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Abstract

Single-particle tracking (SPT) is widely used to study processes from membrane receptor organization to the dynamics of
RNAs in living cells. While single-dye labeling strategies have the benefit of being minimally invasive, this comes at the
expense of data quality; typically a data set of short trajectories is obtained and analyzed by means of the mean square
displacements (MSD) or the distribution of the particles’ displacements in a set time interval (jump distance, JD). To evaluate
the applicability of both approaches, a quantitative comparison of both methods under typically encountered experimental
conditions is necessary. Here we use Monte Carlo simulations to systematically compare the accuracy of diffusion
coefficients (D-values) obtained for three cases: one population of diffusing species, two populations with different D-
values, and a population switching between two D-values. For the first case we find that the MSD gives more or equally
accurate results than the JD analysis (relative errors of D-values ,6%). If two diffusing species are present or a particle
undergoes a motion change, the JD analysis successfully distinguishes both species (relative error ,5%). Finally we apply
the JD analysis to investigate the motion of endogenous LPS receptors in live macrophages before and after treatment with
methyl-b-cyclodextrin and latrunculin B.
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Introduction

Over the past decade the development of more photostable

fluorophores [1–3] and increasingly sensitive cameras has led to a

rise in studies of the motion and spatial organization of cell surface

receptors using single-particle tracking (SPT) [4–6]. Observing

individual particles can be very informative by capturing rare

events and returning the distribution of a given variable rather

than the ensemble average. All SPT experiments require data

collection, particle detection and linking of their positions in

subsequent frames. Connecting corresponding particle images in

successive frames is no trivial task, and consequently numerous

studies have focused on developing tracking algorithms which can

deal with situations such as fluorophore blinking, focal drift, and

the merging or splitting of trajectories [7–9].

Once trajectories are identified, the number of mobile

populations present in the experimental data and the distribution

of a suitable quantity describing the motion, such as the diffusion

coefficient needs to be determined. Although the theory under-

lying Brownian motion and thus the diffusion of membrane

proteins is well-established mathematically [10], in practice the

interpretation and extraction of biological information is often

challenging [11,12]. In particular, trajectory lengths can be limited

due to photobleaching when minimally-invasive labels such as dye-

conjugated Fab fragments of an antibody or ligands are used.

While there are many analysis strategies for long trajectories, there

is currently a need for a robust analysis of short trajectories

obtained from these experiments.

Diffusion coefficients are typically obtained by plotting the

mean-square displacement (MSD) for a given time lag Dt as a

function of Dt [13–16]. In the case of simple Brownian motion the

gradient of the curve is proportional to the diffusion coefficient D.

To reduce statistical scatter the MSD is best calculated as the

average over all points separated by Dt within a trajectory (Fig. 1,

b) [10]. The advantage of the MSD analysis it that individual

diffusion coefficients are obtained for each trajectory of a given

ensemble. However, averaging over an entire trajectory can

obscure transitions between different types of motion [11]. An

MSD analysis is particularly inaccurate if the length of individual

trajectories is short because the time lag becomes a substantial

fraction of the trajectory. Saxton showed that if a short range

diffusion coefficient is calculated from short trajectories (,32 steps)
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the distribution of D is so wide that measurements of D can

become useless [17,18].

For systems for which short trajectories and motion changes are

expected an alternative way to analyze the particles’ motion has

been employed, referred to as jump-distance (JD) analysis [19–25].

Here, the probability of a particle traveling a specific distance

within a set time interval is evaluated and fitted by a theoretically-

derived probability distribution (Fig. 1, c). The main benefit of this

approach is that subpopulations of particles with a different

probability distribution for their jumps can be easily accounted for

by extending the analytical expression used to fit the distribution to

multiple populations with distinct values of D and fractions. The

drawback of this analysis is the loss of single-trajectory informa-

tion; instead, a single D for an ensemble of trajectories with the

same mobility is obtained.

In this work we have compared both commonly-used method-

ologies to test their performance under realistic experimental

conditions. We first used simulations to test for which particle

densities a local nearest-neighbor based tracking algorithm gives

satisfactory results. We then went on to compare MSD and JD

analysis, and found that for one diffusing population both return

accurate D-values if the mean displacement is large compared to

the localization precision (relative errors between 3% and 5%). In

contrast to the MSD analysis, the JD analysis also yields accurate

diffusion coefficients with small relative errors (6% and 5%

respectively) for heterogeneous population of diffusing species and

trajectory-inherent motion changes. Finally, we apply the JD

analysis to the trajectories of endogenous lipopolysaccharide (LPS)

receptors in the plasma membrane of mouse macrophages.

Previous studies have found these receptors to be partially

immobile. Our results demonstrate that the JD analysis is able

to dissect two diffusing populations. Furthermore, this analysis

enables us to detect that the motion of the mobile fraction is

slowed down by Methyl-b-cyclodextrin (MbCD) and is unaffected

by the disruption of the actin cytoskeleton.

Figure 1. Principle of the mean-square displacement (MSD) and jump distance (JD) analyses. (a) A typical single trajectory of receptor-
bound LPS recorded in live macrophages (Dt = 33 ms). Trajectory data can be analyzed either by MSD or JD analysis. For MSD analysis, an average of
the mean-square displacement is calculated over all points of the individual trajectory for multiples of the smallest resolved time intervals (Dt, 2Dt,
3Dt etc). The MSD plot over nDt is linear and the gradient is directly proportional to the diffusion coefficient. (b) Diffusion coefficients are obtained for
all single trajectories and typically presented in histograms. For a random walk with a single diffusion coefficient and long trajectories this distribution
is centered around the diffusion coefficient. Multiple mobility populations can be resolved in principle, however a reliable dissection requires a fairly
large data set (Note S3 in File S1). The JD analysis plots a histogram of all particle displacements within a fixed time interval Dt for all trajectories. (c)
Fitting Eq. 7 to the distribution of the displacements yields the minimum number of diffusion coefficients needed to describe the motion of the
particles in the system.
doi:10.1371/journal.pone.0064287.g001
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Materials and Methods

Monte Carlo Simulations
Code written in MATLAB (R 2011b, The MathWorks, Natick,

MA) was used to generate simulated data. First, we created a high

resolution matrix containing the initial, noise-free particle start

positions to generate well separated spots with a given minimum

nearest neighbor distance. Then, particle positions in subsequent

frames were simulated according to a full continuum model as

described in [26]. Briefly, the step size or jump distance r a particle

was moved in the subsequent frame was a random variable chosen

from the two-dimensional Brownian probability distribution [25],

[27]

p r2,Dt
� �

dr2~ 1
4DDt

e
{ r2

4DDt dr2, ð1Þ

with D being the diffusion coefficient and Dt the time interval

between frames. The angle of jump h was another random

variable between 0 and 2p, and the particle was moved dx = r

cos(h) in x- and dy = r sin(h) in y-direction, respectively. The

trajectory length l was set to 30 image frames similar to the typical

l obtained from experimental data (Table 1). Since objects viewed

through a microscope are distorted by the point spread function of

the objective, we convolved the high-resolution matrix with a

Gaussian point spread function of a 1.5-pixel radius resembling

real data. Next, typical background and Poissonian and Gaussian

noise was added to mimic typical EM-CCD signals. For the

simulation of two populations, two probability functions with

different D-values (Dm(Ground Truth, GT) = 0.1 mm2/s,

Dim(GT) = 0.02 mm2/s) were used. If trajectories with an internal

motion change were simulated, a motion change would occur

either once or twice within a trajectory, and the new motion would

last for at least 5 frames.

Single Particle Tracking and Trajectory Analysis
Custom-written MATLAB code was used to detect simulated or

real particles in each image frame, determine their positions with

sub-pixel accuracy, and subsequently link the extracted particle

positions using an implementation based on the work by Crocker

and Grier [28]. For a detailed description see Note S1 and Fig. S5

in File S1. Obtained trajectories were analyzed using either an

MSD or a JD analysis: For the MSD analysis, the mean-square

displacement over the first 5 time intervals was calculated and

individual diffusion coefficients obtained, using the linear rela-

tionship between MSD and Dt. For the JD analysis, the distances

between subsequent frames, the so-called jump distances, were

analyzed and diffusion coefficients of particle ensembles were

obtained by curve fitting [20,21].

Mean-square displacement (MSD) analysis. MSD-values

were calculated for each individual track x ið Þ,y(i)f g using the

method described by Qian et al. [10] and Saxton [17] where

MSD(nDt) for a given time lag nDt is defined as the average over all

points with that time lag

MSD(nDt)~ 1
l{n

Pl{n

i~1

x iznð Þ{x ið Þ½ �2z y iznð Þ{y ið Þ½ �2, ð2Þ

with l denoting the trajectory length and Dt the time step between

frames. Then short range diffusion coefficients D were obtained for

each trajectory using a linear weighted fit for n#5 to the equation

MSD nDtð Þ~4DnDtz4s2, ð3Þ

assuming errors are approximately normally distributed, the offset

corresponds to 4s2 with s being the localization precision [23].

Only n#5 time lags were considered for the analysis since the

maximum time lag should not exceed a quarter of the total

trajectory length (approx. 20 steps for our data) [17]. The gradient

of the linear fit is proportional to D. A histogram of individual D-

values is obtained and the mean value ,D. used to characterize

the motion of the ensemble.

Jump Distance (JD) Analysis. The probability p(r2,Dt)dr2

that a particle starting at r1 = 0 will be encountered within a shell

of radius r and a width dr at time Dt is given for two-dimensional

Brownian motion by [25], [27]:

p r2,Dt
� �

dr2~ 1
4DDt

e
{ r2

4DDt dr2: ð4Þ

This probability distribution can be obtained experimentally by

counting the jump distances within intervals [r,r+dr] traveled by

single particles in Dt. The diffusion coefficient of a particle

ensemble can then be determined by fitting the above equation to

the experimental data. For the purpose of fitting, the integrated

distribution

P r2,Dt
� �

~
Ðr2

0

p r2
� �

dr2~1{e
{ r2

4DDt ð5Þ

is more convenient, as it is independent of the choice of the bin

sizes [29].

Table 1. Extracted parameters, diffusion coefficients and fractions for all experimental conditions.

# cells # tra-jectories l* [frames] a [mm] Dm* [mm2/s] Dim* { {[mm2/s] fm* [%] d ` [nm] a/d b

Control 40 1465 2263 1.760.4 0.1460.02 0.01560.007 7364 136610 1363 562

Latrunculin 46 1622 2163 1.760.3 0.1460.01 0.01360.003 7063 136650 1363 562

MbCD 33 1287 2563 1.460.5 0.0760.02 0.01160.003 6964 96614 1565 462

l denotes the trajectory length,
*Trajectories were randomly grouped in 10 subsets and their JD distributions fitted to equation 7. Errors are given by the standard deviation of the obtained Dm-, Dim-
and fm-values. {Note that the immobile population is static within the localization precision s= 25610 nm (Note S4 and Fig. S8 in File S1). SNR = 11 for all cell
experiments and 14 for the experiments to determine the localization precision.
`d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �Dm � Dt
p

, with Dt = 33 ms for all experiments.
doi:10.1371/journal.pone.0064287.t001
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If m species are present, a sum of m terms is used

p r2,Dt
� �

dr2~
Pm

j~1

fj
4DjDt

e
{ r2

4DjDt
dr2 ð6Þ

Here, fj the respective fraction of particles in mobility mode j

and Dj the respective diffusion coefficient.

For the integrated distribution, it holds [20]

P r2,Dt
� �

~1{
Pm

j~1

fje
{ r2

4DjDt: ð7Þ

To evaluate the goodness of the fit, the residual is inspected. To

prevent over-fitting we recommend starting with the simplest

model (m = 1) fitting to the data and subsequently checking the fit

residuals for any systematic deviation. If a systematic deviation is

observed m should be increased and a more complex model fitted

to the data, and the simplest model whose fit result shows no

systematic deviation should be chosen [25,30,31].

Cell Culture Procedures
The mouse macrophage cell line RAW 264.7 (ATCC TIB-71,

European Tissue Culture Collection) was cultured and maintained

in RPMI (Invitrogen) containing 1% penicillin/streptomycin (100

times, Invitrogen), 1% L-Glutamine (200 mM, Invitrogen) and

10% heat-inactivated fetal bovine serum (HyClone, Thermo-

Scientific) in an incubator at 5% CO2 and 37uC. Cells were grown

to 60–70% confluence before splitting. Mechanical force was used

for their detachment, and after every fourth passage the cells were

transferred to a fresh culture flask (BioGreiner).

Sample Preparation for Microscopy
LPS purified from E. coli and labeled with AlexaFluor 488

(Invitrogen) was stored at 220uC at a stock concentration of

1 mg/ml. The labeled LPS was tested with respect to TLR4

activation in HEK cells transfected with human TLR4, MD-2 and

CD14, and found to activate cells to a similar extent to unlabeled

LPS (Note S5 and Fig. S9 in File S1). RAW 264.7 cells were

seeded on 48-well plates (UpCell plates, NUNC) at a density of

66105 cells per well in culture medium and stimulated 24 hours

later. Prior to cell stimulation, LPS aliquots were sonicated in two

30-second bursts separated by a 1-minute pause. Cells were then

incubated on the plate in medium containing LPS at 1.8 mg/ml for

15 minutes on ice. For some experiments the cells were pretreated

with 10 mM Methyl-b-cyclodextrin in RPMI supplemented with

0.5% FCS and 1% L-Glutamine for 2 hours, or with 2.5 mM

latrunculin B (Biomol International, Exeter, UK) in serum free

medium for 20 minutes.

Following incubation with LPS, cells were then taken off the

plate by aspiration, and washed 3 times with ice cold RPMI and

the cells recovered by centrifugation (600 g, 2 min, 4uC). The cell

pellet was resuspended in RPMI supplemented with 1% FCS, and

dropped onto a cover slip housed in a home-made chamber (total

volume of medium: 1 mL RPMI/1% FCS), pre-warmed to 37uC
for imaging. The microscope coverslips had been cleaned for 10

minutes with Argon plasma (PDC-002, Harrick Plasma, Ithaca

N.Y.). A stage incubator was used to maintain temperature and

CO2 content (37uC, 5% CO2) throughout the entire measure-

ments and all data were taken within the first 20 minutes.

TIRFM Experimental Setup
Imaging was performed using total internal reflection fluores-

cence microscopy (TIRFM). A diode laser operating at 488 nm

(PC13589, Spectra Physics) was directed into a TIRF objective

(606 Plan Apo TIRF, NA 1.45, Nikon) mounted on a Nikon

Eclipse TE2000-U microscope off the optical axis so that it

impinged on the sample above the critical angle. Fluorescence

collected by the same objective was separated from the returning

TIR beam by a dichroic (FF500/646-Di1, Semrock), and filtered

using Dual-ViewTM (Photometrics) mounted filters. The images

were recorded on an EMCCD camera (Cascade II: 512,

Photometrics) operating at 270uC. Data were acquired at the

rate of 28.6 frames s21 using Micromanager [32], and the pixel

size of the camera was 106 nm. For each treatment, we collected

approx. 1300 trajectories in three independent experiments which

lasted an average length of 23 frames.

Results and Discussion

Testing of Nearest-neighbor Tracking Function
One key step in SPT - connecting particle images in a sequence

of frames - is complicated by high particle density. If the particle

density is sufficiently low, frame-to-frame particle correspondence

is almost unambiguous. At these low densities, tracking functions

based on a local nearest-neighbor approach have been used

extensively [15,28,33,34], yet to date there has been no systematic

test of the performance of such an algorithm as a function of

particle density under realistic conditions. The density of a sample

can be characterized by the average nearest neighbor distance a

between particles. Linking particles into trajectories over time is

feasible if the average particle displacement d within the time

interval Dt is sufficiently smaller than a (d,,a). In that case, a

tracking function based on a nearest-neighbor approach is

expected to perform well. For d < a, particle assignment becomes

ambiguous because the distance between some nearest-neighbors

is smaller than their average displacement between frames. The

ratio a/d of a data set can thus be used to test whether a nearest

neighbor approach is applicable.

Therefore, in order to test the performance of the nearest-

neighbor approach implemented by Crocker and Grier [28] with

varying a/d, we simulated data with a signal/noise ratio (SNR) and

a trajectory length l matching experimental data (l = 30 steps,

SNR = 6). In the first image frame particles were located at a

defined distance and moved a distance d according to equation (1).

Since the detection efficiency for isolated particles is 100% for

SNR-values .3 (Note S2 and Fig. S6 in File S1), the fraction of

detected particles only slightly depends on a/d (Fig. 2, black curve).

The slight drop towards low a/d values (large d) is due to the

probability that two particles get close together if d is large. Then

their point spread functions overlap and both particles cannot be

resolved. The fraction of fully reconstructed trajectories (Fig. 2,

blue curve), however, is affected more strongly; the reconstruction

requires every single particle position to be detected and linked

correctly. For a/d = 10, we find that a nearest neighbor approach

fully reconstructs 80% of the tracks and conclude that it is suited to

analyze data samples with a/d $10. For a/d = 5 approximately

50% of the tracks are recovered; this is well in line with a previous

study by Jaqaman et al. [35] which suggests that local nearest

neighbor approaches fail for a/d ,5. For a/d ,10, computation-

ally more expensive algorithms should be used instead [7,9].

A Comparison of Single-Dye Tracking Analysis Tools
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Computer Simulations Determine the Accuracy of JD and
MSD Analysis Under Real Experimental Conditions

In order to compare the JD to the MSD analysis, we tested the

performance of both methods depending on b, with b being

defined as the ratio of two experimentally accessible parameters:

the average particle displacement d and the particle’s localization

precision s (b = d/s). The measurement of the distance d a particle

has traveled within a given time interval Dt (Dt =Dtexposure+Dtdelay)

becomes inaccurate if s is a substantial fraction of this distance

(Fig. 3). It is expected that the JD approach is sensitive to b,

because for the JD approach the localization precision directly

affects the jump distance measurement. Furthermore, the JD

approach is not sensitive to the trajectory length, because its

performance depends on- the overall number of correctly linked

particles. The MSD analysis, on the other hand, is less dependent

on b and the trajectory length is expected to be a critical

parameter, since the MSD(Dt) is obtained as an average of all

MSD(Dt) over the entire trajectory [10]. As short trajectories are

typically obtained in single-dye tracking experiments, we were

interested to investigate in which regime of b the JD analysis

provides equivalent results to the MSD analysis. To this end,

image stacks with particles undergoing Brownian motion were

simulated with an SNR, a particle density and a short trajectory

length close to experimentally obtained values (Movies S1 and S2).

We started with the most trivial case in which only one mobility

population with a diffusion coefficient Dm(ground truth,

GT) = 0.1 mm2/s was simulated. We varied Dtdelay to cover values

of b ranging from 3 to 12. Trajectories were obtained from the

simulated data using the described spot detection and tracking

function, and the diffusion coefficient Dm(output) extracted using

either the JD or MSD approach. Then, the relative error

DDm

Dm

~
Dm,output{Dm,GT

� �

Dm,GT

of the output diffusion coefficient was compared for both methods.

Fig. 4 a shows that for the case of one mobile population, the JD

analysis reconstructs the diffusion coefficient as accurately as the

MSD analysis if b exceeds a value of 6 (relative errors DDm/Dm

between 3% and 5%, Fig. S7 b,c and Note S3 in File S1 for

representative data and fits).

Different Mobility Modes and Motion Changes can be
Reliably Dissected by JD Analysis

In the case of one mobility population, the JD is as accurate as

the MSD analysis if b.6. However, real receptor motion is

expected to be less homogenous due to the organization of the

plasma membrane: in a mosaic-like membrane receptors are

expected to move in a heterogeneous fashion, sub-populations

with varying diffusion coefficients may exist and transitions

between different types of motion may occur on the time scales

of the particle tracking [36,37]. To test the performance of both

trajectory analyses under more realistic conditions, two mobility

populations undergoing Brownian motion were simulated as

above. 50% of the particles belonged to a mobile species

(Dm(GT) = 0.1 mm2/s) and 50% to an immobile species

(Dim(GT) = 0.02 mm2/s). For b.6 the JD analysis yields a relative

error in Dm of approximately 6% whereas the MSD analysis fails to

reconstruct Dm reliably (DDm/Dm < 40% for all b, Fig. 4 b).

Additionally, the JD analysis reliably extracts the fractions

fm(GT) = 0.5 of the mobile population, with relative errors of fm
between 4% and 8% (Fig. 4 c). We also tested how a change in the

mobile fraction fm (constant b) affected both the JD and MSD

analysis (Fig. S1 in File S1). Not surprisingly, the relative error in

Dm for the MSD analysis increased drastically for an increasingly

smaller mobile fraction fm whereas the JD analysis still returns

reliable values for Dm. We would like to add that theoretically two

populations are resolvable by the MSD approach since the

histograms of the diffusion coefficients (Fig. 1 b) should show two

peaks representing two different D-values. However, under the

conditions examined mimicking typical diffusion data properties,

the obtained histograms show that the distributions of D-values are

too wide (due to short trajectories) to resolve the peaks for a typical

data set of 750 trajectories (Fig. S7 d and Note S3 in File S1). The

JD analysis, however, already performs well for a data set of this

size.

Next, simulations were used to compare the performance of

both approaches with half of the particles undergoing motion

Figure 2. Validation of tracking function on simulated data. The
fraction of detected particles and fully reconstructed tracks (number of
true positives/ground truth (GT)) as a function of the ratio of the
average nearest neighbor distance over the average displacement a/d.
Image stacks with 150 particles were simulated over 30 frames. In the
first image frame particles were located at a distance 56radius of Airy
disk from each other and then moved assuming Brownian motion in
subsequent frames. d was varied. Each data point shows the mean
value of 50 repetitions.
doi:10.1371/journal.pone.0064287.g002

Figure 3. Illustration of the parameter b. Depending on the SNR, a
particle can be localized within a certain localization precision s (red
circle). After a certain time interval the particle has traveled a distance d.
If s is a substantial fraction of the distance d (i.e. b is small), the
measurement of d is imprecise, leading to errors in the determination of
the diffusion coefficient. Increasing the time interval Dt and thus b
allows a more precise measurement of d.
doi:10.1371/journal.pone.0064287.g003

A Comparison of Single-Dye Tracking Analysis Tools
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changes (mobile R immobile, or mobile R immobile R mobile)

within a trajectory (Fig. S4 in File S1). The dependence of DDm/

Dm on b shows the same tendency as for the case of two discrete

mobile and immobile populations discussed above. For b.5, the

JD approach recovered Dm with a relative error of approx. 5%,

whereas the MSD approach gave a higher relative error (DDm/

Dm.18%, Fig. 4 d). Changing the fraction of the particles

undergoing a motion change (constant b) affected both the JD and

MSD analysis. We found that if more than 30% of the particles

undergo a motion change, the JD analysis outperforms the MSD

analysis (Fig. S2 in File S1).

Performance for Experimental Data: Native CD14 and
TLR4 Organization

Investigating the motion of endogenous cell surface receptors is

challenging but also rewarding as the receptors can be studied in a

minimally-perturbed and thus more relevant environment. Two

receptors of particular interest are CD14 and Toll-like Receptor 4

(TLR4). Both play a fundamental role in generating an immune

response against infection by recognizing LPS, a component of the

Gram-negative bacterial cell wall [38]. Over-activation of TLR4

by Gram-negative bacteria can lead to sepsis, making antagonism

of this receptor an important therapeutic goal [39]. TLR4

dimerization is known to be required for activation of signaling

pathways; however how LPS-bound CD14 and TLR4 behave

within the cell membrane is unclear.

Therefore we decided to visualize endogenous CD14 and TLR4

receptor motion by using fluorescently labeled LPS (AlexaFluor

488, see Movies S3 and S4 for representative data). Since LPS did

not bind to CD142/2 macrophages (Fig. S3 in File S1), we

assume that the detected LPS molecules are either bound to CD14

or TLR4 after transfer via CD14. First we characterized all data

sets to be confident that our tracking and JD analysis algorithms

would be applicable (measuring the SNR, localization precision,

average nearest neighbor distance and b, Table 1). Furthermore,

visual inspection of the data revealed motion changes (a

representative trajectory is shown in Fig. S4 in File S1), indicating

that an MSD analysis would not be appropriate. This is in

agreement with a previous study [40] of TLR4 receptor diffusion

using FRAP which have also found that a fraction of TLR4

receptors is immobile.

The JD distribution revealed that there are at least two

populations with different mobility modes present (Fig. 5 a,b,

Table 1), as fitting the data assuming one population fails. These

two populations are unlikely to correspond directly to the two

Figure 4. Comparison of JD analysis and MSD analysis on simulated data. Simulations with varying mobile and immobile populations were
used to compare the performance of the JD analysis (black curves) to the standard MSD approach (red curves). (a,b,d) The results shown are the
relative error |Dm, (output)2Dm,(ground truth, GT)|/Dm (GT) in the diffusion coefficient of the mobile population as a function of the parameter b and
(c) the relative error |fm (output)2fm(GT)|/fm (GT) in the mobile fraction as a function of the parameter b. All results are the mean values of 10
repetitions, with each repetition based on the analysis of 750 simulated trajectories. Error bars represent 61 standard deviation (a) All particles
belong to the mobile population. (b,c) 50% of the particles are mobile, and 50% immobile (d) 50% of particles undergo a motion change (mobile R
immobile).
doi:10.1371/journal.pone.0064287.g004
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receptors since CD14 receptors are much more abundant than

TLR4 (40-fold excess of CD14 [41]). The faster-moving particles

(two-thirds of the receptors) moved with a diffusion coefficient of

Dm = (0.1460.02) mm2/s, all other particles were immobile within

our localization precision (Note S4, Fig. S8 in File S1).

In previous work it was found that treatment with the

compound MbCD used to extract the cholesterol from the plasma

membrane slows down the motion of glycophosphatidylinositol-

(GPI-)anchored receptors by a factor of two [42]. We thus probed

whether MbCD had a similar effect on LPS receptor motion since

CD14 is also a GPI-anchored protein [43]. For macrophages

pretreated with MbCD two populations with different mobility

modes were recovered, and the immobile fraction measured for

cholesterol depleted cells was similar to the control sample, see

Fig. 5 c and Table 1. The diffusion coefficient of the faster

population dropped by 50% for treated cells to a value of

Dm = (0.0760.02) mm2/s which is in excellent agreement with the

study by Vrljic et al. [42]. However, this result is seemingly in

disagreement with the expected change in membrane fluidity upon

treatment with MbCD, as the membrane should be more fluid in

the absence of cholesterol and thus the receptor motion should be

faster. Therefore we assume that the observed reduction in

receptor mobility after MbCD treatment is due to a previously

reported side effect of the drug: MbCD was found to strengthen

the adhesion of the cytoskeleton to the plasma membrane [44]

which explains the reduced receptor mobility. Thus, the effect of

MbCD on cytoskeletal organization dominates the effect of

cholesterol depletion, and hence it should not be used to

investigate whether the lipid composition is of importance for

receptor organization and signaling. Instead, membrane choles-

terol levels could be manipulated by metabolic inhibition using

compounds such as compactin [45].

Finally we also investigated the effect of the underlying

cytoskeleton on receptor motion by treating the cells with

latrunculin B, a drug which is commonly used to depolymerise

the actin cytoskeleton. Interestingly, receptor diffusion was found

to be unaffected by this treatment (Dm = 0.1460.01 mm2/s, Fig. 5 d

and Table 1). As CD14 is a GPI-anchored protein, this fits

previous observations that some actin disruption agents such as

Cytochalasin D do not influence the motion of GPI-anchored

proteins [42].

Conclusion
In this study we have investigated how information on particle

diffusion can be reliably extracted from short single-dye trajecto-

ries. Using Monte Carlo simulations, we have shown that a

nearest-neighbor approach leads to a successful reconstruction of

the trajectories if the average nearest neighbor distance a is $10

times the average displacement d. If a/d ,10, a different tracking

approach should be chosen [46], and its suitability tested by

simulations or the plateau region criterion suggested by Wieser

et al [47]. Ensuring reliable trajectory formation is particularly

important if the density of the molecule of interest cannot be

varied experimentally, for instance if the diffusional behavior of

endogenous receptors is investigated.

If short trajectories of one diffusing population are analyzed,

and if the localization precision is not a substantial fraction of the

particles’ mean displacement (b.6), we have demonstrated that

both MSD and JD analysis yield accurate D-values (DD/D = 3–

5%). For two populations with different D-values, or a population

switching between two D-values, the MSD analysis fails to

reconstruct the D-values reliably whereas the JD analysis yields

accurate D-values (DD/D < 6% for b.6). In both latter cases, a

complete reconstruction of trajectories is crucial for the accuracy

of a MSD analysis whereas the accuracy of a JD analysis is less

affected by failures in particle linking (falsely linked particles

contribute one false step size to the histogram as opposed to a false

D-value of an entire trajectory). A JD analysis can therefore be

advantageous in an experimental situation for which false particle

links cannot be completely avoided due to high receptor densities.

We suggest that the JD analysis should be used for an initial

analysis of experimental data if the underlying number of diffusion

populations is unknown. Even if receptor diffusion can be

described using a single D-value, the labeling method, e.g. using

fluorophore-tagged antibodies or ligands, can introduce artificial

motion changes if the off-rate of the antibody or ligand cannot be

neglected during the experiment.

We have chosen a sample size and mean trajectory length

typically obtained for single dye tracking studies. In general, a JD

analysis improves with the number of correctly linked particles

which could be achieved either by longer trajectories or a larger

sample size. For a single population, JD and MSD approach are

expected to yield similar results for b.6 even if the sample size

and trajectory length is increased. For trajectory length longer

than 100 frames (which is hard to achieve for single-dye tracking),

we would recommend a MSD approach as it has the potential to

extract additional information [11]. For two populations a

significant increase of the sample size is required to distinguish

motion modes reliably with an MSD analysis for b.6. An approx.

Figure 5. Cumulative histograms of jump distances of LPS-
bound receptors in the plasma membrane (blue line). Best fits
according to Eq. 7 are shown (cyan). (a) The cyan line represents the fit
result assuming one species is present. The residual shows a clear
deviation from the data. (b) The same data fitted assuming two species
are present (components of the fit are shown in green for the mobile
and red for the immobile population). The residual shows no systematic
deviation of the fit from the data. Note that the deviation of the fit from
the histogram towards larger displacements is also found in our
simulated data (Fig. S7 and Note S3 in File S1) and thus does not
indicate a deviation of the data from Brownian motion. (c) MbCD
treated and (d) latrunculin B treated macrophages fitted assuming two
mobility populations. The values for the diffusion coefficients and
fractions can be found in Table 1.
doi:10.1371/journal.pone.0064287.g005
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5-fold larger sample size will lead to two distinct peaks in the

distribution of diffusion coefficients (see Figure S7d). In the case of

motion changes within a particle trajectory, a JD approach is

beneficial for b.6, independent of trajectory length and sample

size, as MSD analysis obscures motion changes.

Finally we applied the JD analysis to analyze the motion of

single-dye labeled endogenous LPS receptors and found that these

receptors are partially immobile. While the motion of the mobile

fraction is slowed down by MbCD, it is unaffected by the

disruption of the actin cytoskeleton.

It is our hope that the principles established in this work will

help to guide other researchers in their choice of analysis method

for single-dye tracking data and thereby ultimately contribute to a

more detailed understanding of membrane protein organization.

The MATLAB code for simulations and analysis software is

available upon request, contact L.W. (laura.weimann@gmail.com)

or D.K. (dk10012@cam.ac.uk).

Supporting Information

File S1 Figure S1, Probing the capability of the JD analysis to

output accurate diffusion coefficients Dm(fm) and to resolve varying

mobile fractions fm. Figure S2, Probing the capability of the JD

analysis to output accurate diffusion coefficients Dm varying the

fractions of particles undergoing a motion change. Figure S3, LPS

does not bind to CD142/2 macrophages. Figure S4, Represen-

tative trajectory of a receptor bound LPS molecule undergoing a

motion change. Note S1, Spot Detection and Tracking Algorithm

(Figure S5). Note S2, Testing of spot detection and localization

procedures (Figure S6). Note S3, Comparison of MSD and JD

Analysis using simulated data (Figure S7). Note S4, Measuring the

localization precision (Figure S8). Note S5, Test of biological

activity of AlexaFluorH488 labeled LPS (Figure S9).

(DOCX)

Movie S1 Representative Movie showing simulated receptor

motion (raw data).

(AVI)

Movie S2 Same video as Movie S1 after application of a band-

pass filter.

(AVI)

Movie S3 Movie typically obtained for AlexaFluorH488 labelled

LPS on wild-type macrophages (raw data).

(AVI)

Movie S4 Same video as Movie S3 after application of a band-

pass filter.

(AVI)
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7. Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target

tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:

687–694. doi:10.1038/NMETH.1233.

8. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory

analysis for video imaging in cell biology. J Struct Biol 151: 182–195. Available:

http://www.ncbi.nlm.nih.gov/pubmed/16043363. Accessed 25 July 2012.

9. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, et al. (2008) Robust

single-particle tracking in live-cell time-lapse sequences. Nat Methods 5: 695–

702. doi:10.1038/NMETH.1237.

10. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of

diffusion and flow in two-dimensional systems. Biophys J 60: 910–921. Available:

h t t p : / / w w w . p u b m e d c e n t r a l . n i h . g o v / a r t i c l e r e n d e r .

fcgi?artid = 1260142&tool = pmcentrez&rendertype = abstract. Accessed 23 July

2012.

11. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to

membrane dynamics. Annu Rev Biophys Biomol Struct 26: 373–399. Available:

http://www.ncbi.nlm.nih.gov/pubmed/9241424.

12. Saxton MJ (2008) Single-particle tracking: connecting the dots. Nat Methods 5:

671–672. Available: http://www.ncbi.nlm.nih.gov/pubmed/18668034.

13. Barak LS, Webb WW (1982) Diffusion of low density lipoprotein-receptor

complex on human fibroblasts. J Cell Biol 95: 846–852. Available: http://www.

p u b m e d c e n t r a l . n i h . g o v / a r t i c l e r e n d e r .

fcgi?artid = 2112907&tool = pmcentrez&rendertype = abstract.

14. Alcor D, Gouzer G, Triller A (2009) Single-particle tracking methods for the

study of membrane receptors dynamics. Eur J Neurosci 30: 987–997. Available:

http://www.ncbi.nlm.nih.gov/pubmed/19735284. Accessed 20 August 2012.

15. Goulian M, Simon SM (2000) Tracking single proteins within cells. Biophys J 79:

2188–2198. Available: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid = 1301109&tool = pmcentrez&rendertype = abstract. Accessed 24 Au-

gust 2012.

16. Bruckbauer A, James P, Zhou D, Yoon JW, Excell D, et al. (2007) Nanopipette

delivery of individual molecules to cellular compartments for single-molecule

fluorescence tracking. Biophys J 93: 3120–3131. Available: http://www.

p u b m e d c e n t r a l . n i h . g o v / a r t i c l e r e n d e r .

fcgi?artid = 2025666&tool = pmcentrez&rendertype = abstract. Accessed 24 Au-

gust 2012.

17. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion

coefficients. Biophys J 72: 1744–1753. Available: http://www.pubmedcentral.

n i h . g o v / a r t i c l e r e n d e r .

fcgi?artid = 1184368&tool = pmcentrez&rendertype = abstract. Accessed 14

March 2012.
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