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Abstract

Background: The diagnosis of childhood tuberculosis (TB) disease remains a challenge especially in young and HIV-infected
children. Recent studies have identified potential host markers which, when measured in Quantiferon (QFT-IT) supernatants,
show promise in discriminating between Mycobacterium tuberculosis (M.tb) infection states. In this study, the utility of such
markers was investigated in children screened for TB in a setting with high TB incidence.

Methodology and Principal Findings: 76 children (29% HIV-infected) with or without active TB provided blood specimens
collected directly into QFT-IT tubes. After overnight incubation, culture supernatants were harvested, aliquoted and frozen
for future immunological research purposes. Subsequently, the levels of 12 host markers previously identified as potential
TB diagnostic markers were evaluated in these supernatants for their ability to discriminate between M.tb infection and
disease states using the Luminex platform. Of the 76 children included, 19 (25%) had culture confirmed TB disease; 26 (46%)
of the 57 without TB had positive markers of M.tb infection defined by a positive QFT-IT test. The potentially most useful
analytes for diagnosing TB disease included IFN-a2, IL-1Ra, sCD40L and VEGF and the most useful markers for discriminating
between QFT-IT positive children as TB or latent infection included IL-1Ra, IP-10 and VEGF. When markers were used in
combinations of four, 84% of all children were accurately classified into their respective groups (TB disease or no TB), after
leave-one-out cross validation.

Conclusions: Measurement of the levels of IFN-a2, IL-1Ra, sCD40L, IP-10 and VEGF in QFT-IT supernatants may be a useful
method for diagnosing TB disease and differentiating between active TB disease and M.tb infection in children. Our
observations warrant further investigation in larger well-characterized clinical cohorts.
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Introduction

Tuberculosis (TB) remains a global health problem and the

diagnosis remains challenging especially in children, who typically

develop paucibacillary disease [1]. The introduction of the

XpertMTB/RIF assay (Cepheid Inc., CA, USA) into routine

clinical practice [2] is a significant improvement especially in high-

burden settings since diagnosis of pulmonary TB is now possible

within 2 hours, coupled with the detection of rifampicine

resistance [3]. However, many limitations including the high

operating costs [4] are major impediments to large-scale roll-out of

such tests in resource-limited settings. Furthermore, sputum based

tests have limitations for the detection of Mycobacterium tuberculosis

(M.tb) in children, both due to the low organism yield, and limited

tussive force. In children hospitalized for suspected pulmonary TB

and with radiological evidence of disease on chest radiograph, only

30–40% are culture-confirmed if sampled repeatedly by gastric

aspiration, nasopharyngeal aspiration or sputum induction [5].

Furthermore, culture is costly and results may take up to 6 weeks

[6]. There is a need for new, rapid and accurate diagnostic tools

more effective in detecting paucibacillary TB in young children.

Ideally, such methods should be coupled with the development of

suitable platforms for detection such as incorporation of validated

markers into rapid point-of-care tests that are feasible to use in

resource-limited settings. Such tests would ideally use readily
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obtainable paediatric specimens including small volumes of whole

blood, serum/plasma, saliva, stool or urine.

Commercial Interferon gamma (IFN-c) release assays (IGRAs)

such as the ELISA-based Quantiferon TB Gold In-Tube assay

(QFT-IT; Qiagen, Germany), and the ELISPOT-based T

SPOT.TB (Oxford Immunotec, UK), are widely used especially

in high income, low burden settings for the diagnosis of M.tb

infection and for research in high-burden TB settings. These

assays have proven to be useful to accurately detect M.tb infection

in adults and children [7–10], but are unable to discriminate

between M.tb infection and active TB disease [11]. Investigations

aiming at identifying other potentially useful M.tb diagnostic

antigens are on-going [12–15]. At the same time, the identification

of additional host markers in supernatants upon stimulation with

the widely investigated ESAT-6/CFP-10/TB7.7 (the latter only in

QFT-IT assays) may be advantageous since new assays based on

such markers could build on this existing well-developed platform

[14,16–19,19–26]. Studies investigating such markers of infection

have identified interferon inducing protein (IP)-10, macrophage

chemotactic protein (MCP)-1, MCP-2, Interleukin (IL)-2, inter-

leukin-1 receptor antagonist (IL-1Ra) and tumour necrosis factor

(TNF)-a, amongst others, as potential alternative markers to IFN-c
[18,21–23,25,27]. Other studies have indicated that epidermal

growth factor (EGF), macrophage inflammatory protein (MIP)-1b,
IL-1a, transforming growth factor (TGF)-a, soluble CD40 ligand

(sCD40L), vascular endothelial growth factor (VEGF), IP-10,

TNF-a, IL-12(p40), might discriminate between active TB and

infection [16,19,20,28]. The available data on the potential utility

of these markers, especially in discriminating between TB disease

and infection are limited, conflicting and the studies conducted to

date have used highly heterogeneous methodology. In the present

study, we investigated the utility of 13 markers previously reported

[16,18–23,25,27,28] to be potentially useful in the diagnosis of

M.tb infection or TB disease in children from a setting with high

burden of TB and HIV.

Materials and Methods

Ethics Statement
The children included in this study were enrolled as part of two

larger paediatric studies. Upon completion of initial sample

collection, frozen aliquots of QFT-IT supernatants were thawed

and used for the Luminex experiments presented in this report.

The larger studies were approved by the Health Research Ethics

Committee of Stellenbosch University (project numbers N07/08/

180 and N08/08/207). Parents gave written consent for study

participation, including for HIV testing and storage of blood

samples for future TB diagnostic research.

Study Participants and Setting
The two larger paediatric studies that contributed participants

for this study were conducted in 2008 in Cape Town, Western

Cape Province, South Africa. In Cape Town, the TB notification

rate among children aged 0–13 years was 620/100 000 in 2008

[29]. BCG vaccination (Danish strain, 1331, Statens Serum

Institute, Copenhagen, Denmark) is routinely administered at

birth (99% coverage). Study 1 aimed to assess the value of

commercial IGRAs for the diagnosis of active TB in hospitalized

children with different spectrum and severity of disease (Table 1)

and contributed all the 19 TB cases included in this sub-study.

Study 2 was a paediatric household contact study which aimed to

investigate markers of TB infection in recently TB-exposed

children. All 57 children without active TB disease were recruited

from study 2.

Study 1 (disease group) included children with symptoms and

signs suggestive of TB recruited at Tygerberg Children’s Hospital;

study 2 (no-disease group) enrolled children exposed to an adult

with smear or culture confirmed pulmonary TB in the household.

Participants in both parent studies were aged 3 months to 5 years.

Children were excluded if weighing ,2.5 kg and if they had

received antituberculosis therapy for .1 month (disease group) or

were on any antituberculosis therapy (no-disease group).

All children were systematically screened for TB through

history, clinical examination, Mantoux tuberculin skin test [TST;

2 tuberculin units of purified protein derivative (PPD RT23), SSI,

Denmark], chest radiography (read by two blinded experts using a

standardized reporting form) [30], and liquid mycobacterial

culture (MGIT system, Beckton-Dickinson, USA) of minimum 2

respiratory samples (typically gastric aspirates) and of any other

clinically relevant specimens. Positive cultures were speciated using

line probe assay (GenoTypeH MTBDRplus, Hain Lifescience

GmbH, Nehren, Germany). HIV infection status was determined

in all children (HIV DNA PCR if ,=18 months and HIV ELISA

if .18 months of age). All participants provided a 3 ml whole

blood sample that was collected directly into three QFT-IT tubes

(Nil, mitogen and TB antigen tubes) as recommended by the

manufacturer (Qiagen, Germany). The tubes were transported at

room temperature to the research laboratory within 2 hours of

collection and incubated (37uC, 20–24 hours); thereafter, super-

natants were harvested, aliquoted and frozen at 280uC for the

immunological assays described below.

Confirmed TB disease was defined as bacteriological identifi-

cation of M.tb from any sample, in the presence of clinical and

radiological signs and symptoms. TB was excluded (‘‘unlikely’’ or

‘‘not’’ TB) [31] if the child was asymptomatic (study 1), with a

chest radiograph not suggestive of TB, and negative mycobacterial

cultures. Children with probable or possible TB disease were

excluded from this study. Children with confirmed TB disease

with available frozen QFT-IT supernatants (Study 1) were age-

matched to controls without TB (Study 2), with or without M.tb

infection, and with available supernatants.

For the purpose of this sub study,M.tb infection was defined as a

positive QFT-IT result, in the absence of any other clinical or

radiological signs and symptoms suggestive of TB or positive

MGIT cultures. Laboratory analysis was blinded to all clinical

data including TB infection or disease status and the clinical team

was blinded to QFT-IT results.

Immunoassays
IFN-c responses in culture supernatants were determined using

the Quantiferon TB Gold ELISA kit and the results were

interpreted for M.tb infection using the analysis software provided

by the manufacturer (Qiagen, Germany) as previously described

[32]. Frozen aliquots of each participant’s unstimulated (nil) and

TB antigen-stimulated supernatants were thawed and the levels of

12 host markers (EGF, IFN-a2, IL-1Ra, IL-1a, IP-10, MCP-3,

MIP-1b, sCD40L, TGF-a, TNF-a, VEGF and IFN-c) evaluated
using customized Milliplex kits (Merck Millipore, St. Charles,

Missouri, USA) on the Bio Plex platform (Bio PlexTM, Bio Rad

Laboratories) as previously described [20]. Prior to the assay, all

supernatants were diluted 1:1 with the kit serum matrix to ensure

accurate measurement of chemokine levels following previous

optimization experiments [20]. The concentration of IP-10 in TB

antigen stimulated supernatants, however, remained above the

range of the standard curve in 14/19 (74%) TB cases and 31/

57(54%) non TB cases; IP-10 TB antigen data was therefore

excluded from further analysis. Samples were evaluated blinded to

QFT-IT status. All analyte levels in the two quality control
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reagents supplied by the manufacturer were within the expected

ranges. Marker concentrations detected in the different superna-

tants were automatically multiplied by 2 (to correct for the

dilution) by the software used for bead acquisition and analysis, the

Bio Plex manager software, version 4.1.1. The standard curve for

all biomarkers ranged from 3.2–10000 pg/ml.

Statistical Analysis
Differences between the comparison groups (e.g. TB disease and

no TB) were determined using the Mann–Whitney U test for non-

parametric data analysis. Optimal cut-off levels for differentiating

between groups were determined by receiver operator character-

istics (ROC) curve analysis, based on the highest likelihood ratio.

The predictive abilities of combinations of analytes for the

different M.tb infection and disease states were estimated by

performing best subsets general discriminant analysis (GDA), with

leave-one-out cross validation [20]. Differences between groups

were considered significant if p values were #0.05. The data were

analysed using the Statistica software (Statsoft, Ohio, USA) and

GraphPad Prism, version 5.00 for Windows (GraphPad Software,

San Diego, CA, USA).

Results

A total of 76 children, 19 with culture confirmed TB disease and

57 without were included. Using the manufacturer’s recommend-

ed definition for QFT-IT, with a cut-off value of 0.35 IU/ml, 15/

19 (78.9%) of the children with TB and 26/57 (45.6%) of those

without TB were positive for M.tb infection. The mean age (6SD)

of study participants was 37.6633.1 months; 22 (29%) were HIV-

infected. The clinical and demographic characteristics of study

participants are shown in Table 1.

Utility of Host Markers in the Diagnosis of TB Disease
The concentrations of the markers in the supernatants harvested

from the unstimulated (nil) and the TB-specific antigen QFT-IT

tubes from children with culture confirmed TB disease (n = 19)

were compared with the levels in the 57 without TB disease

(45.6% of whom were infected). The unstimulated (N), antigen

stimulated (Ag) and the antigen specific responses of each marker,

obtained by subtraction of the unstimulated levels from the antigen

stimulated responses (Ag-N, with the exception of IP-10), were

analysed as separate variables in order to evaluate the contribution

of unstimulated marker levels to the diagnosis of disease.

Unstimulated IP-10 responses were also included in the analysis

as these levels were within the measurable range of the standard

curve (up to 20000 pg/ml taking into account the dilution factor)

in all study participants. Of the 12 markers evaluated, the median

unstimulated, antigen stimulated, or antigen-specific levels of seven

(IFN-a2, IL-1Ra, IP-10, sCD40L, VEGF, MCP-3, IFN-c) were
either significantly different between the two groups or showed

trends (Table 2): the unstimulated levels of IFN-a2 and IL-1Ra

were significantly higher (p,0.05) in children without TB disease,

while the median unstimulated levels of IP-10 and sCD40L were

significantly higher in those with disease, with the difference in the

unstimulated levels of VEGF (higher in TB) and MCP-3 (higher in

non-TB) showing a trend towards significance (p = 0.06 and 0.07

respectively) (Table 2). When the TB antigen-specific marker

responses were calculated by subtraction of the respective

unstimulated control levels, only the median levels of VEGF and

IFN-c were significantly different between the TB and non-TB

groups, with the levels of sCD40L showing a trend towards

significance (0.05,p#0.08) (Table 2). The median levels of all the

markers investigated, in the children with TB disease, those with

QFT-IT positive results but without TB disease, and the M.tb

uninfected children is shown in Table S1.

When the diagnostic accuracy of the markers was investigated

by receiver operator characteristics (ROC) curve analysis, the

markers that showed promise as diagnostic candidates as

determined by area under the ROC curve (AUC) $0.70

[20,33], included the unstimulated levels of IFN-a2, the

unstimulated levels of IL-1Ra, the unstimulated levels of sCD40L,

the antigen stimulated levels of sCD40L, VEGF, and the antigen-

specific levels of VEGF (Table 2). When the cut-off value with the

highest likelihood ratio was selected, the sensitivity of IFN-a2 (N),

VEGF (Ag) and VEGF (Ag-N) were all $84.0%, while specificity

Table 1. Patient characteristics.

All Tuberculosis
$

QFT-IT positive
non-cases M.tb uninfected P value 1 P value 2

N (%) 76 19 (25) 26 (34.2) 31(40.8) – –

Age, Months (IQR) 37.6 (13.8–48.7) 36.7 (6.0–55.0) 41.4 (18.1–55.6) 35.1 (14.1–38.3) 0.552 0.223

Males, n(%) 42 (55.3) 13 (68.4) 10 (38.5) 19 (61.3) 0.28 0.052

HIV infected, n(%) 22(29.0) 4(21.0) 9(34.6) 9(29.0) 0.480 0.560

Quantiferon results?

Positive, n (%) 41(54.0) 15 (79.0) 26 (100.0) 0 (0.0) 0.027 0.027

Negative, n (%) 33 (43.0) 2 (10.5) 0 (0.0) 31 (100.0) ,0.0001 –

Indeterminate, n(%) 2 (2.6) 2 (10.5) 0 (0.0) 0 (0.0) – –

$
Two of the children had contained pulmonary TB disease (Ghon focus), 12 had uncontained pulmonary TB and 5 had disseminated TB disease. Of the 12 children with
uncontained pulmonary TB, 8 had alveolar opacification with pleural effusion (n = 2) or without effusion (n = 6), 2 had expansile pneumonia (n = 1 with obstruction and
collapse), and 2 had bronchopneumonic spread (n = 1 with pleural effusion). Of the 5 children with disseminated disease, 2 had miliary TB, 2 had TB meningitis and
miliary TB, and 1 had spinal TB with alveolar opacification.
?Positive: Nil IFN-c #8.0 IU/ml and TB Ag-Nil $0.35 IU/ml and $25% of Nil value; Negative: Nil IFN-c #8.0 IU/ml and TB Ag-Nil ,0.35 IU/ml and Mitogen-Nil
$0.5 IU/ml, or Nil IFN-c #8.0 IU/ml and TB Ag-Nil $0.35 IU/ml and ,25% of Nil value and Mitogen-Nil $0.5 IU/ml; Indeterminate: Nil IFN-c .8.0 IU/ml, or Nil IFN-c
,8.0 IU/ml and TB Ag-Nil ,0.35 IU/ml and Mitogen-Nil ,0.5 IU/mL, or Nil IFN-c ,8.0 IU/ml and TB Ag-N $0.35 IU/ml and ,25% of Nil value and Mitogen ,0.5 IU/ml.
P-value 1: Number of individuals with variable/outcome and with TB vs number with variable but without TB, P-value 2: Number of individuals with variable and with
LTBI vs number with variable and with Active TB.
IQR: Interquartile range.
doi:10.1371/journal.pone.0064226.t001
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was only between 52.6% and 68.4%. IL-1Ra (N), sCD40L (N) and

sCD40L (Ag) all predicted TB disease with sensitivity #53% but

with specificity $93.0% (Table 2).

When the median levels of markers obtained in the children

with TB disease were compared to levels obtained in non-diseased

children but restricting the analysis to HIV-uninfected children (15

children with TB disease and 39 without TB disease), significant

differences or trends were observed for the unstimulated, antigen

stimulated or antigen-specific levels of eight of the 12 markers

investigated (IFN-a2, IL-1Ra, IP-10, sCD40L, VEGF, IFN-c,
EGF and IL-1a) (Table S2). After ROC analysis, AUC was $0.70

for IFN-a2 (N), IFN-a2 (Ag), IL-1Ra (N), VEGF (N), VEGF (Ag),

VEGF (Ag-N) and IFN-c (Ag-N) (Table S2). Although these

markers detected TB disease with sensitivity up to 88.0% and

specificity up to 97% at the cut-off values with the highest

likelihood ratio, only VEGF (N, Ag and Ag-N) ascertained TB

disease with both sensitivity and specificity .75% (Table S2).

To investigate whether the diagnostic accuracy of the markers

could be improved if used in combination, data for all participants

(irrespective of HIV status) were fitted into general discriminant

analysis (GDA) models. Similarly to the univariate analysis, the

unstimulated (N), antigen stimulated (Ag) and the antigen-specific

responses (Ag-N) of all markers were considered as separate

variables, to determine the contribution of unstimulated marker

levels in models. Optimal prediction of TB or no TB disease was

achieved when analytes were used in combinations of four

(Table 3). Although 86% of the non TB cases could be accurately

predicted when IP-10 (N), MCP-3 (Ag), sCD40L(Ag) and IFN-c
(Ag-N) responses were combined, only 68% of the TB cases could

be accurately predicted by combining any four markers after

leave-one-out cross validation (Table 3). When the data was

trimmed using a statistical procedure in which the influence of

outliers on the data is scaled down, before analysis, there was an

increase in the predictive abilities of the 4-analyte models (Table

S3), with the three most accurate models comprising of four-

analyte combinations between IL-1Ra (N), IL-1a (N), IP-10(N),

sCD40L(Ag), TNF-a(N), TGF-a (Ag-N) and IFN-a2 (Ag),

accurately predicting up to 84% (48/57) of the non TB cases

and up to 84.2% (16/19) of the TB cases after leave-one-out cross

validation (Table S3). The most frequently occurring analytes in

the top 20 GDA models that accurately classified participants as

TB disease or no TB disease in the raw untrimmed data included

IP-10 (N), sCD40L (Ag) and IFN-c (Ag-N), while the most

frequent analytes in the top 20 models generated from the

trimmed data included IL-1Ra (N), IP-10 (N) and sCD40L (Ag)

(Figure 1).

Utility of the Markers Investigated in Discriminating
between LTBI and Active TB Disease in Quantiferon
Positive Children
Some of the markers investigated in this study such as EGF,

MIP-1b, IL-1a, TGF-a, sCD40L and VEGF, were shown to have

potential in discriminating between M.tb infection and active TB

disease in adults in a previous study conducted in the same setting

[20]. To investigate the potential utility of these markers in

children, the levels obtained in QFT-IT positive non TB cases

(N= 26) were compared to the levels in the QFT-IT positive

children with TB disease (N= 15), regardless of HIV status. When

analysis was performed in all the 41 QFT-IT positive study

participants, the Mann Whitney U test showed significant

differences or trends for the unstimulated, antigen stimulated or

antigen-specific levels of six of the 12 markers evaluated, namely

Table 2. Median levels of analytes (pg/ml) and ranges (in parenthesis), and accuracies in the diagnosis of TB disease in all study
participants.

Marker
$

No TB (n=57) TB disease (n =19) P-value AUC (95% CI)
Cut-off
value

Sensitivity, %
(95% CI)

Specificity,% (95%
CI)

IFN-a2N 5.8 (0.0–299.4) 0.0 (0.0–109.8) 0.005 0.70 (0.57–0.83) ,5.0 89.5 (66.9–98.7) 52.6 (39.0–66.0)

IFN-a2Ag 5.8 (0.0–269.4) 0.0 (0.0–133.2) 0.012 0.68 (0.55–0.81) ,4.7 84.2 (60.4–96.6) 52.6 (39.0–66.0)

IL-1raN 187.9 (0.0–4991.4) 63.4 (0.0–717.0) 0.01 0.70 (0.55–0.84) ,11.8 26.3 (9.1–51.2) 98.2 (90.6–99.9)

IP-10N 3967.0 (474.6–
.20000)

7613.0 (1075.0–.20000) 0.03 0.66 (0.52–0.80) .6906 63.2 (38.4–83.7) 75.4 (62.2–85.9)

sCD40LN 4722.2 (1296.0–
.20000)

7858.2 (1177.2–
.20000)

0.0095 0.70 (0.55–0.84) .10877 42.1 (20.3–66.5) 93.0 (83.0–98.0)

sCD40LAg 3917.3 (1135.0–
.20000)

9769.3 (1296.0–
.20000)

0.0028 0.73 (0.58–0.89) .9671 52.6 (28.9–75.6) 93.0 (83.0–98.0)

VEGFAg 542.5 (0.0–4134.0) 963.7 (325.4–2637.2) 0.0056 0.71 (0.60–0.82) .809.3 84.2 (60.4–96.6) 66.7 (52.9–78.6)

VEGFAg-N 0.0 (0.0–3721.4) 302.4 (0–2000.0) 0.0065 0.71 (0.59–0.83) .32.0 84.2 (60.4–96.2) 68.4 (54.8–80.1)

IFN-gAg-N¡ 13.1 (0–8774.9) 170.4 (0.0–9383.4) 0.02 0.68 (0.55–0.81) .2587 26.3 (9.1–51.2) 98.3 (90.6–99.9)

MCP-3N 3185.0 (258.3–
.20000)

2085.0 (319.8–.20000) 0.08 0.63 (0.49–0.78) ,640.9 26.3 (9.1–51.2) 94.7 (85.4–98.9)

sCD40LAg-N 0.0 (0.0–50.5) 1147.2 (0.0–9699.6) 0.08 0.63 (0.46–0.81) .2977 36.8 (16.3–61.6) 94.7 (85.4–98.9)

VEGFN 458.2 (0.0–3966.4) 727.5 (0.0–1011.7) 0.06 0.65 (0.52–0.77) .625.2 83.3 (58.6–96.4) 61.4(47.6–74.0)

IFN-gAg 32.8 (0.0–8774.9) 170.4 (0.0–9383.4) 0.08 63 (0.48–0.78) .2623 26.3 (9.1–51.2) 98.3 (90.6–99.9)

Participants were not stratified according to Quantiferon results or HIV status prior to analysis. All analytes that showed significant differences (P,0.05) or trends
according to the Mann Whitney U test are shown. Analytes that discriminated between TB disease and no TB disease with AUC $0.70 after ROC analysis are highlighted
in bold. Cut-off values were determined based on the highest likelihood ratio. Sensitivity and specificity are expressed as a percentage. AUC=Area under the ROC curve,
95% CI = 95% confidence interval.
$
N=unstimulated marker levels, Ag =Antigen stimulated levels, Ag-N = the difference between the antigen stimulated and the unstimulated responses; ¡At the cut-off
value used in the QFT-IT test (0.35 IU/ml = 14 pg/ml [60]), the sensitivity of IFN-c for TB disease was 79.0 (54.4–93.9) and specificity was 50.9 (37.3–64.4).
doi:10.1371/journal.pone.0064226.t002
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EGF, IFN-a2, IL-1Ra, IP-10, sCD40L and VEGF. The median

unstimulated levels of IL-1Ra were significantly higher in the M.tb

infected children while the median unstimulated levels of IP-10

(N), EGF (Ag) and VEGF (Ag-N) were significantly higher in the

TB cases (Table 4). After ROC analysis, AUC was $0.70 only for

IL-1Ra (N), IP-10 (N) and VEGF (Ag-N) levels (Table 4). With the

exception of IL-1Ra (N) levels, all the markers with AUC $0.70

discriminated between M.tb infection and active TB disease with

both sensitivity and specificity $73.0% using the cut-off values

selected according to the highest likelihood ratio (Table 4). The

median levels of all the markers investigated, in the children with

TB disease, those with LTBI and the M.tb un-infected children is

shown in Table S1.

When the accuracies of the markers in discriminating between

TB disease and infection was assessed only in HIV-uninfected

children (17 QFT-IT positive children without disease and 12

QFT-IT positive children with disease), the unstimulated, antigen

stimulated or antigen-specific levels of 5 markers (IFN-a2, IL-1Ra,
VEGF, IP-10 and IFN-c) showed significant differences or trends

between the two groups (Table S4). IFN-a2 (N) and IL-1Ra (N)

levels were significantly higher in children with TB infection,

whereas IFN-c (N), IP-10 (N), VEGF (N, Ag and Ag-N) levels were

significantly higher in the children with TB disease (Table S4).

After ROC analysis, AUC was $0.72 for all the markers with

significant Mann Whitney U test p values between groups.

Although VEGF (N) levels discriminated between TB disease and

LTBI with a sensitivity of 100%, specificity was only 77% at the

selected cut-off value and only IP-10(N), VEGF(N), VEGF(Ag) and

VEGF(Ag-N) discriminated between TB disease andM.tb infection

with both sensitivity and specificity $70.0% (Table S4).

When the predictive abilities of combinations of analytes for

discriminating between TB disease and M.tb infection were

assessed by GDA, different 5-analyte combinations predicted up

to 81% (21/26) of theM.tb infected cases and up to 80% (12/15) of

the children with active TB disease after leave-one-out cross

validation (Table 5). The predictive accuracy of the marker models

increased by using the data trimming procedure for outliers.

Different 5-analyte combinations of EGF (Ag), IL-1Ra (N), IP-10

(N), TGF-a (Ag), IL-1a (N), sCD40L (Ag) and IFN-a2 (Ag-N),

accurately predicted up to 84.6% (22/26) of the latently infected

children and up to 86.7% (13/15) of the QFT-IT positive children

with TB disease after leave-one-out cross validation (Table S5).

The most frequently occurring analytes in the top 20 GDA models

that best predicted infection or TB disease using the raw

untrimmed data included IP-10 (N), TNF-a (N) and EGF (Ag)

while the most frequently occurring analytes in the top 20 models

generated with the trimmed data included IL-1Ra (N), IP-10(N),

EGF (Ag) and sCD40L (Ag) (Figure 2).

Figure 1. Frequency of analytes in the top 20 GDA models that most accurately classified all study participants into respective
groups. Participants were not stratified according to HIV infection status or Quantiferon results prior to analysis of the data. The columns represent
the number of times each analyte was included into the top 20 discriminatory models. A = frequency of analytes in the models generated with raw
untrimmed data, B = frequency of analytes in models generated after data was trimmed to scale-down the influence of outliers.
doi:10.1371/journal.pone.0064226.g001
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Discussion

We investigated the diagnostic potential of 12 host markers,

detectable in stimulated and unstimulated QFT-IT supernatants,

for the diagnosis of TB disease and for discriminating between

M.tb infection and active TB in 76 children, 22 (29.0%) of whom

were HIV-infected. The most promising markers for discriminat-

ing between TB disease and no disease in all study participants,

regardless of HIV infection status, included IFN-a2 (N and Ag),

IL-1Ra (N), sCD40L (N and Ag) and VEGF (N, Ag and Ag-N),

whereas IL-1Ra (N), IP-10 (N), and VEGF(Ag-N), showed the

most potential in discriminating between M.tb infection and active

TB. The diagnostic accuracy of the markers increased when

markers were used in combinations.

IFN-c is essential for the control of intracellular pathogens

including M.tb [34] and it is therefore one of the first markers

investigated in most T cell based studies. Although IFN-c based

assays (IGRAs) are now standard for diagnosing M.tb infection in

Table 3. General discriminant analysis (GDA) models for discriminating between TB disease and no TB in all study participants.

Analytes Resubstitution Classification matrix Leave-one-out Cross validation Wilks lambda f

No TB (%) TB (%) Total (%) No TB (%) TB (%)

IL-1aAg IP-10N sCD40LAg
IFN-cAg-N

87.7 (50/57) 57.9 (11/19) 80.3 (61/76) 82.5(47/57) 57.9 (11/19) 0.327551 145.76

IL-1aAg IP-10N sCD40LAg
TNF-aAg

82.5 (47/57) 63.2 (12/19) 77.6 (59/76) 80.7 (46/57) 57.9 (11/19) 0.322849 148.91

IP-10N MCP-3Ag sCD40LAg
IFN-cAg-N

87.7 (50/57) 68.4 (13/19) 82.9 (63/76) 86.0 (49/57) 63.2 (12/19) 0.3445 135.0

IP-10N MCP-3Ag sCD40LAg
IFN-cAg

87.7 (50/57) 68.4 (13/19) 82.9 (63/76) 84.2 (48/57) 63.2 (12/19) 0.3465 133.9

IP-10N sCD40LAg TGF-aN
IFN-cAg-N

86.0 (49/57) 68.4 (13/19) 81.6 (62/76) 82.5 (47/57) 63.2 (12/19) 0.3612 125.5

IL-1aAg IP-10N sCD40LAg
IFN-cN

82.5 (47/57) 78.9 (15/19) 81.6 (62/76) 80.7 (46/57) 68.4 (13/19) 0.3514 131.0

IP-10N sCD40LAg TGF-aN
IFN-cAg

84.2 (48/57 68.4 (13/19) 80.2 (61/76) 80.7 (46/57) 57.9 (11/19) 0.3631 124.5

IP-10N MCP-3N sCD40LAg
IFN-cAg-N

86.0 (49/57) 73.7 (14/19) 82.9 (63/76) 84.2 (48/57) 63.2 (12/19) 0.3519 130.7

IL-1RaAg IP-10N sCD40LAg
IFN-cAg-N

86.0 (49/57) 68.4 (13/19) 81.6 (62/76) 84.2 (48/57) 57.9 (11/19) 0.302 164.3

IL-1RaN IP-10N sCD40LAg
IFN-cAg

87.7 (50/57) 68.4 (13/19) 82.9 (63/76) 86.0 (49/57) 57.9 (11/19) 0.312 156.5

Participants were not stratified according to Quantiferon results or HIV status prior to analysis. In each case, effect df = 1, error df = 71. P- values for all the models were
,0.0001. N =unstimulated marker levels, Ag = levels detected in antigen stimulated supernatants, Ag-N=Antigen specific marker levels obtained after background
correction.
doi:10.1371/journal.pone.0064226.t003

Table 4. Median levels of analytes (pg/ml) and ranges (in parenthesis), and accuracies in discriminating between active TB disease
and LTBI in all QFT-IT positive participants.

Marker LTBI (n =26) TB cases (n=15) P-value AUC (95% CI) Cut-off
Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

EGFAg 162.1 (50.2–435.7) 244.9 (17.4–635.3) 0.05 0.69 (0.51–0.86) .380.2 26.7 (7.8–55.1) 96.2 (80.4–99.9)

IFN-a2N 1.8 (0.0–142.5) 0.0 (0.0–109.8) 0.08 0.66 (0.49–0.83) ,4.7 93.3 (68.0–99.8) 42.3 (23.4–63.0)

IFN-a2Ag 4.7 (0.0–138.5) 0.0 (0.0–133.2) 0.08 0.66 (0.49–0.84) ,4.7 86.7 (59.5–98.3) 50.0 (29.3–70.1)

IL-1RaN 163.6 (0.0–
4991.4)

52.3 (0.0–717.0) 0.03 0.71 (0.53–0.89) ,11.8 33.3 (11.8–61.6) 96.2 (80.4–99.9)

IP-10N 3959.7 (991.9–
.20000)

10064.2 (1075.0–
.20000)

0.02 0.73 (0.55–0.90) .6768 73.3 (44.9–92.2) 80.8 (60.7–93.5)

sCD40LAg 5236.7 (2312.0–
.20000)

9769.3 (1296.0–.20000) 0.09 0.65 (0.46–0.86) .9589 53.3(26.6–78.7) 88.5 (69.9–97.6)

VEGFAg-N 29.5 (2816.8–
2870.9)

292.9 (299.6–821.9) 0.04 0.70 (0.53–0.87) .26.8 86.7(59.5–98.3) 73.1 (52.2–88.4)

Participants were not stratified according to HIV status prior to analysis. Only analytes that showed significant differences or trends according to the Mann Whitney U
test are shown. Analytes that discriminated between active TB disease and LTBI with AUC $0.70 after ROC analysis are highlighted in bold. Cut-off values were
determined based on the highest likelihood ratio. Sensitivity and specificity are expressed as a percentage. AUC=Area under the ROC curve, 95% CI = 95% confidence
interval.
doi:10.1371/journal.pone.0064226.t004
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some settings [10], these assays do not discriminate between active

TB disease and M.tb infection [11]. However, ESAT-6 and CFP-

10, the main antigens used in these tests, are among the most

immunogenic and specific M.tb antigens known, even though they

are also expressed in some non-tuberculous mycobacteria [35].

The high immunogenicity and relatively high specificity of these

Figure 2. Frequency of analytes in the top 20 GDA models that most accurately classified the Quantiferon positive participants as
TB disease (n=15) or LTBI (n=39). Participants were not stratified according to HIV infection status prior to analysis of the data. The columns
represent the number of times each analyte was included into the top 20 discriminatory models. A = frequency of analytes in the models generated
with raw untrimmed data, B = frequency of analytes in models generated after data was trimmed to scale-down the influence of outliers.
doi:10.1371/journal.pone.0064226.g002

Table 5. General discriminant analysis (GDA) models for discriminating between LTBI and active TB disease.

Analytes Resubstitution Classification matrix Leave-one-out Cross validation Wilks lambda f

No TB (%) TB (%) Total (%) No TB (%) TB (%)

EGFAg IL-1RaN IP-10N MCP-3N TNF-aN 80.8 (21/26) 80.0 (12/15) 80.5 (33/41) 80.8 (21/26) 80.0 (12/15) 0.319 74.5

EGFAg IL-1aN IP-10N MCP-3N TNF-aN 88.5 (23/26) 80.0 (12/15) 85.4 (35/41) 80.8 (21/26) 73.3 (11/15) 0.316 75.9

EGFN IL-1aN IP-10N MCP-3N TNF-aN 80.8 (21/26) 86.7 (13/15) 82.9 (34/41) 80.8 (21/26) 80.0 (12/15) 0.364 61.0

EGFAg IP-10N sCD40LN TNF-aN
TGF-aN

76.9 (20/26) 80.0 (12/15) 78.0 (32/41) 73.1 (19/26) 73.3 (11/15) 0.355 63.4

EGFAg IL-1aN IP-10N TGF-aN TNF-aN 80.8 (21/26) 86.7 (13/15) 82.9 (34/41) 76.9 (20/26) 80.0 (12/15) 0.350 64.9

EGFAg IL-1aN IP-10N TNF-aN IFN-cN 92.3 (24/26) 73.3 (11/15) 85.4 (35/41) 76.9 (20/26) 73.3 (11/15) 0.317 75.4

EGFN IL-1RaN IP-10N TNF-aN MCP-3N 76.9 (20/26) 86.7(13/15) 80.5 (33/41) 76.9 (20/26) 73.3 (11/15) 0.378 57.6

Participants were not stratified according to HIV status prior to data analysis. In each case, effect df = 1, error df = 32. P- values for all the models were ,0.0001.
N = unstimulated marker levels, Ag = levels detected in antigen stimulated supernatant, Ag-N =Antigen specific marker levels obtained after background correction.
doi:10.1371/journal.pone.0064226.t005
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antigens for M.tb, coupled with the well-established IGRA

(especially QFT-IT) platform have contributed to the recent focus

on identifying host markers other than IFN-c, which could

discriminate between different M.tb infection states in supernatants

after stimulation with these antigens. Our work so far indicates

that such discriminatory markers may not only be detectable in

antigen stimulated, but also in unstimulated supernatants.

The unstimulated, antigen stimulated or antigen-specific levels

of 8 of the 12 markers evaluated in the current study (IFN-a2, IL-
1Ra, IP-10, sCD40L, IFN-c, VEGF, TGF-a and EGF), were

different between children with TB disease and those without

disease, and/or between the QFT-IT positive children with

disease and those without, irrespective of HIV infection. IFN-a2 is

an inflammatory protein that is induced in dendritic cells and

monocytes upon infection with M.tb [36] and is released by the

host as a danger signal, thereby favouring the differentiation of

monocytes into dendritic cells [37]. It enhances the production of

IP-10, a key chemokine involved in the trafficking of effector TH1

cells to inflammatory sites in vivo [38], by antigen presenting cells

[36]. IL-1Ra is an anti-inflammatory protein secreted by various

immune cell types including epithelial cells, adipocytes, stromal

cells, keratinocytes and hepatocytes. Its levels are elevated in many

inflammatory and infectious diseases including TB, and serum

levels decline with treatment [39]; its main role is the competitive

inhibition of the inflammatory effects of IL-1a and IL-1b [40,41].

EGF, VEGF and TGF-a are growth factors abundant in

pulmonary TB granulomas, including areas of caseous necrosis,

and provide good growth environments for mycobacteria [42,43].

VEGF has been associated with disease activity in both pleural TB

and TB meningitis [44,45] and levels decline after successful TB

treatment [46]. CD40L is a co-stimulatory molecule that is

expressed on activated CD4+ T cells, and is involved in their

activation and development of effector functions [47]. Higher

plasma levels of sCD40L have been observed in patients with

cavitary TB lesions compared to those without such lesions [48]

and the interaction of the CD40-CD40L axis with IFN-c is

important in the generation of giant cells needed for protection in

TB and sarcoidosis [49]. All these host markers have previously

been evaluated in QFT-IT supernatants and shown to be

potentially useful for use singly or in combination with IFN-c for

diagnosing M.tb infection (especially IP-10 and TNF-a)
[17,18,27,50,51], or for discriminating between TB disease and

LTBI (IP-10, TNF-a, EGF, TGF-a, and VEGF) [16,19,20,28].

Although our findings agree with some of these previous

observations, direct comparison of the performances of markers

between studies remains difficult because of the different

combinations investigated in different studies. In addition, most

published studies involved adult participants, and study designs

and populations are highly variable.

Kellar et al [18] observed high antigen-specific levels of IFN-c,
IP-10, TNF-a, MIP-1b, MCP-1, IL-2, IL-6 and IL-8 in QFT-IT

supernatants from culture confirmed TB cases compared to

controls at low risk of infection. The study did not discriminate

between TB disease and LTBI. We also observed higher levels of

IFN-c, IP-10 and TNF-a in children with TB disease in the

present study; the levels of IL-2, IL-6, IL-8 and MCP-1 were not

investigated. There were no significant differences in the levels of

MIP-1b and TNF-a between children with TB disease and those

without active TB disease (LTBI and uninfected children

combined), or between latent M.tb infection and active TB disease

in this study. However, significant differences were observed when

the antigen-specific levels of MIP-1b obtained in the children with

active disease or LTBI, were compared to the levels obtained in

the uninfected children, therefore agreeing with the observations

of Kellar et al for MIP-1b. Although IL-15 and MCP-1 together

were the most useful markers for discriminating between TB

disease and LTBI, in a study conducted by Frahm et al [17], other

markers (IL-1Ra, IFN-a, and IL-4) also showed differences

between groups but had limited clinical utility. We found IL-

1Ra and IFN-a2 to be amongst the most potentially useful

markers for ascertaining TB disease and discriminating between

M.tb infection and active TB, with higher levels in the children

without active TB disease. These observations agree with the study

by Frahm et al [17]. Our study population consisted of young

children and comparison with adult studies might not be

appropriate given that the levels of biomarkers in QFT-IT

supernatants have been shown to be different even amongst

children of different age groups within the same cohorts [52] and

there are vast differences in the immune responses between

children and adults. For paediatric studies in which the levels of

multiple host markers in QFT-IT supernatants were investigated,

similar variations in results have been obtained as observed in

adults.

All the markers investigated in the present study were amongst

the 29 host markers previously evaluated in QFT-IT supernatants

from children in a low TB endemic environment [52]. The one

marker that showed differences between LTBI and active TB, IL-

2, was not available in the panel investigated in our study. Among

the common markers between the current and adult studies

conducted in the same community [20,33], only sCD40L and

VEGF responses were promising in univariate analysis in this

study (AUC$0.70), together with novel markers (IFN-a2, IL-

1Ra). However, TGF-a, TNF-a and IL-1a each featured in at

least one of the top 20 GDA models that accurately classified

$80% of all enrolled. Larger studies may help to better

understand the significance of these markers in children, and

explain the differences observed compared to adults. For example,

age-related developmental changes in the immune system may

play a role and can only be explored in large paediatric studies

encompassing a wide age-range. In addition, we did not examine

disease severity as a covariate given our limited sample size. The

influence of disease severity and other factors which might

contribute to findings and which were not investigated in this

preliminary study, including the nutritional status of the infant, the

timing of presentation and the age of the child should be taken into

account in future, larger studies.

Of the 76 children included in our study, 29% were HIV

infected. Some of the markers that showed potential in HIV-

uninfected adults (EGF and IL-1a) [20], showed similar differences

only when analysis was performed in HIV-uninfected children.

This might suggest that the performance of at least EGF and IL-1a
might be influenced by HIV co-infection. However, because only

4 of the 19 children with TB disease were co-infected witih HIV in

this study, we cannot draw strong conclusions on the possible

influence of HIV on the performance of the markers. HIV co-

infection is common among TB cases in our setting and may

complicate diagnosis. It will be important to investigate the

influence of HIV on the performance of the markers in future

larger studies, especially if the promising accuracy of these markers

is maintained in validation studies. More data on the potential

markers identified in QFT-IT supernatants to date, especially in

children of different age-groups and with different spectrum of

disease, is necessary, as there is an urgent need for diagnostic tests

tailored for use in this high-risk and diverse patient group. New

studies may also help make sense of the inconsistent results

obtained in the studies published so far, given the large numbers of

markers that are often evaluated and the small study participant

numbers.
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IGRAs remain well-established for the diagnosis of M.tb

infection. There is evidence that IP-10 measurement in QFT-IT

supernatants may perform similarly or even better [50,53].

However, diagnostic tests which can discriminate accurately

between LTBI and active TB will be valuable in settings with a

high proportion of latently infected individuals and limited

resources [54]. Novel markers with discriminatory potential

between M.tb infection and disease could be investigated directly

in culture supernatants after overnight incubation of QFT-IT

tubes, or used as a rule-in test after IFN-c or IP-10 detection. In

the present study, unstimulated IP-10 levels showed potential in

discriminating between active TB and latent infection. We could

not assess antigen-specific IP-10 levels because the levels of IP-10

elicited upon stimulation with antigen were above the range of

detection of the standard curve in most of the study participants.

However other investigators have shown that antigen-specific

levels of IP-10 (Ag-N) are not useful in discriminating between

M.tb infection and active disease both in adults [20,55,56] and

children [27,51]. In the present study, higher unstimulated levels

of IP-10 were observed in the children with TB disease and this is

contrary to what was observed for instance, in the studies by

Whittaker et al. [27] and Wang et al. [57]. The reasons for this

discrepancy in background levels is unknown, but at least, 25% of

the TB cases elicited IP-10 levels which were in the detectable

range of the standard curve, compared to the LTBI cases in whom

antigen stimulated levels were above the range of the curve in 92%

(24/26) of the children investigated (Table S1). This might suggest

that the IP-10Ag and IP-10Ag-N levels obtained in this study

might have indeed been higher in the LTBI cases as observed in

these previous studies.

The most accurate single marker for discriminating between TB

disease and no disease or M.tb infection and active disease in this

study (VEGF), has previously been shown to be potentially useful

in serum samples [46]. Future studies should investigate models

based on unstimulated, antigen stimulated or antigen-specific

responses to determine the best marker/model and under what

stimulation condition (unstimulated, antigen stimulated (Ag) or

antigen-specific responses (Ag-N)) might be most useful. Any

unstimulated marker levels shown to be useful for diagnostic

purposes either singly or in combination with other markers or

clinical information could be measured directly in serum or

plasma, but studies comparing the levels of the marker in these

sample types would have to be performed first. Ultimately,

immunological biomarker tests will have greatest impact if

incorporated into rapid, easy-to-use test platforms such as the

lateral flow technology.

The main limitations of our study include the relatively small

sample size and the case-control design. It is possible that we might

have reported a significant finding which occurred by chance,

given that 12 host markers were evaluated. Such a risk occurs in all

large biomarker discovery studies regardless of the discovery

platform used. A corrective measure that is usually employed

during statistical analysis to limit this risk is the correction for

multiple comparisons. The main analytical procedure employed in

this study was ROC analysis, a method in which no hypothesis

testing is done, and decisions resulting from likelihood ratios [58].

Not correcting for multiple comparisons however, may be a

concern in GDA as the best subsets method (used in evaluating

marker combinations in this study) does generate different analyte

combinations. This also, is not a major concern as the focus of this

manuscript was not on p-values for a specific combination of

analytes but on which analytes occurred most frequently in the

multi-marker models.

Future studies should evaluate the host markers in children and

adults who are immuno-compromised, in extrapulmonary TB

cases, and also in individuals with other lung diseases [59].

Conclusions
Our findings indicate that multiple host markers detected in

QFT-IT supernatants, especially IFN-a2, IL-1Ra, sCD40L, IP-10

and VEGF, have potential to support the diagnosis of TB disease

or the discrimination between TB disease and LTBI in children.

Our results also indicate that unstimulated host marker levels

might be useful and warrant further investigation in larger

prospective studies.
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Table S1 Median levels (pg/ml) of all host markers
(Inter-quartile ranges in parenthesis) in all children
with TB diseases, latent M.tb infection or no M.tb
infection and p-values for differences between the
groups. Significant p-values are highlighted in bold. Nd=not

determined, N=unstimulated marker levels, Ag= levels detected

in antigen stimulated supernatant, Ag-N=Antigen-specific marker

levels obtained after background correction.
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Table S2 Median levels of analytes (pg/ml) and ranges
(in parenthesis), and accuracies in the diagnosis of TB
disease in HIV uninfected children. Only analytes that

showed significant differences or trends according to the Mann

Whitney U test are shown. Analytes that discriminated between

TB disease and no TB with AUC $0.70 after ROC analysis are

highlighted in bold. Cut-off values were determined based on the

highest likelihood ratio. Sensitivity and specificity are expressed as

a percentage. AUC=Area under the ROC curve, 95% CI= 95%

confidence interval.

(DOCX)

Table S3 General discriminant analysis (GDA) models
for discriminating between TB disease and no TB. The
influence of outliers was scaled down by trimming the data and the

GDA analysis done in all study participants, regardless of HIV

infection or QFT-IT results. In each case, effect df = 1, error

df = 70. P- values for all the models were ,0.0001. N=un-

stimulated marker levels, Ag= levels detected in antigen stimulated

supernatant, Ag-N=Antigen specific marker levels obtained after

background correction.
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Table S4 Median levels of analytes (pg/ml) and ranges
(in parenthesis), and abilities to discriminate between
TB disease and LTBI in HIV uninfected QFT-IT positive
children. Only analytes that showed significant differences or

trends according to the Mann Whitney U test are shown. Cut-off

values were determined based on the highest likelihood ratio.

Sensitivity and specificity are expressed as a percentage.

AUC=Area under the ROC curve, 95% CI=95% confidence

interval.

(DOCX)

Table S5 General discriminant analysis (GDA) models
for discriminating between TB disease and latent M.tb
infection. The top 20 GDA models after the influence of outliers

was scaled down by trimming of data in all QFT-IT positive study

participants, regardless of HIV infection status are shown. In each

case, effect df = 1, error df = 36. P- values for all the models were

,0.0001, otherwise stated. N=unstimulated marker levels,
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Ag= levels detected in antigen stimulated supernatant, Ag-

N=Antigen specific marker levels obtained after background

correction, ¡=p value for model was 0.524.
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