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Abstract

Background: Considerable progress has been made in the HCV evolutionary analysis, since the software BEAST was
released. However, prior information, especially the prior evolutionary rate, which plays a critical role in BEAST analysis, is
always difficult to ascertain due to various uncertainties. Providing a proper prior HCV evolutionary rate is thus of great
importance.

Methods/Results: 176 full-length sequences of HCV subtype 1a and 144 of 1b were assembled by taking into consideration
the balance of the sampling dates and the even dispersion in phylogenetic trees. According to the HCV genomic
organization and biological functions, each dataset was partitioned into nine genomic regions and two routinely amplified
regions. A uniform prior rate was applied to the BEAST analysis for each region and also the entire ORF. All the obtained
posterior rates for 1a are of a magnitude of 1023 substitutions/site/year and in a bell-shaped distribution. Significantly lower
rates were estimated for 1b and some of the rate distribution curves resulted in a one-sided truncation, particularly under
the exponential model. This indicates that some of the rates for subtype 1b are less accurate, so they were adjusted by
including more sequences to improve the temporal structure.

Conclusion: Among the various HCV subtypes and genomic regions, the evolutionary patterns are dissimilar. Therefore, an
applied estimation of the HCV epidemic history requires the proper selection of the rate priors, which should match the
actual dataset so that they can fit for the subtype, the genomic region and even the length. By referencing the findings
here, future evolutionary analysis of the HCV subtype 1a and 1b datasets may become more accurate and hence prove
useful for tracing their patterns.
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Introduction

The evolutionary analysis of hepatitis C virus (HCV) genetic

sequences has entered a new era since the BEAST software

(Bayesian Evolutionary Analysis by Sampling Trees) was released

in 2003 [1–3]. Using this software, the retrospective changes in the

HCV-infected population size can be illustrated as a Bayesian

Skyline Plot (BSP) [4,5], in which the population size is measured

on the vertical axis, while the elapsed time is scaled on the

horizontal axis [6–10]. In addition, a time-scale phylogenetic tree

is able to represent the diverse histories, from the most recent

common ancestor (tMRCA) to the most recent descendants [6].

Moreover, a phylogeographic tree can be reconstructed if the

information on the sampling geographic locations is provided,

which displays the transmission and migration histories of the virus

[8,11]. Perhaps the most important feature of the BEAST

program is the implementation of a Bayesian statistical framework,

which provides a role for prior knowledge or information [2]. Prior

information, specifically a prior probability distribution, expresses

one’s uncertainty for a given parameter before the data is

analyzed. It plays a critical role in generating the posterior, a

distribution that combines the prior and the data information. If

the sequences are sampled over a very short period of time, or at

the extreme, a single time point, the evolutionary rate is

completely determined by the prior information provided. In this

sort of case, providing improper prior information might actually

be worse than providing no information at all.

However, due to the shortage of historically archived samples,

the estimation of an accurate prior HCV evolutionary rate has

been difficult. Currently, the most widely used HCV rates are

7.961024 substitutions/site/year for the E1 region and 5.061024

for NS5B. Pybus et al. first used these rates to open the door to

investigating the epidemic history of HCV [9,12–14]. These rates

have been applied as prior rates, for example, in the analysis of

genotype 2 in West Africa [15], genotype 4 in Central Africa [16]

and subtype 1b in China [7]. Collectively, these two rates have

played an irreplaceable role in the study of HCV evolution in a
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variety of epidemic scenarios and for different genotypes and

subtypes, and have therefore enabled very important information

to be generated and invaluable inferences to be drawn.

Better HCV evolutionary rates may nevertheless still be

estimated. It is known that the above mentioned NS5B rate was

estimated based on 100 HCV subtype 1b sequences, each having

a length of 222 nucleotides (nt) [12]. Ideally, they represent a

single-lineage-among-host sequence dataset, i.e. they were deter-

mined from a cohort of women infected by a contaminated blood

product (anti-D immunoglobulin) that had been generated from a

single HCV-infected blood donation [17]. A recent study reported

that a lower HCV evolutionary rate was estimated from such a

dataset representing within-host isolates than a dataset represent-

ing multiple-lineage among-host isolates [18]. It is implied that the

use of a single-lineage rate in a multiple-lineage setting may

therefore underestimate the speed of viral evolution and thus

suggest an earlier timing for the estimated HCV population

growth and the correlated historical events.

HCV is known to have six genotypes and many subtypes. They

have been shown to have different geographic distribution patterns

reflecting the different selective pressures that they have under-

gone [1]. Therefore, they are supposed to have different

evolutionary histories and substitution rates. The latter was

verified recently. Gray et al. reported that the genome-wide

evolutionary rate for subtype 1a is approximately 19% higher than

that for subtype 1b [18]. Because among genotypes higher genetic

distances are seen, their differences in evolutionary rates can be

larger. Even for a single HCV strain in the same genomic region,

the rates may be dissimilar over different lengths. Therefore, it is

believed that if the selected prior rates can best fit for the

genotypes, subtypes, genomic regions and even the lengths of a

given dataset, the posterior inference would be more accurate.

Currently, HCV detection and genotyping is primarily based on

the determination of partial sequences in two regions, a 576 nt

Core-E1 and a 324 nt NS5B region, corresponding to the

nucleotide numbering 738–1313 and 8283–8606 in the H77

genome, respectively. This is in accord with the criteria in the

consensus proposals for the HCV nomenclature [19]. As such,

partial sequences in the two regions have accrued, accounting for a

major proportion of those archived in various HCV databases,

and are now being routinely processed in many laboratories

around the world. However, there remains an absence of the

molecular rates that exactly match the position and length of these

two regions in the HCV genome. In this study, this was also

addressed.

Materials and Methods

Assembly of sequence datasets
From the Los Alamos HCV database (http://hcv.lanl.gov), 627

full-length genomic sequences of HCV were retrieved. They

represented subtypes 1a and 1b and had known sampling dates:

i.e. from 1977–2008 for 1a and from 1983–2008 for 1b. To reduce

the computational burden while maintaining sufficient temporal (a

balance of the sampling dates) and phylogenetic (an even

dispersion in the phylogenetic trees) structures, no more than 20

sequences were selected in each year and at least one was retained

from each phylogenetic cluster. Thus, two datasets were

assembled, one containing 176 sequences of 1a, and the other

144 of 1b (Figure S1 panels A and B and Figure S2). According to

the nucleotide numbering in the H77 genome, these sequences

were partitioned into nine genomic regions: the Core, E1, E2, P7,

NS2, NS3, NS4 (NS4A+NS4B), NS5A and NS5B regions,

containing 573, 576, 1,089, 189, 651, 1,893, 945, 1,344 and

1,776 nt, respectively. Since the HVR1 (81nt) and HVR2 (24nt) in

E2 [20–22], and V3 (72nt) [23] in NS5A are highly variable, while

their evolutionary patterns are too complicated to be simulated

using the currently available molecular clock models, they were

removed. Ultimately, there were 984 nucleotides that remained in

E2, 1,272 in NS5A and 8,859 in the entire ORF.

In addition to the nine genomic regions, two routinely amplified

regions, the partial Core-E1 and partial NS5B, were also analyzed.

For 1a, such sequences were directly trimmed from the ORF

dataset because it displayed a sufficient temporal structure

(Figure S1 panel A). For 1b, 68 more partial Core-E1 and 160

more partial NS5B sequences were added (Figure S1 panels E and

F and Figure S3).

Clock-likeness analysis of the molecular phylogenies
Before using the nearest neighbor interchange (NNI) perturba-

tion algorithm to heuristically search the maximum likelihood

(ML) trees, the best-fitting substitution model was selected using

the MEGA5 model test function according to the corrected Akaike

Information Criterion (AICc). A regression of root-to-tip genetic

distances against the sampling dates was performed using Path-o-

gen software (http://tree.bio.ed.ac.uk/software/pathogen). This

was done to investigate the clock-likeness of the ML tree based on

the simple concept that ‘‘distance equals rate multiplied by time’’

[1]. This is to say that the substitution rate remains constant

through time, such the distance equals the genetic distance from

the sampled sequences to the root, and time equals the sampling

time. The root of the ML tree is chosen to maximize the coefficient

of the determinant, R2, which measures the clock-likeness of the

sequences. The slope of the regression line equals the substitution

rate, while the X-intercept is the time for the root node to form,

i.e. tMRCA. However, both the substitution rate and the tMRCA

obtained from the root-to-tip regression are quite preliminary and

inaccurate due to certain limitations, such as: (1) both of these

measures are calculated under the assumption of a constant

substitution rate, which may not be realistic; (2) it is assumed that

the sequences are independent, which may not be true, because

they share an evolutionary history and one sequence might even

be a direct ancestor of the other; (3) the results are based on a

single ML tree, but there is always considerable uncertainty in the

estimation of a true tree [1].

Bayesian MCMC evolutionary analyses
More accurate evolutionary rates and tMRCAs may be

estimated using the Bayesian Markov Chain Monte Carlo

(MCMC) [24] algorithm implemented in the BEAST software

(version 1.6.1). Prior to the MCMC analysis, selections had to be

made for each of the substitution, demographic and clock models

[11]. For the substitution model, the general time-reversible with

invariable-sites-plus-gamma substitution (GTR+I+C) model was

found to be the best for these datasets and was thus selected for all

of the subsequent analyses. For the demographic information, the

Bayesian skyline coalescent model was found to always outperform

the other four models (i.e. constant size, exponential growth,

logistic growth and expansion growth) in previous reports and this

was expected to also be the case in the current analysis of HCV

sequences [9,11]. Hence, this model with piecewise-linear

population growth was chosen. For the clock model, each of the

strict, uncorrelated exponential and uncorrelated lognormal

models was tested in combination with the Bayesian skyline model

to find the best-fitting one. Because a strict criterion was followed

in selecting the HCV sequences, both the 1a and 1b datasets

exhibited adequate temporal and phylogenetic structure. This

enabled us to estimate the evolutionary rates directly from the two

HCV Evolutionary Rates
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datasets, instead of having to use external ones for calibration,

which reduced the bias. As for the prior, we applied a uniform

distribution with the lower bound at 0 and the upper bound at

0.01 [25]. The length of the MCMC sampling was initially set for

100 million states and output a tree and a log file every 10,000

states. Using the Tracer software version 1.5 (http://tree.bio.ed.

ac.uk), the sampling convergence was assessed by the estimated

effective sampling size (ESS). In this study, when all of the ESS

numbers were .200, sufficient sampling was considered to have

been achieved. However, for those that did not exhibit an

adequate ESS number, we extended the chain length of the

MCMC procedure up to 300 million states. When the ESS

number was still not adequate, we repeated the latter analysis in

300 million states for an additional duplicate and then used the

LogCombiner program in the BEAST package to combine the

resulting log files for assessing the convergence using Tracer. The

Bayesian factor (BF) was computed to compare the paired clock

models in order to choose the statistically more rigorous one.

Finally, t-test and Mann–Whitney U test in the R program were

used to calculate the differences in molecular rates between the

analyses.

Results

Clock-likeness analysis by regression
Model-testing showed GTR+C+I to be the best among the 24

models based on the AICc. Using this model, ML trees were

reconstructed and root-to-tip regression analyses were performed

(Figure 1). For 1a, the estimated function of linear regression is

d = 0.00096 (t-1941), where d is the distance from the samples to

the selected root, while t is the sampling date. For 1b, the function

is d = 0.000486 (t-1808). The molecular rates and tMRCAs were

based on the slope and the X-intercept of the regression lines,

respectively. The rates indicated that 1a evolved almost one fold

faster and diverged approximately 133 years later than 1b. Root-

to-tip regression was also performed for the nine genomic regions

(Table 1). Unexpectedly, the molecular rate and the tMRCA

estimated for the NS5B dataset of subtype 1b are unrealistic, for

the former is negative while the latter occurs in the future, a result

that may possibly be ascribed to the stochastic nature of the

substitution process. The sequences sampled earlier, exhibiting a

greater divergence from the root than those sampled later, may

suggest that the evolution of the NS5B region for subtype 1b is not

clock-like, or alternatively, that it only reflects one of the

limitations of the root-to-tip regression analysis [26]. Regardless,

all of the results showed that the nine genomic regions of 1a have a

faster evolutionary rate than 1b, consistent with the analyses over

the entire ORF and using the BEAST program that were

described below.

Bayesian MCMC evolutionary analysis
Most of the analyses exhibited an adequate ESS number for all

the statistics resulted, after running the MCMC procedure for

100–300 million states. However, for the 1a and 1b ORF datasets

under the exponential model, three analyses each 300 million

states were required. After combining their resulting log files,

sufficient ESS numbers were finally obtained (Table S1 and S2).

Subtype 1a. To demonstrate the influence of the uniform

rate prior on the posterior rates estimated under the three models

for the different datasets, we plotted the marginal posterior rate

densities as violin plots (Figure 2). A violin plot is a combination of

a box plot and a rotated kernel density curve to display the

probability density of a given parameter [25,27]. In this study,

except for the ORF under the strict model, all of the 1a marginal

posterior rate density curves are bell shaped. Combined with the

information in Table S1, the three models estimated very close

median rates for a given dataset. However, the differences in their

95% confidence intervals are quite large, the largest being that

under the exponential model and the smallest under the strict. The

Core region exhibited the lowest median rates (9.0461024,

8.4361024, and 7.7861024 under the exponential, lognormal,

and strict models, respectively), while the P7 the largest

(2.1561023, 2.0461023 and 1.9461023), which means that the

P7 region has evolved more than two times faster than the Core.

The rank of the median rates, P7.E2.E1.NS2.NS4.N-

S5A.NS3.NS5B.Core, was consistently obtained with the

three models. In addition, the ORF exhibited consistent median

rates (1.5661023 in exponential, 1.5361023 in lognormal and

1.5561023 in strict) under the three models, which are the most

close to those given under the same model for the E1 region

(1.4561023 in exponential, 1.4761023 in lognormal and

1.4361023 in strict). However, the rate heterogeneity among sites

(a) is variable among datasets. A high a value suggests a weak

mutational ‘‘hot spot’’ [28]. Compared with the values provided

by the root-to-tip regression, higher and more accurate rates were

Figure 1. Root-to-tip regression to estimate the tMRCAs and
clock rates. A simple linear regression of the root-to-tip genentic
distances against the sampling dates was performed using the Path-o-
gen software. The root was determined by maximizing the coefficent of
determinant R2. The vertical axis measures the genetic distances
between the samples and the root while the horizontal axis scales the
sampling dates (year). For subtype 1a (A), the mean evolutionary rate
(the slope of regression line) is 9.05E-4 substitution/site/year and the
tMRCA (the X-intercept) is located at 1941. For subtype 1b (B), the mean
evolutionary rate is 4.82E-4 and the tMRCA is located at 1808.
doi:10.1371/journal.pone.0064698.g001
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estimated using the MCMC procedure. In contrast to the median

rates, the median tMRCAs were found to be largely similar across

different genomic regions, particularly under the strict model

(Figure 3). Theoretically, the rates are variable, but the ages

estimated by the tMRCAs are identical. This is because even

though they estimate the ancestor based on different genomic

regions, they refer to the same ancestor. Therefore, the degree to

which tMRCAs differ among the regions can be used to evaluate

the robustness of the MCMC process. Bayes Factor comparison

showed that the exponential model outperformed the other two

models in all of the nine genomic regions. For the ORF dataset,

however, the lognormal is the best model (Table S1).

Subtype 1b. Among the nine genomic regions, E2 displayed

the highest median rates in all of the three models (1.7261023 in

the exponential, 1.7661023 in the lognormal, and 1.7161023 in

the strict). In contrast, the Core exhibited the lowest median

rates in the lognormal (5.0661024) and strict (4.9161024), while

the NS5B had the lowest median rate (4.4761024) in the

exponential. The P7 median rates were lower than those in some

other regions, although they were the highest for 1a under all of

the three models. In the exponential model, the rank of the

median rates in the nine genomic regions turned out to be

E2.NS2.E1.NS4.P7.NS5A.NS3.Core.NS5B, while un-

der the other two models, the rank was slightly different, i.e.

E2.NS2.E1.NS4.NS3.P7.NS5A.NS5B.Core in the

lognormal and E2.NS2.E1.NS4.NS3.N-

S5A.P7.NS5B.Core in the strict. To a greater extent than

for 1a, the 1b ORF exhibited the median rates (1.2161023 in

exponential, 1.1461023 in lognormal and 1.1561023 in strict)

that are highly similar to that in the E1 region under the same

models, which can be a piece of strong evidence to indicate that

the E1 region can best represent the entire ORF for estimating

the molecular rates. Not all of the marginal posterior rate

densities are bell shaped, especially for those obtained with the

exponential model (Figure 2). Vastly different median tMRCAs

were estimated for the nine genomic regions (Figure 3). For

example, in the lognormal model, the median tMRCA estimated

for the NS5A region indicated that the divergence of 1b took

place approximately 153 years ago, while the tMRCA given for

the E2 region showed the divergence of 1b occurring approx-

imately 67 years ago. Bayes Factor comparison showed that the

exponential model is the best for the Core, E1, P7, NS2, NS4

and NS5A regions, while the lognormal model is the best for E2,

NS3, NS5B and the entire ORF dataset (Table S2).

Table 1. The evolutionary rates and tMRCAs estimated for
the 1a and 1b datasets in nine genomic regions and over ORF
by root-to-tip regression.

1a 1b

Region rate tMRCA Region rate tMRCA"

core 2.53E-04 1900.439 Core 1.63E-04 1843.535

E1 8.10E-04 1873.517 E1 2.41E-04 1772.206

E2 2.55E-03 1935.909 E2 1.59E-3 1938.742

P7 8.97E-04 1937.205 P7 3.34E-04 1770.422

NS2 1.04E-03 1944.186 NS2 7.92E-04 1897.943

NS3 7.77E-04 1960.988 NS3 2.85E-04 1850.384

NS4 4.70E-04 1919.278 NS4 3.15E-04 1866.972

NS5A 1.24E-03 1935.909 NS5A 9.33E-04 1875.398

NS5B 3.68E-04 1950.525 NS5B* 20.0002 2210.42

Full-ORF 9.05E-04 1941.156 Full-ORF 4.82E-04 1808.093

"In the calendar year. * The evolutionary rate is negative and tMRCA locates in
the future.
doi:10.1371/journal.pone.0064698.t001

Figure 2. The violin plots of the posterior evolutionary rate estimated using the uniform (0, 0.01) rate prior in the nine genomic
regions and over the entire ORF of the subtype 1a (A panel) and 1b (B panel) datasets. Combined with the GTR+I+C substitution model
and Bayesian skyline coalesent model, the MCMC procedures were run under three clock models, exoponetial, lognormal, and strict, respectively,
using BEAST. The vertical axis measures the substitution rate multiplied by 1023 (substitution/site/year). The horizontal axis indicates the nine
genomic regions and the entire ORF. The left three panels show the results for the 1a dataset. The right three panels show the results for the 1b
dataset. In each panel, two violins are separated in a small case on the right, which indicate the rates estimated for the routinely amplified partial
Core-E1 (P-C/E1) and partial NS5B (P-NS5B) regions.
doi:10.1371/journal.pone.0064698.g002
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Comparison of 1a and 1b
Excluding NS2, 1a exhibited higher median rates than 1b in

eight genomic regions under all of the three models (Table S1 and

S2). T-test and Mann–Whitney U test revealed significant

differences (p values ,0.0001) for their median rates and median

tMRCAs.

Because the tMRCAs for 1b are less robust than for 1a, 17 E1

sequences of 1a sampled in 1981–1998 and 20 E1 sequence of

1b sampled in 1982–2000 were added to the datasets for a

reanalysis under the exponential model (Figure S1 panel C and

D and Figure S4). To determine the level of bias, T-test was

performed to compare the rate resulting from the reanalysis with

the rate resulting from the original dataset. For 1a, we tested the

null hypothesis that the difference between these two rates is

larger than 5% of the original rate, i.e. the difference is greater

than 7.2461025 (reanalysis rate = 1.47861023, original rate

= 1.44861023). After testing, a p-value of ,0.001 was obtained,

which rejects the hypothesis. Moreover, for the 1b dataset the

null hypothesis is that the difference between the rate from the

reanalysis and the original rate is less than 15% of the original

rate, i.e. the difference is less than 1.861024 (reanalysis rate

= 1.5261023, original rate = 1.2061023). With a 0.00032 p-

value, the hypothesis is rejected again. Jointly, these results

confirm that a significantly greater rate change was shown by 1b

than 1a when more sequences were included for a reanalysis and

that the rates estimated for 1a are more robust than for 1b.

Analysis of sequences in two routinely amplified regions
Subtype 1a. For the partial Core-E1 region, the median

rates were 1.5661023, 1.4761023 and 1.4061023 in the

exponential, lognormal, and strict models, respectively, while

for the partial NS5B the median rates were 9.7761024,

9.5461024 and 9.2661024. These rates all exhibited bell-shaped

distributions (Figure 2A) with a satisfactory ESS number after the

MCMC analyses each was run for 100 million chain length.

Bayesian Factor comparison showed that the exponential model

is the best for both regions. Similar to that above described, the

three Core-E1 rates are close to those estimated for the ORF

under the same models (Table S1).

Subtype 1b. For the partial Core-E1 region, the median rates

are 1.0261023, 1.0861022 and 1.1261023 in the exponential,

lognormal, and strict models, respectively, while for the partial

NS5B the rates are 4.8561024, 1.6961024 and 1.5061024. They

all exhibit satisfied ESS numbers. The Core-E1 rates are highly

similar to each other and their distribution patterns are bell-

shaped (Figure 2B). However, the NS5B rates are very low and

their distribution patterns are truncated. This implies that the

NS5B rates are not robust. Bayesian Factor comparison showed

that the exponential model is the best for the partial Core-E1 while

the lognormal is the best for the partial NS5B (Table S2).

Figure 3. The median evolutionary rates and the tMRCAs estimated in the nine genomic regions and over the entire ORF of the
subtype 1a and 1b datasets. Panels A, B, and C show the median evolutionary rates. Panels D, E, and F show the median tMRCAs. The blue
columns represent the estimates for 1a. The red columns represent the estimates for 1b. The dash lines indicate the estimates for the entire ORF.
doi:10.1371/journal.pone.0064698.g003
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Discussion

This report is one of a few evolutionary studies that have been

performed based on the BEAST analysis of the full-length HCV

genomic sequences. According to the organization of the HCV

genome, the sequences were partitioned into nine genomic regions

that were analyzed individually or over the entire ORF. The

evolutionary information, such as the molecular rates and the

tMRCAs were systematically provided. It should be noted that all

the posterior information was obtained based on a uniform

distribution of the evolutionary rate prior in a range from 0 to

0.01. This approach was used due to the lack of any additional

information, except for the dated sequences that are the major

factor used to generate all the posteriors.

Recently, Gray et al. [18] used a mathematical partition

approach to analyze the full-length genomic sequences of HCV

subtypes 1a and 1b. They split the whole genome into 21 non-

overlapping equal-length partitions and estimated the evolutionary

rate for each partition. This was the first quantification of the

variation in HCV evolutionary dynamics at different scales.

However, our analyses are somehow different because the

following factors were taken into account. As is well known, the

HVR1 and HVR2 of the HCV genome are exposed to strong

positive selection by the host immune responses, which individ-

ualize the two regions and make them inconsistent with the neutral

theory and molecular clock rule [29,30]. In this case, the currently

proposed molecular clock models (the strict, exponential, lognor-

mal and random local clock models) may not be able to precisely

simulate their evolutionary modes. A similar case may also exist for

the V3 region of NS5A, because its related gene products have

been found to closely interact with the HCV envelope proteins

[31]. On the other hand, HCV evolution may have suffered from

constraints on base changes due to negative selection. For

example, the HCV genome is known to be highly ordered,

forming complex RNA secondary structures throughout the

genome, which has been termed ‘‘genome-scale ordered RNA

structure’’ (GORS) [32]. The requirement for base-pairing in such

a GORS structure severely limits the potential for independent

evolution of a single mathematical partition from its flanking ones.

Furthermore, the HCV genome is comprised of a single ORF

consisting of four structural (Core, E1, E2 and P7) and six

nonstructural regions (NS2, NS3, NS4A, NS4B, NS5A and

NS5B). From this ORF, a polyprotein is first translated, followed

by processing into a number of proteins corresponding to the

different genomic regions; meanwhile, to complete the life cycle of

the virus, each of these proteins serves as a unique and

indispensable component [33]. Following the molecular rule, we

removed the 59- and 39-UT regions, HVR1 and HVR2 in the E2

region, and V3 in the NS5A region. Based on a biological

dissection of the HCV genome, we partitioned the 1a and 1b ORF

datasets into nine genomic regions. We therefore provided the

information on the HCV evolutionary rates from a different

aspect.

To obtain sufficient temporal and spatial structures, the 1a and

1b datasets were carefully checked for a good balance of sampling

dates and an even dispersion in phylogenetic trees. Based on the

best-fitting substitution model and three different clock models, a

set of posterior evolutionary rates were estimated for each of the

nine genomic regions and over the ORF. Higher rates were

observed in the E2 and P7 regions, while lower rates were seen in

the Core and NS5B. In addition, most of the genomic regions of

subtype 1a exhibited significantly higher rates than their counter-

parts of 1b. These results demonstrate that the HCV evolutionary

rates are different among the various subtypes and genomic

regions. With these results, a rule is indicated that a realistic

estimation of HCV epidemic history requires a right selection of

the rate prior, which should match the actual dataset for fitting the

subtype and genomic region, as well as the right sequence length.

In this study, the existence of more robust 1a evolutionary rates

than 1b was indicated by a series of highly credible tMRCAs.

Theoretically, the tMRCAs estimated for different partitions of the

same dataset should be identical, because they refer to the same

ancestors. Here, the median tMRCAs estimated for the nine

genomic regions of the 1a dataset are very close, but they are

slightly smaller than that for the ORF (Figure 3). These results

suggest that the MCMC procedures and the generated rates for

the nine genomic regions are reliable. In contrast, the median

tMRCAs estimated for the 1b dataset are diverse, which diversity

is likely attributable to its smaller sample size and weaker temporal

structure. In the 1b dataset, 17.36% of the sequences were

sampled in 1983–1999 and 82.64% in 2000–2007, while in the 1a

dataset these percentages were 28.41% and 71.02%, respectively.

The weaker temporal structure in the 1b dataset was also indicated

after including additional E1 sequences for reanalysis. In the

reanalysis, 17 E1 sequences of 1a sampled in 1981–1998 and 20

E1 sequences of 1b in 1982–2000 were added to the correspond-

ing dataset. The BEAST analyses generated a new 1a rate that is

no more than 5% larger than the original 1a rate. However, the

difference in the 1b rates was greater than 15%. These results

demonstrate that a good temporal structure is critical for a precise

estimation of the evolutionary rate. It also implies that the statistics

generated with this 1b dataset might have certain biases and thus

should be used with caution until a better one is assembled that

contains more 1b sequences sampled before 2000. In addition, the

weaker rates estimated for the 1b dataset were also suggested by

the rate distribution shapes which appeared in the violin plots. The

latter graphically illustrate the mean, variance and density curve of

estimates and provide additional information for the BEAST

analysis. These violin plots revealed that all of the 1a rate marginal

densities were bell shaped, while some of the densities for 1b,

especially those based on the exponential model, displayed

truncated or poorly formed bell shapes (Figure 2). That 1a has a

higher evolutionary rates than 1b is consistent with the results from

a recent report, in which this pattern ascribed to the difference in

the 1a and 1b transmission modes [18]. While in that report only

63 subtype 1a and 54 subtype 1b sequences were used in order to

reduce the computation burden, the estimated evolutionary rates

were 1.44–1.4861023 substitutions/site/year for 1a and 1.18–

1.2561023 for 1b over the full genome length, which are only

slightly different from the median rates 1.53–1.5661023 for 1a

and 1.14–1.2561023 for 1b that we estimated under similar

conditions.

One more point worth noting is that the current HCV

classification and nomenclature are largely based on the charac-

terization of partial sequences in the Core-E1 and NS5B regions

[19]. Therefore, in various HCV databases, these sequences

comprised the majority. Although in previous studies two

evolutionary rates, 7.961024 substitutions/site/year for E1 and

5.061024 for the NS5B region, have been effectively used as

priors, there remains the need to estimate the rates in a manner

that exactly matches the size of these two routinely amplified

regions [12]. Based on the more accurate sizes trimmed from the

dataset of 176 1a sequences, we estimated relatively consistent

rates under three clock models, 1.40–1.5661023 substitutions/

site/year for the partial Core-E1 and 9.26–9.7761024 for the

partial NS5B region. Using a similar strategy but including more

1b sequences, we estimated lower median rates between 1.02–

1.1261023 for the partial Core-E1 and much lower median rates

HCV Evolutionary Rates
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between 1.50–4.8561024 for the partial NS5B. A noteworthy

finding is that excluding the rates for the partial NS5B of 1b, all

the other median rates are almost twice as high as those previously

reported. Therefore, the question arises as to whether a lower rate

to estimate the dynamics of HCV would result in an underesti-

mation of the speed of HCV evolution and thus indicate an earlier

timing for the estimated HCV growth and the correlated historical

events. In addition, it was revealed that the partial Core-E1 region

can substantially represent the ORF for estimating the HCV rates,

although to a less extent than the E1 region that did under the

same models. From a different point of view, this finding helps

explain why the partial Core-E1 region is preferably used for the

HCV classification.

Supporting Information

Figure S1 Histograms to exhibit the temporal structure
of the six sequence datasets: (A) the 176 full-length
sequences of subtype 1a, (B) the 144 full-length sequenc-
es of subtype 1b, (C) the 193 E1 region sequences of
subtype 1a, assembled by adding 17 E1 region sequenc-
es to the 176 taxa of (A), (D) the 164 E1 region sequences
of subtype 1b, assembled by adding 20 E1 region
sequences to the 144 taxa of (B), (E) the 212 partial
Core-E1 region sequences of subtype 1b, assembled by
adding 68 partial Core-E1 sequences to the 144 taxa of
(B), and (F) the 304 partial NS5B region sequences of
subtype 1b, assembled by adding 160 partial NS5B
sequences to the 144 taxa of (B). In each diagram, the vertical

axis measures the number of sequences and the horizontal axis

scales the year when the sequences were sampled.

(PNG)

Figure S2 Two ML trees to show the phylogenetic
dispersion of: (A) the 176 full-length sequences of
subtype 1a, and (B) the 144 full-length sequences of
subtype 1b. Each tip of tree represents one sequence that is

indicated with its sampling year followed by its Genbank accession

number. A ruler under each tree measures the substitution per

nucleotide site.

(PPTX)

Figure S3 Two ML trees to show the phylogenetic
dispersion of: (A) the 212 partial Core-E1 region
sequences, and (B) the 304 partial NS5B region sequenc-
es. They all belong to subtype 1b. The black branches represent

those trimmed from the (B) dataset shown in Figure S2. The red

branches indicate those retrieved from the Los Alamos HCV

database. We added these sequences in order to increase the

balance of the temporal structure and even dispersion in

phylogenetic tree. Otherwise, all of the indications remain the

same as that described above for Figure S2.

(PPTX)

Figure S4 Two ML trees to show the phylogenetic
dispersion of: (A) the 193 E1 region sequences of subtype
1a, and (B) the 166 E1 region sequences of subtype 1b.
The black branches in the respective dataset represent those

trimmed from the dataset (A) or (B) shown in Figure S2. The red

branches indicate those added for subtype 1a (17 isolates) or 1b (20

isolates), for which only partial sequences are available in the Los

Alamos HCV database. We added these sequences in order to

increase the balance of the temporal structure and even dispersion

in phylogenetic tree. Otherwise, all of the indications remain the

same as that described above for Figure S2.

(PPTX)

Table S1 The related statistics (mean ± Stderr) gener-
ated in the Bayesian MCMC analysis of the subtype 1a
dataset.

(DOCX)

Table S2 The related statistics (mean ± Stderr) gener-
ated in the Bayesian MCMC analysis of the subtype 1b
dataset.

(DOCX)
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