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Abstract

We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel
that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite
programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise.
Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action
of a noise channel using semidefinite programming.
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Introduction

Quantum game theory is an interdisciplinary field that

combines game theory and quantum information. It lies at the

crossroads of physics, quantum information processing, computer

and natural sciences. Various quantizations of games were

presented by different authors [1–5].

Quantum pseudo-telepathy games [6] form a subclass of

quantum games. A game belongs to the pseudo-telepathy class

providing that there are no winning strategies for classical players,

but a winning strategy can be found if the players share a sufficient

amount of entanglement. In these games quantum players can

accomplish tasks that are unfeasible for their classical counterparts.

It has been shown [7] that noise in a quantum channel can

decrease the probability of winning the Magic Square game even

below the classical threshold.

Noise is an unavoidable ingredient of a quantum system.

Therefore its thorough investigation is a fundamental issue in

quantum information processing. Quantum game theory has

several potential applications (e.g quantum auctions [8]) that may

be hindered by noise effects. Our previous investigation of

quantum noise effects in quantum games [7,9,10], and quantum

algorithms performance [11] revealed several interesting issues

that act as an incentive of the present work. The tools developed in

this work can be used to analyse the behaviour of quantum

channels in other settings.

Motivation
The motivation to study the Magic Square game and pseudo-

telepathy games in general is that their physical implementation

could provide convincing, even to a layperson, demonstration that

the physical world is not local realistic. By local we mean that no

action performed at some location X can have an effect on some

remote location Y in a time shorter then that required by light to

travel from X to Y. Realistic means that a measurement can only

reveal elements of reality that are already present in the system [6].

Given a pseudo-telepathy game, one can implement a quantum

winning strategy for this game [6]. In an ideal case, the experiment

should involve a significant number of rounds of the game. The

experiment should be continued until either the players lose a

single round or the players win such a great number of rounds,

that it would be nearly impossible if they were using a classical

strategy.

In the particular case of the magic square game the classical

strategy allows the players to achieve the success rate no larger

than
8

9
. In theory, the success rate of the quantum strategy is equal

to one. But any physical implementations of a quantum protocol

cannot be perfect because it is subject to noise.

In particular, the players, Alice and Bob, must be so far away

from each other that the time between the question and their

respective answers is shorter than the time required by light to

travel between their locations. This set-up involves sending parts of

an entangled quantum state to two remote locations. Sending

qubits through a channel will inevitably add noise to the system.

Our aim is to counteract this noise. In this paper we focus on the

destructive aspects of the process of transmission of a qubit

through a noisy separable quantum channel and introduce a

scheme that allows the partial reversion of the channel action. This

reversal gives rise to the players’ success rate above the classical

limit of 8=9 for some parameters of noisy channels. Our scheme

for reversing an action of a noisy channel may prove valuable in

future experimental set-ups of such games.

Magic square game
The magic square is a 3|3 matrix filled with numbers 0 or 1 so

that the sum of entries in each row is even and the sum of entries

in each column is odd. Although such a matrix cannot exist (see

Table 1) one can consider the following game.
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The game setup is as follows. There are two players: Alice and

Bob. Alice is given a row, Bob is given a column. Alice has to give

the entries for a row and Bob has to give entries for a column so

that the parity conditions are met. Winning condition is that the

players’ entries at the intersection must agree. Alice and Bob can

prepare a strategy but they are not allowed to communicate during

the game.

There exists a (classical) strategy that guarantees the winning

probability of
8

9
. If the parties are allowed to share a quantum

state they can achieve probability of success equal to one [6].

In the quantum version of this game [12,13] Alice and Bob are

allowed to share an entangled quantum state. The winning

strategy is following. Alice and Bob share an entangled state:

jyT~
1

2
j0011Tzj1100T{j0110T{j1001Tð Þ ð1Þ

and apply local unitary operators forming operator Ai6Bj ,

where

N A1 =
1ffiffiffi
2
p

i 0 0 1

0 {i 1 0

0 i 1 0

1 0 0 i

0
BB@

1
CCA ,

N A2 =
1

2

i 1 1 i

{i 1 {1 i

i 1 {1 {i

{i 1 1 {i

0
BB@

1
CCA ,
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1

2
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1 1 {1 1

1 {1 1 1
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0
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1
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0
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1
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1
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Indices i and j label rows and columns of the magic square. The

state of this scheme before measurement is

rf ~(Ai6Bj) jyTSyj(A{
i 6B

{
j ): ð2Þ

The final step of the game consists of the measurement in the

computational basis.

In [7], the situation where the initial state jyT is corrupted by

the noise was investigated. Therefore, Eq. 2 is transformed into

rf ~(Ai6Bj)Wa(jyTSyj) (A
{
i 6B

{
j ), ð3Þ

where Wa denotes one-parameter family of noisy quantum

channels.

In such a case it is justified to inquire what is the mean

probability of Alice and Bob’s success given the amount of noise

introduced by channel Wa. The mean probability p(a) of

measuring the outcome yielding success in the state rf is given by

p(a)~
1

9

X3

i,j~1

X
j[Sij

trrf jjTSjj, ð4Þ

where Sij is the set of right answers for the column and row ij

(Table 2). The mean is taken over all pairs (i,j).

A winning strategy exists for noiseless channels. In the case of

noisy channel, the same strategy gives a higher probability of

winning than in the classical case for low noise channels [7]. The

objective of this work is to find local channels that partially reverse

the action of the noise and therefore extends the pseudo-telepathy

Table 1. An illustrative filling of the magic square with
numbers 0 and 1.

1 1 0

1 0 1

1 0 ?

The question mark shows that it is not possible to put a number in the last field
and satisfy both conditions of the game.
doi:10.1371/journal.pone.0064694.t001

Table 2. Sets Sij – plus sign (+) indicates that the given element belongs to the set, minus (2) sign indicates that the element
does not belong to the set.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S11 + + 2 2 + + 2 2 2 2 + + 2 2 + +

S12 + + 2 2 2 2 + + + + 2 2 2 2 + +

S13 + + 2 2 2 2 + + 2 2 + + + + 2 2

S21 + 2 + 2 + 2 + 2 2 + 2 + 2 + 2 +

S22 + 2 + 2 2 + 2 + + 2 + 2 2 + 2 +

S23 + 2 + 2 2 + 2 + 2 + 2 + + 2 + 2

S31 2 + + 2 2 + + 2 + 2 2 + + 2 2 +

S32 2 + + 2 + 2 2 + 2 + + 2 + 2 2 +

S33 2 + + 2 + 2 2 + + 2 2 + 2 + + 2

doi:10.1371/journal.pone.0064694.t002
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to channels with higher noise. In order to achieve this, Eq. 3 is

transformed into

rf ~(Ai6Bj)Ya(Wa(jyTSyj))(A
{
i 6B

{
j ), ð5Þ

where Ya denotes local channel with respect to Alice and Bob’s

subsystems that allows to raise their probability of winning p(a). In

order to achieve that a series of semi-definite optimization

programs has to be numerically solved.

Quantum channels
In the most general case, the evolution of a quantum system can

be described using the notion of a quantum channel [14–16]. A

quantum channel is a mapping acting on density operators

r[D(H), i.e., operators where r§0 and tr(r)~1 on a Hilbert

space H1 and transforming them into operators on a another

Hilbert space H2. Thus

W : L(H1)?L(H2), ð6Þ

where L(Hi) denotes the set of linear operators on Hi. To form a

proper quantum channel, the mapping W must satisfy the

following restrictions:

1. W must be trace-preserving, that is tr(W(r))~tr(r),

2. W must be completely positive, that is W6 L(H3) is a positive

mapping, thus

(W6 L(H3))(r)[D(H26H3), ð7Þ

for every choice of r[D(H16H3) and every choice of finite-

dimensional Hilbert space H3, where L(H3) is an identity

channel on the space L(H3).

The notion of a product quantum channel is introduced as follows

[17]. For any choice of quantum channels that satisfy

W1 : L(H1
1)?L(H1

2), . . . ,WN : L(HN
1 )?L(HN

2 ), ð8Þ

we define a linear mapping

W16 . . .6WN : L(H1
16 . . .6HN

1 )?L(H1
26 . . .6HN

2 ), ð9Þ

Figure 1. Phase flip channel. Probability of winning the pseudo-
telepathy game with and without the use of our approach as a function
of the noise parameter a for the phase flip channel. The inset shows the
probability of winning for aM [0; 1].
doi:10.1371/journal.pone.0064694.g001

Figure 2. Bit flip channel. Probability of winning the pseudo-
telepathy game with and without the use of our approach as a function
of the noise parameter a for the bit flip channel. The inset shows the
probability of winning for aM [0; 1].
doi:10.1371/journal.pone.0064694.g002

Figure 3. Bit phase flip channel. Probability of winning the pseudo-
telepathy game with and without the use of our approach as a function
of the noise parameter a for the bit phase flip channel. The inset shows
the probability of winning for aM [0; 1].
doi:10.1371/journal.pone.0064694.g003

Figure 4. Depolarising channel. Probability of winning the pseudo-
telepathy game with and without the use of our approach as a function
of the noise parameter a for the depolarising channel. The inset shows
the probability of winning for aM [0; 1].
doi:10.1371/journal.pone.0064694.g004
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to be the unique mapping that satisfies the equation

(W16 . . .6WN )(A16 . . .6AN )~W1(A1)6 . . .6WN (AN ), ð10Þ

for all operators A1[L(H1
1), . . . ,AN[L(HN

1 ).

Many different representations of quantum channels can be

chosen, depending on the application. Among these are the

Jamiołkowski representation, the Kraus representation and the

Stinespring representation. These three representations will be

used throughout this paper.

The Jamiokowski representation of a quantum channel W is

given by

J (W)~
X
a,b

W(Ea,b)6Ea,b, ð11Þ

where Ea,b[L(H1) are operators with all entries equal to zero,

except the entry a,b equal to one. From this definition, it is

straightforward to observe that J (W)[L(H26H1). By the Choi’s

[14] theorem a channel is completely positive if and only if

J (W)§0. It is trace-preserving if and only if

trH2
(J (W))~ H1

: ð12Þ

Finally, the action of a quantum channel in the Jmiołkowski

representation is given by

W(r)~trH1
(J (W)( H2

6rT )): ð13Þ

The Kraus representation of a quantum channel is given by a

set of operators Ek[L(H1,H2). The action of quantum channel W
is given by:

W(r)~
X

k

EkrE
{
k : ð14Þ

This form ensures that the quantum channel is completely

positive. For it to be also trace-preserving we need to impose the

following constraint on the Kraus operators

X
k

E
{
kEk~ H1

: ð15Þ

Finally, given a mapping W : L(H1)?L(H2) let us take another

Hilbert space H3 such that dim(H3)~rank(J(W)) and a linear

isometry A[U(H1,H26H3). The action of a quantum channel is

given by

W(r)~trH3
(ArA{): ð16Þ

This representation is called the Stinespring representation of W.

For further discussion of quantum channels see e.g. [15] or [17].

Quantum noise
In the literature, several one-parameter families of qubit noisy

channels are discussed [15]. For all the families of channels listed

below the parameter a[½0,1� represents the amount of noise

introduced by the channel. The symbols sx,sy,sz denote Pauli

operators. The Kraus operators for typical noisy channels are for

N N depolarising channel:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

3a

4

r
,

ffiffiffi
a

4

r
sx,

ffiffiffi
a

4

r
sy,

ffiffiffi
a

4

r
sz

( )
,

N N amplitude damping:
1 0

0
ffiffiffiffiffiffiffiffiffiffi
1{a
p

� �
,

0
ffiffiffi
a
p

0 0

� �� �
,

N N phase damping:
1 0

0
ffiffiffiffiffiffiffiffiffiffi
1{a
p

� �
,

0 0

0
ffiffiffi
a
p

� �� �
,

N N phase flip:
ffiffiffiffiffiffiffiffiffiffi
1{a
p

,
ffiffiffi
a
p

sz

n o
,

N N bit flip:
ffiffiffiffiffiffiffiffiffiffi
1{a
p

,
ffiffiffi
a
p

sx

n o
,

Figure 6. Phase damping channel. Probability of winning the
pseudo-telepathy game with and without the use of our approach as a
function of the noise parameter a for the phase damping channel. The
inset shows the probability of winning for aM [0; 1].
doi:10.1371/journal.pone.0064694.g006

Figure 5. Amplitude damping channel. Probability of winning the
pseudo-telepathy game with and without the use of our approach as a
function of the noise parameter a for the amplitude damping channel.
The inset shows the probability of winning for aM[0; 1].
doi:10.1371/journal.pone.0064694.g005
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N N bit-phase flip:
ffiffiffiffiffiffiffiffiffiffi
1{a
p

,
ffiffiffi
a
p

sy

n o
.

In order to apply noise operators to multiple qubits we form

new set of operators acting on a larger Hilbert space.

Given a set of n one-qubit Kraus operators fekgn
k~1 it is possible

to construct new set of nN operators fEkgnN

k~1 that act on a Hilbert

space of dimension 2N by taking Cartesian product of one-qubit

Kraus operators in the following way

fEkgnN

k~1~fei1
6ei2

6 . . .6eiN
gn

i1,i2,...iN ~1: ð17Þ

Application of the above to Kraus operators listed before gives

one-parameter families of local noisy channels. This form will be

used in further investigations.

Results and Discussion

We propose the following scheme for reversing an action of a

channel using semidefinite programming (SDP). In our case, the

most useful formulation of a semidefinite program is as follows

(after Watrous [17]).

A semidefinite program is a triple (W,A,B) where

W : L(H1)?L(H2) is a Hermiticity-preserving map and

A[L(H1) and B[L(H2) are Hermitian operators for some choice

of Hilbert spaces H1 and H2. Two optimization problems are

associated with the triple (W,A,B), the primal and dual problems.

We will focus our attention on the primal problem, which has the

form:

maximize : tr(AX ),

subject to : W(X )~B,

X§0:

In the case of the pseudo-telepathy game, it seems appropriate

to look for a channel in a product form. This is due to the fact, that

Alice and Bob are separated and each of them must apply a local

channel. To model this situation, let us consider the Jamiokowski

representations of Alice’s and Bob’s channels, denoted Y and Z

respectively. The resulting channel is given by

T~W (Y6Z)W , ð18Þ

where W is an operator defined as follows

W~ HA
2
6U6 HB

1
, ð19Þ

where U[L(HA
1 6HB

2 ,HB
2 6HA

1 ) is the swap operation of subsys-

tems HA
1 and HB

2 , defined as

U~
X

i,j

jfjeiTSeifj j, ð20Þ

for ei,fj being elements of orthonormal bases of HA
1 and HB

2

respectively.

Next, let us denote by YN the noise channel and we put

s~jyTSyj. For simplicity of further calculations, let us write

t~YN (s) and T~J (YN ). Consider the following maximization

criterion problem

maximize : tr(tr2(W (Y6Z)W ( 6tT ))s), ð21Þ

which means we aim to find a channel that reverses the action of

the noise channel as accurately as possible. Unfortunately, a

maximization criterion in this form does not yield an SDP

problem. To formulate this problem as an SDP, we first conduct

some simple calculations that allow us to rewrite the maximization

condition (21) as

maximize : tr((Y6Z)M), ð22Þ

Figure 7. SDP optimization algorithm. SDP optimization of a product channel with a random Jamio lkowski matrix [20] as input.
doi:10.1371/journal.pone.0064694.g007

Figure 8. Quantum circuit. A quantum circuit showing the
implementation of our scheme. Ai and Bi denote Alice’s and Bob’s
qubits. q0 and q1 are the ancillary qubits they need to add.
doi:10.1371/journal.pone.0064694.g008
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subject to : M~W (s6t)W : ð23Þ

Considering the value of Y to be fixed and using the equation

tr(( 6A)B)~tr(A tr1(B)), allows us to write the following SDP

maximize : tr(ZtrHB
2

,HB
1

(M(Y6 HB
2
6HB

1
)),

subject to : trHB
2

(Z)~ HB
1

, ð24Þ

Z§0:

Fixing the value of Z and following a similar calculation give the

following SDP problem

maximize : tr(Y trHA
2

,HA
1

(( HA
2
6HA

1
6Z)M),

subject to : trHA
2

(Y )~ HA
1

, ð25Þ

Y§0:

Now, we use the following algorithm to find an optimal channel.

The algorithm in each iteration optimizes only a single part of the

product channel. This algorithm was implemented using the

SDPLR library [18,19].

Analysis
The numerical results are gathered in form of plots at the end of

the paper. Figs. 1, 2, 3, 4, 5, 6 show the results of the optimization

scheme shown in Fig, 7. The application of the SDP allowed us to

achieve greater winning probability for all types of noisy channels.

In the case of the flip channels the obtained results are depicted

in Figs. 1, 2 and 3. These plots show that it is possible to reverse

the action of the noise channel for all values of the noise parameter

a. Hence, we are able to observer quantum pseudo-telepathy for

higher noise channels. Furthermore, the use of our optimization

method results in a plot of probability of winning as a function of

the noise parameter a which has a shape similar to the case when

we do not try to reverse the action of a channel.

Next, we move to the depolarising channel. The results

obtained in this case are shown in Fig. 4. Likewise, in this case

our method has also allowed us to achieve pseudo-telepathy for

higher values of the noise parameter a. The details are depicted in

the inset in Fig. 4. Additionally, for values of the noise parameter

a§0:45 the probability of winning the game stabilizes around

0.65, opposed to the case with no channel action inverse, where it

decreases to 0.5. Hence, we are able to retrieve some information

in the case of high noise, local depolarising channels acting on

many qubits.

Finally, we switch to the damping channels. Numerical results

for this case are depicted in Figs. 5 and 6. Moreover, in this case

we are able to reverse the action of a noise channel and broaden

the pseudo-telepathy region. In the case of high values of the noise

parameter a, results for the amplitude damping channel resemble

those obtained for depolarising channel, as the probability of

winning stabilizes around 0.65 for a§0:45 instead of decreasing to

approximately 0.5.

Conclusions

The principal result of this paper is a methodology of partial

denoising with the usage of local quantum channels. The

presented tool can be used in the cases in which

N the parameters of the noise are accessible,

N the noisy channel is separable and acts independently on each

qubit,

N the entangled quantum state the parties use in known in

advance,

N the parties have access to quantum computers but

N are no allowed to communicate.

We have proposed a method to reverse an action of a quantum

channel using semidefinite programming. The method allows us to

find a product channel which partially reverses a given channel.

We use the following scheme to achieve this goal. First, we fix all

parts of the product, except for one, which is being optimized.

After the SDP optimization, we move on to optimize the next part

of the product channel, using the value obtained in the earlier step.

We repeat this for all parts of the product channel. We run the

process a great number of times to obtain a converging solution.

Obtained channel may be implemented on a real physical

system using the Stinespring representation. An example of the

quantum circuit implementing this scheme is shown in Fig. 8.

Alice and Bob each add ancillary qubits to their original ones.

Then they apply a unitary operator on their respective systems.

Finally, they perform a measurement on the ancillary qubits,

leaving their starting qubits in a less noisy state.

As an example of usage of this optimization scheme we present

the quantum pseudo-telepathy magic square game. We obtained

results showing an improvement in the players’ success rate in the

game. Specifically, we were to broaden the range of the noise

parameter a for which the quantum effect occurs.
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