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Abstract

Background: The aim of the present study was to test the hypotheses that 1) a single exercise bout increases UCP1 mRNA in
both inguinal (i)WAT and epididymal (e)WAT, 2) UCP1 expression and responsiveness to exercise are different in iWAT and
eWAT, 3) PGC-1a determines the basal levels of UCP1 and PRDM16 in WAT and 4) exercise and exercise training regulate
UCP1 and PRDM16 expression in WAT in a PGC-1a-dependent manner.

Methods: Whole body PGC-1a knockout (KO) and wildtype (WT) littermate mice performed a single treadmill exercise bout
at 14 m/min and 10% slope for 1 hour. Mice were sacrificed and iWAT, eWAT and quadriceps muscle were removed
immediately after, 2, 6 and 10 hours after running, and from sedentary mice that served as controls. In addition, PGC-1a KO
mice and WT littermates were exercise trained for 5 weeks with sedentary mice as untrained controls. Thirty-six-37 hours
after the last exercise bout iWAT was removed.

Results: UCP1 mRNA content increased 19-fold in iWAT and 7.5-fold in eWAT peaking at 6 h and 09 of recovery, respectively,
in WT but with no changes in PGC-1a KO mice. UCP1 protein was undetectable in eWAT and very low in iWAT of untrained
mice but increased with exercise training to 4.4 (AU) in iWAT from WT mice without significant effects in PGC-1a KO mice.

Conclusion: The present observations provide evidence that exercise training increases UCP1 protein in iWAT through PGC-
1a, likely as a cumulative effect of transient increases in UCP1 expression after each exercise bout. Moreover, the results
suggest that iWAT is more responsive than eWAT in exercise-induced regulation of UCP1. In addition, as PRDM16 mRNA
content decreased in recovery from acute exercise, the present findings suggest that acute exercise elicits regulation of
several brown adipose tissue genes in mouse WAT.
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Introduction

Life style related metabolic diseases are an increasing problem

worldwide and is often associated with obesity and adipose

tissue malfunction. Adipose tissue is an endocrine organ playing

an important role in whole body metabolism. Several studies

[1,2] indicate that inguinal white adipose tissue (iWAT),

opposite of epididymal white adipose tissue (eWAT), has a

protective effect on metabolic diseases. Therefore, the amount

and distribution of adipose tissue seem important in develop-

ment of metabolic diseases. Furthermore, inguinal- and epidid-

ymal-derived cell lines have been reported to exhibit different

responsiveness to Forskolin/cAMP stimulation [3] and iWAT

has recently been shown to contain beige precursor adipocytes

[3,4] while eWAT does not. This indicates potential different

responses in eWAT and iWAT to certain stimuli.

Stallknecht et al. [5,6] showed that WAT is able to adapt to

endurance exercise training much like skeletal muscle. Hence

Cytochrome c oxidase (COX) activity [5] and GLUT4 mRNA

content [6] increased in rat eWAT after 10 weeks of endurance

exercise training. In addition, an acute exercise bout has been

shown to induce gene responses in adipose tissue from mice and

rats [7,8] suggesting that cumulative effects of transient increases

in mRNA lead to these adaptations. Furthermore, the uncoupling

protein (UCP)1 mRNA content has been shown to increase in

iWAT but not in eWAT in mice in response to cold-exposure [9]

and in both adipose tissue depots with exercise training but most

markedly in iWAT [10]. No changes were evident in iWAT UCP1

mRNA in response to acute exercise in mice in that study [10].
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However, only one time point was measured (5 h of recovery), and

UCP1 mRNA was not measured in eWAT after a single exercise

bout. In addition, exercise training-induced changes in UCP1

protein in WAT remains to be proven. Protein-containing PR

(PRD1-BF-1-RIZ1 homologous) domain (PRDM)16 has also been

identified as a regulator of the brown fat-like gene program and

thermogenesis in iWAT [11,12], but whether this protein is

regulated in white adipose tissue in response to exercise is currently

unresolved.

It is at present unknown which factors are regulating the

exercise-induced UCP1 response in WAT. The transcriptional co-

activator peroxisome proliferator-activated receptor-c coactivator

(PGC)-1a has previously been shown to drive the formation of

brown fat gene program [13] in addition to playing a role in

regulation of capillarization [14,15] and expression of oxidative

proteins in skeletal muscle [15,16] and oxidative proteins in

adipocytes [17]. Muscle PGC-1a has recently been suggested to

influence UCP1 expression through PGC-1a mediated regulation

of irisin release from skeletal muscle [10]. However, whether

PGC-1a is required for exercise-mediated regulation of UCP1

expression in WAT is unresolved. Therefore, the aim of the

present study was to test the hypotheses that 1) a single exercise

bout induces UCP1 mRNA responses in both iWAT and eWAT,

2) PGC-1a determines the basal levels of UCP1 and PRDM16 in

iWAT and eWAT, 3) exercise up-regulates UCP1 and PRDM16

mRNA in iWAT and eWAT in a PGC-1a-dependent manner and

4) exercise training up-regulates UCP1 protein in iWAT in a

PGC-1a-dependent manner.

Methods

Mice
The study used whole body PGC-1a knockout (KO) and

wildtype (WT) littermate mice. PGC-1a KO and WT mice were

obtained by intercross breeding of heterozygous parents [18] and

homozygous offspring were used for experiments. During the

experimental period, the mice were housed individually in cages

with 12:12-h light-dark cycle and with free access to standard

chow (Altromin, Brogården ApS, Lynge, Denmark) and water.

Experimental Protocol
Acute exercise bout. Prior to the experimental day, mice

were acclimatized to treadmill exercise (TSE systems GmbH, Bad

Homburg, Germany) two times 10 min a day on five consecutive

days. Each 10 min exercise period consisted of 2 min at 8 m/min,

2 min at 10 m/min, 4 min at 15 m/min and 2 min at 10 m/min,

with a constant slope of 10%.

Forty-eight hours after the end of adaptation to treadmill

running, PGC-1a KO mice and WT littermates performed a

single 1 hour treadmill exercise bout at 14 m/min with 10% slope

and both genotypes completed the exercise bout, although PGC-

1a KO mice exercised at a relatively higher intensity [19]. Mice

were sacrificed by cervical dislocation immediately after (0 h), 2

(2 h), 6 (6 h) or 10 (10 h) hours after running, while mice not run

acutely served as controls (Rest). Inguinal (iWAT), which are

found anterior to the upper segment of the hind limb, and

epididymal (eWAT), found underneath the abdomen skin, white

adipose tissue and quadriceps muscle were quickly removed and

frozen in liquid nitrogen for later analyses.

Exercise training. In addition to the acute exercise bout, a

group of PGC-1a whole body KO and WT littermates were

exercise trained for 1 hour 5 times/week for 5 weeks and had

access to running wheels during the exercise period as previously

described [15,19] with a control group not training. Running

wheels were blocked occasionally in WT mice to ensure similar

total running duration per day in WT and PGC-1a KO mice as

previously published [19]. Mice were sacrificed by cervical

dislocation 36–37 h after the last exercise bout and iWAT, was

removed and quickly frozen in liquid nitrogen.

Analyses
Muscle glycogen. Muscle glycogen content was determined

from 15 mg of muscle tissue as glycosyl units after acid hydrolysis

[20] using a fluoroscan (Thermo Labsystems, Bie & Berntsen,

Rødovre, Denmark).

RNA isolation and reverse transcription. Total RNA was

isolated from ,30 mg of adipose tissue by a modified guanidinium

thiocyanate-phenol-chloroform extraction method adapted from

Chomczynski and Sacchi [21] as previously described [22] except

that the tissue was homogenized for 2 min at 30 sec–1 in a

TissueLyserII (Qiagen, Valencia, CA, USA).

Superscript II RNase H– system and Oligo dT (Invitrogen,

Carlsbad, CA, USA) were used to reverse transcribe the mRNA to

cDNA as previously described [22].

Real-time PCR. The mRNA content of UCP1 and

PRDM16 were determined by real time PCR using the

fluorogenic 59 nuclease assay with TaqMan probes and universal

mastermix with UNG (ABI PRISM 7900 Sequence Detection

System, Applied Biosystems, CA, USA) as previously described

[23]. The sequences used to amplify a fragment of UCP1 were FP:

59AAGCGTACCAAGCTGTGCGA39, RP: 59AGAAAA-

GAAGCCACAAACCCTT39 and TaqMan probe: 59CCATG-

TACACCAAGGAAGGACCGACG39 and to amplify a fragment

of PRDM16 were FP: 59CAGCACGGTGAAGCCATTC39, RP:

59GGCGTGCATCCGCTTGT39 and TaqMan probe:

59ATGCGAGGTCTGCCACAAGTCCTACAC39. Both Taq-

Man probes were 59-6-carboxyfluorescein (FAM) and 39-6-

carboxy-N,N,N’,N’-tetramethylrhodamine (TAMRA) labeled.

The obtained cycle threshold (Ct) values reflecting the initial

content of the specific transcript in the samples were converted to

an arbitrary amount by using standard curves obtained from a

serial dilution of a pooled sample made from all samples. The

amount of a given mRNA was normalized to the ssDNA content

of the cDNA sample determined by use of OliGreen as previously

described [23].

Lysate preparation. Adipose tissue specimens were homog-

enized in an ice-cold buffer as previously described [24] except the

tissue was homogenized for 2 min at 30 sec–1 in TissueLyserII

(Qiagen, Valencia, CA, USA). Protein content in lysates was

measured by the bicinchoninic acid method (Pierce Biotechnology

Inc., Rockford, IL, USA). Lysates were prepared with sample

buffer containing Sodium dodecyl sulfate (SDS) and boiled for

3 min at 96uC and analyzed by SDS-PAGE and western blotting.

Table 1. Muscle glycogen content at rest (Rest) and
immediately after exercise (0 h).

WT PGC-1a KO

Rest 20.7562.46 19.4661.70

0 h 15.5961.32* 6.5361.01*

Skeletal muscle glycogen content at rest (Rest) and immediately after (0 h) an
acute exercise bout from whole body PGC-1a knockout (KO) and wildtype (WT)
littermate mice. Values are means6SE; n = 8.
*Significantly different from Rest within given genotype, P#0.05.
doi:10.1371/journal.pone.0064123.t001

Exercise-Induced Regulation of UCP1 in WAT

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64123



SDS-PAGE and western blotting. Protein content was

measured in adipose tissue samples by SDS-PAGE and western

blotting using PVDF membrane and semi-dry transfer as

previously described [24]. Protein content is expressed in units

relative to control samples loaded on each gel. Primary UCP1

(ab10983 Abcam), COXIV (ab16056 Abcam) and CD31 (SC-

1506 Santa Cruz) antibodies and polyclonal secondary antibodies

(Dako, Glostrup, Denmark) were used.

Statistics and calculations. Values presented are means 6

SE. Two-way analysis of variance was applied to test the effect of

acute exercise and genotype on mRNA, protein content and

muscle glycogen as well as the effect of exercise training and

genotype on UCP1 protein content using the Student-Newman-

Keuls post hoc test to locate differences. Differences were

considered significant at P#0.05. Statistical calculations were

performed using SigmaPlot version 11.0.

Results

Acute Exercise
Muscle glycogen content. Resting muscle glycogen content

was similar in WT and PGC-1a KO and muscle glycogen was

reduced (P#0.05) 25 and 65% after the acute exercise bout in WT

and PGC-1a KO, respectively, with no significant difference

between genotypes (Table 1).

Figure 1. UCP1 mRNA content in iWAT and eWAT in response to acute exercise. Uncoupling protein (UCP) 1 mRNA content in iWAT (A) and
eWAT (B) immediately after (0 h), 2 (2 h), 6 (6 h) and 10 (10 h) hours after an acute exercise bout and from rested (Rest) wildtype (WT) and whole
body PGC-1a knockout (KO) mice. UCP1 mRNA is normalized to single stranded (ss) DNA. Values are means6SE; n = 8. *: Significantly different from
Rest within given genotype, P#0.05. #: Significantly different from WT within given time point, P#0.05.
doi:10.1371/journal.pone.0064123.g001

Figure 2. PRDM16 mRNA content in iWAT and eWAT in response to acute exercise. Protein-containing PR (PRD1-BF-1-RIZ1 homologous)
domain (PRDM) 16 mRNA content in iWAT (A) and eWAT (B) immediately after (0 h), 2 (2 h), 6 (6 h) and 10 (10 h) hours after an acute exercise bout
and from rested (Rest) wildtype (WT) and whole body knockout (KO) mice. PRDM16 mRNA is normalized to single stranded (ss) DNA. Values are
means6SE; n = 8. *: Significantly different from Rest within given genotype, P#0.05. #: Significantly different from WT within given time point,
P#0.05.
doi:10.1371/journal.pone.0064123.g002

Exercise-Induced Regulation of UCP1 in WAT
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UCP1 mRNA content. The resting content of UCP1 mRNA

was in both iWAT and eWAT similar in WT and PGC-1a KO

(Figure 1A and B). The basal Ct level was on average ,31 and

,37 in iWAT and eWAT, respectively.

In WT, the mRNA content of UCP1 increased (P#0.05) ,19-

fold in iWAT (Figure 1A) at 6 hours of recovery relative to Rest

and ,7-fold in eWAT (Figure 1B) immediately after the acute

exercise bout relative to Rest, but with no changes in PGC-1a KO

mice (Figure 1A and 1B).

PRDM16 mRNA content. The resting content of PRDM16

mRNA was in both iWAT and eWAT similar in WT and PGC-1a
KO mice (Figure 2A and B).

In WT mice, the PRDM16 mRNA content decreased (P#0.05)

in both iWAT and eWAT at 10 h of recovery from the acute

exercise bout to ,20–30% of the level in Rest, while in PGC-1a
KO mice the PRDM16 mRNA content decreased (P#0.05) at

0 h, 2 h and 6 h of recovery from the acute exercise bout to ,30–

60% of the level in Rest, only in eWAT. In addition, the PRDM16

mRNA content in iWAT was at Rest, 2 h and 6 h of recovery 30–

45% lower (P#0.05) in PGC-1a KO than in WT mice (Figure 2A

and 2B).

UCP1 protein content. The resting content of UCP1 protein

in iWAT was undetectable in 25% of the resting samples from WT

and PGC-1a KO mice taken together, while it was undetectable in

all eWAT samples (Figure 3).

UCP1 protein content in iWAT did not change significantly

during recovery from the acute exercise bout (Figure 3).

Exercise Training
UCP1 protein content. The protein content of UCP1 in

iWAT was undetectable in approximately 75% of the untrained

samples in WT and PGC-1a KO mice taken together and

increased (P#0.05) to 4.4 (A.U.) in trained WT, but did not

change in PGC-1a KO (Figure 4).

COXIV protein content. The protein content of COXIV in

iWAT was ,3-fold higher (P#0.05) in untrained PGC-1a KO

than in untrained WT mice. COXIV protein content in iWAT

was ,2.5-fold higher (P#0.05) in trained WT than in untrained

WT mice, while there was no change in PGC-1a KO with exercise

training (Table 2).

CD31 protein content. The protein content of CD31 in

iWAT was ,2-fold higher (P#0.05) in untrained PGC-1a KO

than in untrained WT mice. CD31 protein content in iWAT was

non-significantly ,1.6-fold higher (P = 0.079) in trained WT than

in untrained WT mice, while there was no change in PGC-1a KO

with exercise training (Table 2).

Discussion

The findings of the present study demonstrate transient

exercise-induced UCP1 mRNA responses in mouse iWAT and

eWAT, but with different time course of the response. Further-

more, UCP1 protein content increased with exercise training in

Figure 3. UCP1 protein content in iWAT in response to acute
exercise. Uncoupling protein (UCP) 1 protein content in iWAT
immediately after (0 h), 2 (2 h), 6 (6 h) and 10 (10 h) hours after an
acute exercise bout and from rested (Rest) wildtype (WT) and whole
body PGC-1a knockout (KO) mice given in arbitrary units (AU). Values
are means6SE, n = 8.
doi:10.1371/journal.pone.0064123.g003

Figure 4. UCP1 protein content in iWAT in response to exercise
training. Uncoupling protein (UCP) 1 protein content in iWAT from
untrained (UT) and trained (T) wildtype (WT) and whole body PGC-1a
knockout (KO) mice given in arbitrary units (AU). Values are means6SE,
n = 8. *: Significantly different from UT within given genotype, P#0.05.
doi:10.1371/journal.pone.0064123.g004

Table 2. COXIV and CD31 protein content in iWAT in
response to exercise training.

Untrained Trained

WT PGC-1a KO WT PGC-1a KO

COXIV 0.360.1 0.860.2# 0.760.1* 0.960.1

CD31 0.460.1 0.960.1# 0.760.1 1.060.2

COXIV and CD31 protein content (arbitrary units) in iWAT from untrained and
trained whole body PGC-1a knockout (KO) and wildtype (WT) mice. Values are
means6SE; n = 8.
*Significantly different from untrained within given genotype, P#0.05.
#Significantly different from WT within given time point, P#0.05.
doi:10.1371/journal.pone.0064123.t002

Exercise-Induced Regulation of UCP1 in WAT
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iWAT. In addition, PGC-1a was required for both acute and

exercise training-induced regulation of UCP1 in WAT.

The present study shows for the first time that exercise elicited a

transient UCP1 mRNA increase in both iWAT and eWAT of WT

mice in recovery from an acute exercise bout and the study

demonstrates the time course of exercise-induced UCP1 mRNA

responses in iWAT and eWAT. Furthermore, the novel observa-

tions that iWAT UCP1 protein content was higher in trained than

in untrained WT mice in the present study add to the recent

findings that the UCP1 mRNA content in iWAT and eWAT

increased with exercise training in mice [10] and suggest that

exercise training-induced UCP1 expression in iWAT may have

functional significance. The demonstrated transient increase in

UCP1 mRNA content in iWAT from WT mice makes it possible

that the observed long term protein adaptations are accumulations

from the repeated transient gene responses.

The lack of exercise-induced increases in UCP1 mRNA in both

eWAT and iWAT of whole body PGC-1a KO mice indicates that

PGC-1a is required for the acute exercise-induced regulation of

UCP1 mRNA in WAT. The observed similar reduction in muscle

glycogen content in WT and PGC-1a KO mice in response to the

acute exercise bout supports that the PGC-1a KO mice have been

physically challenged as the WT and that the lack of UCP1

response therefore is not due to lack of exercise stimulus. In

addition, the long term UCP1 protein adaptations in iWAT with

exercise training seem to require PGC-1a. However, the

observation that the resting level of UCP1 protein in iWAT did

not differ between WT and PGC-1a KO mice indicates that PGC-

1a is not needed for the basal UCP1 levels in WAT, although the

very low basal UCP1 protein level makes this comparison difficult.

A PGC-1a independent basal UCP1 level may also seem in

contrast to the previous observation that muscle-specific PGC-1a
overexpression mice had elevated iWAT UCP1 mRNA content

[10]. However, as previous studies [16,19,25] have suggested that

PGC-1a is involved but not necessarily required for exercise

training-induced adaptations in mitochondrial proteins in skeletal

muscle, muscle-specific PGC-1a overexpression mice may be seen

as a model of exercise trained animals. The results may therefore

indicate that basal UCP1 expression is independent of PGC-1a,

while exercise-induced UCP1 regulation requires PGC-1a.

The present findings, that exercise training also increased the

content of the oxidative protein, COXIV, and the capillarization

marker, CD31, in iWAT in WT but not in PGC-1a KO mice,

further suggest that PGC-1a exerts a concerted regulation of

capillarization, oxidative proteins and UCP1 expression in iWAT

with exercise training in mice. However, the higher basal COXIV

and CD31 protein levels in iWAT of PGC-1a KO mice than WT

is different from previous suggestions of PGC-1a mediated up-

regulation of oxidative capacity in adipose tissue [7,26]. This may

suggest that a compensatory mechanism is in play in iWAT of the

PGC-1a KO mice leading to increased oxidative capacity of

iWAT without clear effects on basal UCP1 expression. In addition,

the different observations in Kleiner et al. [26], in adipose tissue-

specific PGC-1a KO mice, and the present study in whole body

PGC-1a KO mice, may be due to the different mouse models.

The current observations of PCR cycle threshold (Ct) levels for

basal UCP1 mRNA around ,31 for iWAT and ,37 for eWAT,

demonstrate that the UCP1 mRNA level is markedly higher in

iWAT than in eWAT with a hardly detectable level in eWAT. In

addition, the present notion that UCP1 protein is undetectable in

eWAT and in most samples also in iWAT is in accordance with a

recent study by Wu et al. [3] showing that in the basal state UCP1

protein is only detectable in brown adipose tissue and not in iWAT

and eWAT. In addition, the observed differences in fold change of

UCP1 mRNA to acute exercise with 19-fold in iWAT and 7-fold

in eWAT is in accordance with a recent study [10] showing that,

after exercise training the relative mRNA content in iWAT is 22-

fold higher than in eWAT, suggesting different responsiveness of

the two adipose tissue depots to acute exercise. In addition, the

present study identifies the time course of the exercise-induced

UCP1 mRNA response in iWAT peaking at 6 h while the UCP1

mRNA content in eWAT was peaking immediately after the acute

exercise bout. The different time courses may contribute to

different abilities for long term adaptations, because the longer

lasting response in iWAT increases the chance for mRNA

accumulation with repeated bouts of exercise [27].

The present finding that the PRDM16 mRNA content

decreased in recovery from the acute exercise bout while UCP1

mRNA increased suggests that acute exercise elicited a response

similar to cold-exposure with increased UCP1 and decreased

PRDM16 expression [9]. In addition, the present observations

does not suggest a role of PGC-1a in the regulation of PRDM16

mRNA content in recovery from the acute exercise bout, while

PGC-1a seems at least in part involved in determining the basal

PRDM16 mRNA content in iWAT.

In conclusion, the present results demonstrating that UCP1

mRNA in both iWAT and eWAT increases in response to a single

exercise bout and that exercise training increased UCP1 protein in

iWAT add to previous reports and support that exercise induces

an up-regulation of UCP1 expression in WAT. The findings that

basal UCP1 mRNA and/or protein in iWAT and eWAT was

similar in PGC-1a KO and WT mice indicate that PGC-1a is not

required for basal UCP1 expression in WAT. However, the

increase in UCP1 mRNA in iWAT and eWAT with acute exercise

and UCP1 protein in iWAT of WT, but not PGC-1a KO provides

evidence that PGC-1a is mandatory for exercise mediated

regulation of UCP1 expression in iWAT. The functional role of

such changes is unknown and additional studies are required to

address this.
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