing GREs in its

promoter (Fig.6B) certainly show a significant increase in potency

at higher GRwt, but not GRdim, concentrations corroborating the

model (see (F) versus (G) in Fig.7). While the influence of GR

concentration has not been examined on an endogenous gene

before, a number of studies have demonstrated an increase in the

transactivation potency at increased GRwt concentrations in

promoter reporter assays [39,43]. However, the only article which

calculated an EC50 for transactivation only demonstrated a 7.5-

fold increase in potency at an unspecified increase in GRwt

concentration [43]. Intriguingly, the same article alludes to the fact

that the GR coactivator, ubiquitin-congugating enzyme 9 (Ubc9),

influences high GRwt concentrations preferentially resulting in a

further 5.1-fold increase in potency when co-expressed [43].

Indeed, even the combination of increased GRwt concentration

and Ubc9 co-expression may only result in a 38-fold increase in

potency. This is a far cry from our findings which are hard to

explain simply through the marginal increases in cooperative

ligand-binding and ligand-binding affinity. Yet the introduction of

ligand-independent DNA-loading is a powerful mechanistic tool,

which may encompass the priming of ligand-dependent transcrip-

tion. As has recently been revealed, the activated GR binds almost
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exclusively to accessible chromatin [96], which is rendered as such

by ancillary transcription factors, most notably the activator

protein 1 (AP1) [97]. Priming of GR-responsive chromatin by the

binding of AP1 is a prerequisite for maximal GR recruitment and

transcription. We thus hypothesize that GR itself may also, like

AP1, act as a pioneering factor through ligand-independent DNA-

loading of GR at increased GRwt concentrations and may act in a

similar fashion as AP1to recruit coactivators and comodulators

independently of ligand-binding, which when coupled to increased

GR concentration as well as cooperative ligand-binding may

account for the magnitude of the increase in the potency of

transactivation observed in our studies.

In a recent article from this group [98] we examined the

influence of GR-concentration and the ability to dimerize on the

rate of nuclear import and export as well as nuclear localization.

The same receptor concentrations were used as in the current

study, and although we found a reduction in the observed rate of

nuclear import and increased rate of nuclear export at low GRwt

concentrations and by the GRdim, the results did not, however,

show that cooperative ligand-binding, and thus presumably the

formation of ligand-independent dimers, influenced the examined

parameters. Thus we suggest that longer nuclear retention with

faster kinetics of import may be GR-concentration dependent

rather than being influenced by the formation of preformed GR-

dimers.

As has been demonstrated for DEX-Mes, RU486 and Prog in

promoter-reporter assays [18,41], we also show that increasing

GRwt levels result in a bio-character shift of the partial agonists

MPA and RU486, (Fig. 5E). Newton et al. [1], in a recent review,

provides a very convincing explanation for the bio-character shift

of partial GR agonists at higher GR levels. However, in our work

the shift from weak to partial agonist or from partial to full agonist

for RU486 and MPA, respectively, at higher GR levels is not seen

with GRdim (Fig. 5E). Thus we suggest that the observed bio-

character shift is not only due to increased GR levels as suggested

by Newton [1] but are directly linked to preformed GR-dimers

and cooperative ligand-binding. Although cooperative ligand-

binding has only been demonstrated for DEX, these results

(Fig. 5E) suggest that the mechanistic change facilitated by ligand-

independent dimerization, which has been demonstrated at the

GRwt levels concerned, may alter the behaviour of partial

agonists, enhancing their capacity to transactivative. Furthermore,

the fact that GRdim does not elicit this bio-character shift at

higher GR concentrations further supports the concept that

preformed GR dimers, at higher GRwt concentrations, are a

prerequisite for the shift in bio-character of partial agonists.

The physiological relevance of this massive increase in potency

at GR concentrations which display ligand-independent dimer-

ization is that in tissues with high enough GR concentrations,

genes with GRE-containing promoters will be maximally activated

by even trace concentrations of GC. Therefore, even the lowest

levels of endogenous or pharmacologically administered GC will

be enough to induce maximal induction in tissues with high

enough GR concentrations. This increase in GC sensitivity has

been elegantly demonstrated in vivo in two gain of function knock-

in mouse models [99,100]. Furthermore, these tissues will have lost

the capacity to regulate their response to alterations in GC levels.

To illustrate, the concentration of free cortisol in the blood varies

from ,18.7 nM in the morning to ,3.3 nM at night [101], which

would mean that the increased EC50 value from 1.7 nM at low

GRwt concentrations to 0.03 nM at medium GRwt concentra-

tions for F (Table S1 in File S1) would entail a shift from a varying

circadian influence of endogenous cortisol on cells expressing GR

at the low concentration to a maximal response in cells expressing

the medium GR concentration.

Cells with GR concentrations high enough to result in the

significant formation of preformed ligand-independent dimers,

displaying positive cooperative ligand-binding and ligand-inde-

pendent priming of DNA, would therefore be hypersensitive to

DEX and would exist in a state of maximal transactivative

response once exposed to ligand were it not for ligand-induced

down-regulation of the GR. It is important to stress that the

medium to high GRwt concentrations reflect a GR concentration

range of 153 to 284 fmol GR/mg protein and although some

tissues do express GR at these elevated levels [28], the majority of

healthy cells within the human body will retain the capacity to

respond to changes in GC concentration due to their relatively low

GR levels. In addition, as the tK of unstimulated GR following

incubation with cycloheximide has been shown to be 44 hours,

which drops to 10 hours following stimulation with 10-5 M DEX

and cycloheximide [102], down-regulation of the GR would

eventually result in GR levels low enough to no longer result in

positive cooperative ligand-binding, although this would probably

take longer than the tK quoted in a system that was not exposed to

cycloheximide. Although a decrease in GR concentration would

blunt the hypersensitivity of cells expressing higher GR concen-

trations, our results clearly indicate that this blunting of response

has not occurred following 24 hours of DEX exposure. Further-

more, it has been demonstrated in binding assays conducted on

human tissue biopsies that elevated GR levels are maintained

despite exposure to physiologically basal GC levels [28,58].

Functional diversity elicited by dimerization
The interactions between proteins form part of nearly all

biological processes. Dynamic dimerization refers to the transitory,

non-covalent, association of two identical or closely related

proteins in response to a particular signal [103,104]. More often

than not dimerization results in an active complex the formation of

which initiates a signalling process, such as seen in the nuclear

receptor family [65,105]. Furthermore, the advantage of closer

proximity and favourable orientation elicited by GR dimerization

may account for the increase in DNA-binding affinity displayed by

GR dimers [77]. Intriguingly, the process of dimerization itself is

sufficient to activate some receptors [106,107], and has been

shown to increase as receptor concentration increases [88]. Thus

the ligand-dependent as well as ligand-independent dimerization

of receptors may be viewed as an evolutionary mechanism through

which greater functional diversity can be elicited through a single

protein species.

Conclusion

Considering the ubiquity of dynamic dimerization as a tool for

enhancing the functional diversity of proteins and nuclear

receptors in particular, could it be that ligand-independent

dimerization of the GR at high concentrations is a mechanism

employed physiologically to impart hypersensitivity to cells

expressing high GR levels?

Taken together our results suggest that cells containing higher

GR levels are primed, through DNA-loading of preformed GR

dimers, to respond to GCs at much lower concentrations due to

the increased affinity and cooperative ligand-binding brought

about by ligand-independent dimerization of the GR. This may

help to explain differences in tissue specific responses to GCs and

garner insight into GC hyposensitivity and hypersensitivity

disorders. Clearly GR concentration has far ranging effects on

the response to GCs and must be taken into account when
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designing and comparing tissue culture experiments, the staple of

most pharmacological research.

Supporting Information

File S1 Figure S1. Whole-cell saturation binding, im-
munoblotting and fluorescent intensity used to monitor
and determine GR levels. (A) COS-1 cells were transfected

with GRwt or GRdim (low, medium or high levels) during assays.

Immunoblotting was performed (see Material and Methods) on

cell lysates and pixels from densitometric analysis of the

immunoblots was correlated to GR levels (cpm/mg protein)

determined by whole cell saturation binding (see Materials and

Methods). A standard curve correlating GR concentrations in

cpm/mg protein derived from saturation binding to their

respective densitometric values (pixels) from immunoblotting was

produced (R2 = 0.9719). This curve was used to monitor and

determine GR levels throughout. (B) For FRET assays the relative

CFP-GR (F-don) expression levels in individual cells within low,

medium and high GR concentration populations were measured

and used to monitor GR levels. Exposure times of 1500 ms at

100% light intensity were used. F-don values reflect the CFP signal

after 30 minutes of DEX stimulation measured in a region of

interest in the nucleus of each individual cell. Cells with an F-don

emission of 0–600 where selected for the low [GR] concentration

(*, n = 10), F-don signals between 600–1200 for the medium [GR]

population ({, n = 7) and F-don of .1200 for the high [GR]

population (1, n = 7).Figure S2. Un-induced transactivation

increases and fold-induction decrease at higher GRwt concentra-

tion through single GRE. Cells were transfected with GRwt or

GRdim (low or medium levels) and 3000 ng pDODLO, a

promoter-reporter containing a single GRE. Cells were induced

with ethanol, 1026 M DEX, F, MPA or RU486 for 24 hours.

Luciferase activity was determined and relative light units (RLU)

were normalized against protein concentrations. (A) Un-induced

RLU/mg protein values following 24 hours ethanol stimulation.

Statistical analysis was through two tailed unpaired t tests of low

GRwt concentration against medium GRwt concentration

({{{P,0.001), low GRdim concentration against medium GRdim

concentration (111P,0.001) and GRwt against GRdim (**P,0.01,

***P,0.001). (B) Maximal induction and (C) fold-induction

(calculated as maximal induction normalized to un-induced

induction) were plotted. Statistical analysis was through one-way

ANOVA followed by Dunnett’s post-test comparing un-induced

(ethanol) conditions to the ligand-induced conditions within the

low ({{{P,0.001) or medium (1P,0.05, 11P,0.05) concentration

populations of GRwt or GRdim and two tailed unpaired t tests of

ligand-induced low GRwt concentration against medium GRwt

concentration (*P,0.05, **P,0.01, ***P,0.001). All results

represent two experiments performed in triplicate (6SEM). Model

S1. Mathematical model to calculate percentage monomers from

FRET data. Table S1. Average GR concentrations per cell at each

GR concentration. Table S2. GR levels and the ability to dimerize

influences potency (log EC50) of transactivation in a range of

ligands. Cells were transfected with GRwt or GRdim (low or

medium levels) and pTAT-GRE2-Elb-luc. Cells were induced

with ethanol or a range (10212 M to 1025 M) of F, MPA, or

RU486 for 24 h. Luciferase activity was determined and relative

light units normalized against protein concentrations. Sigmoidal

dose-response curves where fitted to the experimental data which

generated the potency (Log EC50), maximal induction (Bmax) and

fold-induction. Statistical analysis was carried out on logEC50-

values using one-way ANOVA followed by Newman-Keuls post-

test: (*P,0.05, **P,0.01, ***P,0.001) to compare GRwt and

GRdim to the low GRwt condition and ({P,0.05, {{P,0.01,
{{{P,0.001) to compare low GRwt against low GRdim or

medium GRwt against medium GRdim. All results represent a

minimum of three independent experiments performed in

triplicate (6SEM).
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