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Abstract

The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-
factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant
transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems
failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary
epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-
Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from
published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM
implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with
hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual
cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with
subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen
during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated
with breast cancer, namely TP53 and Myc, in simulations spanning ,40 years of simulated time. Simulations comparing
normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published
epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the
modeling of ERa-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor
suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the
traditional investigatory workflow for future hypothesis generation and testing of the mechanisms of breast cancer
oncogenesis.
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Introduction

The genesis and progression of breast cancer is a complex

process involving multiple rare events that can occur over the

lifetime of an individual [1]. Despite the continued effort to

catalogue relevant genes, identify alterations in protein expression,

and uncover novel pathways, the answers to many fundamental

questions surrounding the mechanisms and complex interactions

relevant to breast cancer oncogenesis remain elusive (reviewed in

[2]). Attempting to characterize a thorough timeline and sequence

of breast cancer pathogenesis presents several significant challeng-

es. Firstly, the long and highly variable timespan over which

oncogenic mutations accumulate to result in cancer makes

longitudinal study of transformation nearly impossible. Secondly,

because each genetic mutation is rare, the set of oncogenic events

that produce any given cancer may be quite distinct, making it

difficult to identify and contextualize the impact of individual

events on normal cellular function. Lastly, it is becoming

increasingly clear that while a number of significant pathways

play a critical role in tumorigenesis (i.e. DNA damage repair,

proliferation), the innumerable methods of pathway inactivation

and molecular compensation result in a cellular environment too

complex to decipher via the traditional reductionist paradigm of

study [3–5]. Many of these challenges can be potentially met by

the use of dynamic computational modeling to aid in the

integration of existing mechanistic knowledge within a functional

context that recapitulates a complex cellular environment [3]. As a

result, we have developed a first-generation agent-based compu-

tational model to simulate the basic functional dynamics of the

breast epithelium as related to normal physiology and the

transition to breast cancer.

An agent-based model (ABM) consists of populations of

computational entities (agents) that follow programmed rules

governing their behavior with respect to the environment and

interactions with other agents [6–9]. Often, known mechanisms of

cellular behavior and responses are coded as conditional, if-then

statements, and each type (or class) of agents is governed by its own

set of such statements. Distinct rule sets simulate the diversity of

responses to inputs and outputs that different cell types exhibit
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within a complex environment. The life cycle of each agent runs in

parallel within a continuously interacting and changing environ-

mental/cellular milieu, generating populations of agents mimick-

ing the range of possible cellular behaviors of a particular type of

cell. The dynamics of component interactions within the ABM can

be observed throughout a simulation run, providing a degree of

data resolution not possible in either experimental or clinical

settings. This modeling framework was the basis of the work

described below.

As greater than 95% of all breast malignancies are derived from

epithelial lineage [10], examining the dynamic pathogenesis of

breast tumors requires the ability to simulate the normal

mechanistic dynamics of the mammary epithelium from which

the cancers arise [11]. Toward this end, the Ductal Epithelium

Agent-Based Model (DEABM) was developed such that the

baseline dynamic state of the model, representing ‘‘health,’’ could

give rise to aberrant conditions (i.e. cancer) by introducing

recognized functional abnormalities into the cellular agent rule

sets (e.g. a mutation inactivating a tumor suppressor). The

construction of the baseline DEABM was based on published

cellular and molecular mechanisms that govern the behavior of

normal mammary epithelium. The complete details of model

development and experimental procedures are presented in the

Materials & Methods section.

The significant diversity among breast cancers challenges the

ability to effectively capture and contextualize the dynamic nature

of functional processes involved in the transformation of normal

breast epithelium to malignancy. Attempts to provide order to this

diversity include the use of a number of assays used to clinically

classify breast cancers, such as OncotypeDx, PAM50 and

Mammaprint [12], and molecular profiling studies, which have

resulted in the recognition of distinct breast cancer subtypes

[1,13]. The striking finding from such studies is the heterogeneity

of breast cancer, which greatly impacts biologic behavior and

response to different therapies [14–16]. The identification of

distinct breast cancer subtypes and their defining molecular

features implies that breast cancers may develop via very different

mechanisms. An effective model of breast tumorigenesis should be

able to reproduce aspects of the diversity mentioned above. In

attempt to simulate the functional molecular divergence of breast

tumor types, development of the DEABM centered on represent-

ing the function of eight key oncogenes and tumor suppressors that

play significant roles in both cellular function and breast cancer

(Table 1). While not intended to be a comprehensive catalog of breast

oncogenes, the particular representative genes chosen were intended to illustrate

key pathway dysfunctions leading to functional abnormalities observed in breast

tumorigenesis.

Despite the ability to identify key lesions and subsequently

categorize the behavior of individual breast tumors, there are still

many unknowns concerning fundamental mechanisms behind the

generation of the disparate sub-types of breast cancer [2]. A

notable example is the pathogenesis of ER+ breast cancers. ER+
tumors make up the vast majority of breast cancers, but ER+ cells

constitute a small percentage of normal breast ductal epithelium

(between 4–12%) [17–22]. Furthermore, ER+ cells do not have

proliferative potential, thus making it unclear how mutations to

these cells could accumulate, be passed on to successive

generations and progress to cancer. Correspondingly, since the

DEABM is based on this existing knowledge, during initial

development of the DEABM it was not possible to generate ER+
tumors. This discrepancy between the current state of mechanistic knowledge

(represented in the DEABM) and the recognized real-world preponderance of

ER+ cancers led us to posit that a key functional gap in the current state of

knowledge concerning breast tumorigenesis was in accounting for the control

structure governing the proliferative potential of ER+ cells. This recognition led

to a model-driven search for a putative mechanism by which ER+ luminal

epithelial cells could be made to divide, which subsequently identified the

function of runt-related transcription factor 3 (RUNX3) as having a potential

role in the origin of ER+ tumors [23–25]. The details of this process will

be more comprehensively described in the Materials & Methods.

Consequently, the incorporation of the function of RUNX3 into

the DEABM allowed the simulation of ER+ tumorigenesis (see

Results for more details). RUNX3 functions as a transcription factor

and has been shown to modulate the transcriptional activity and

stability of ERa [25,26]. The RUNX3 gene is located on

chromosome 1 at 1p36, a locus that is frequently disrupted in

breast cancer [25]. It has also been demonstrated as a tumor

suppressor, whose disruption is considered an early event in breast

oncogenesis [24,25]. Interestingly, the vast majority of mutations

that result in ER+ tumors in human models produce ER2 tumors

in mouse models; this is not true of RUNX3+/2 mice, which

spontaneously develop ER+ mammary tumors [25]. Additionally,

nearly 50% of human breast cancers do not express RUNX3 and

loss of expression is associated with ER positivity [26–28].

Combined with the ability of RUNX3 to impinge upon estrogen

receptor function, these data suggest that RUNX3 could play a

potentially significant role in the development of ER+ breast

cancer in vivo.

Table 1. Representative genes and their functions incorporated in the DEABM.

Gene Name Function and Rationale for Inclusion Role in Breast Cancer

BRCA1 Involved in DNA repair and G2/M progression. BRCA1 mutant families are more susceptible to breast cancer. Suppressor

RUNX3 Modulates ER function and stability, Inhibits cMet expression and thus controls proliferative potential. May be
associated with ER+ tumorigenesis.

Suppressor

TP53 Required for proper DNA damage response and repair. Tumor suppressor. Suppressor.

TGFBR3 Loss of TGF- b receptor activity causes cells to be less responsive to inhibition of proliferation. Suppresses breast
cancer progression.

Suppressor.

CDH1 E-cadherin mutations allow cell survival in the absence of cell-cell contacts. Frequently inactivated in
breast cancer.

Suppressor

TERT Telomerase hyper-activation immortalizes cells beyond ‘‘Hayflick Limit.’’ Oncogene

MMP2/3 Matrix-metalloprotease over-expression allows cells to breach basement membrane and promotes invasiveness Oncogene

MYC Strong oncogene associated with hyperproliferative phenotype in breast cancer. Oncogene

doi:10.1371/journal.pone.0064091.t001

Agent-Based Modeling of Breast Cancer

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64091



Overview of the DEABM: Rationale and
Representation

The modeling rationale behind the development of the DEABM is

based on the concept of dynamic knowledge representation [29–31],

witha focusondetermining whetheraparticular hypothesis structure

based on the current state of mechanistic knowledge is sufficient to

explaina seriesof recognizablebehaviors present inbreast tissue.The

iterative nature of this process is implicit, and involves the progressive

addition of details only as existing models are deemed insufficient to

reproduce selected behaviors in the targeted real-world systems [32–

34]. Such an approach also follows the standard of successive tiers of

validation present in the Modeling and Simulation community,

specifically emphasizing the utility of the most basic and fundamental

level of validation: face validity, which requires that a model must at

least behave in a plausible fashion [35–37]. As such, by focusing on

representing the dynamic consequences of known mechanisms and

recognized functions manifesting in the behavior of cellular

populations, as opposed to attempting to produce a high-resolution

replication of breast histology, the DEABM abstractly represents

breast tissue as a two-dimensional section of bilayered mammary

ductal epithelium, envisioned as a portion of duct split open and laid

flat. The cellular types represented as computational agents are those

necessary for the maintenance of the duct epithelial population:

luminal and myoepithelial cells, as well as their stem and progenitor

populations, and fibroblasts. Figure 1 depicts the overall interactions

betweenthesecell types.Cell-levelagentshave internal statevariables

that represent molecular-level components of the cells: receptors,

signaling molecules, genes, gene transcription factors, telomere

length and DNA lesions (Table 2). Molecular pathways and

molecular interactions were abstractly represented using logic-based

and simple algebraic rules. Cellular agents execute their rule sets as

the simulation iterates, thus interactingwithotheragentsaswellas the

environment. Rules were organized into a series of functional

modules, which could be affected by 8 focus gene-variables (Table 1).

Seven of these genes-variables were selected as representative

controllers forvarious functions thatcouldbe invoked inoncogenesis,

such as loss of growth inhibition, loss of limits on cell divisions,

impairment of DNA repair mechanisms, impairment of apoptosis

and ability to invade the basement membrane (note some of these

functions are replicated by the selected representative genes). The

eighth, RUNX3, was chosen not for direct oncogenic potential, but

for its role in preventing ER+ cells from dividing. For a list of these

‘‘genes’’ andtheir functionalconsequences seeTable1andFigure2;a

more comprehensive description of the relationship between these

genes-variables and the functional modules can be found in the

Material&Methods.Cellularagentspossess twofunctionalcopiesof the

listed ‘‘genes;’’ the presence of one copy was sufficient for the

represented function to be maintained. As the cellular agents

experienced DNA damage, if their DNA repair mechanisms were

unable to completely clear this damage any gene copy mutations

generated could be transmitted to subsequent generations of cells (see

Figure 3). Mutations that resulted in the complete loss of function of

one or a combination of the eight focus genes would lead to

subsequent populations of cells of increased fragility and oncogenic

potential. This model structure allows for the accumulation of

mutations over time, thus reproducing the successive loss of serial

functions within cellular populations as consistent with the biological

reality. Global hormone levels (estrogen and progesterone) were

applied based on known trajectories associated a 28-day cycle,

representing the average human menstrual cycle, as well as

pregnancy in subsequent calibration simulations, according to

previously published reference values [36]. State variables are

updated and agents execute the rules governing their behavior with

each time step of the model; for the current DEABM, 1 time step is

equivalent to 1 day. This timescale was chosen to reflect the length of

the overall cell-cycle period observed in mammary epithelial cell

division[37–39], andas suchabstracts the intermediate states present

during the cellular division process. More details of the implemen-

tation of the DEABM can be seen in the Material & Methods. The

complete code of the DEABM can be downloaded from http://

bionetgen.org/SCAI-wiki/index.php/Main_Page.

Simulation Experiments

Calibration and Validation of Breast Cell Population
Dynamics in Normal Menstrual Cycles and Pregnancy

The initial simulations using the DEABM were focused on

confirming the modeled breast cell dynamics behaved in a

plausible fashion by corresponding to expected population

trajectories in response to changing hormonal stimuli. This step

is the necessary initial determination of face validity [35–37] of the

DEABM. Values for estrogen and progesterone during the regular

menstrual cycle [38], and pregnancy [39,40] were based on

previously published reference values. The curves for estrogen and

progesterone fluctuations over a 28-day cycle were applied to the

DEABM, and fluctuations in luminal cell population level were

generated and assessed. The desired face-validation criteria

included: 1) the maintenance of a dynamically steady state of

the cellular populations, meaning that there was not either

continually increasing size or progressive extinction of the

population [41], and 2) a qualitative pattern matching of the

population fluctuations to those expected from basic knowledge of

breast physiology and extrapolated from proliferation metrics

present in the literature [41–43]. Calibration to this behavior

primarily involved tuning the parameters involved in cell division

and cell death to obtain this dynamic steady state; the

Supplementary Materials 1 provides a listing of the tuned

parameters as well as an overview of the calibration process.

Simulation of Longitudinal Patient Cohorts to Examine
the Rate and Receptor Characteristics of Breast
Tumorigensis

Following baseline calibration of the DEABM simulation exper-

iments were performed to examine the time course of potential breast

tumorigenesis from menarche to menopause. While we recognize

that the majority of breast cancers occur in the post-menopausal

period, we have focused the initial experiments using the DEABM on

the pre-menopausal period for the following reasons:

1. Effectively characterizing the pathophysiology of any disease

process is predicated upon characterizing the transition for the

healthy/baseline state to the altered state. Since menopause

follows decades of hormonal cycling, the state of the post-

menopausal breast must be viewed as an alteration of the pre-

menopausal breast. Therefore, oncogenesis in the post-

menopausal breast can be most effectively evaluated when

placed in context against the mechanisms of oncogenesis in the

pre-menopausal breast (to be the subject of future investiga-

tions).

2. Known genetic predispositions for developing breast cancer,

notably the effect of the TP53 and BRCA1 mutations, primarily

affects the pre-menopausal population. Therefore, in order to

provide an additional comparison data set for the DEABM,

focus is directed to the pre-menopausal period.

The initial simulated experiments were run for 15,000 steps (i.e.

iterations during a single simulation run), representing a time

Agent-Based Modeling of Breast Cancer
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period between menarche and menopause of approximately 40

years. Simulations were run in both the wild-type condition and a

selected set of known oncogenic mutations: TP53, Myc and BRCA1,

where single copies of each of these genes were altered at the

initiation of each simulation run (n-individual simulations = 500 in

each group, with N-groups = 3). We elected to carry out the

simulation experiments in this fashion, with 3 simulated popula-

tions of 500 as opposed to one large population of 1500, to more

effectively demonstrate how the DEABM could compared to

existing published data sets. Outcome measures were the total

number of runs that developed cancer by the onset of menopause,

cumulative incidence rates by age and the proportion of cancers

that were ER+, with ER expression in greater than 9% of cells

defining ER+ status of a generated tumor. Cancer was denoted by

expansion of the luminal cell population to greater than 106 the

normal cellular population, a point demonstrated in preliminary

simulations to eventually result in complete overgrowth of the

model world, implying the presence of enough derangement of the

system to correspond to unconstrained growth. As with prior

calibration procedures, an initial set of parameters related to the

different cell fates based on degree of DNA integrity were

arbitrarily fixed at the levels seen in Figure 3 and the mutation rate

adjusted to match the wild-type/sporadic cancer rate from the

SEER review [44]. See the Materials & Methods and Supplemental

Materials S1 for a more detailed description of the model

development and calibration process.

Results

The genesis of breast cancer is a highly variable process that is

poorly mechanistically understood [2]. The development of a

complementary computational modeling system is a significant

step that builds upon traditional reductionist approaches and

facilitates the generation and initial evaluation of novel hypotheses

aimed at probing the origins of breast cancer.

Herein, a novel ABM was developed to integrate and instantiate

a minimally sufficient conceptual model able to simulate the entire

life cycle of breast epithelial cells, including the response to normal

functions such as menstrual cycles and pregnancy. Normal

menstrual-cycle response by the DEABM is illustrated in

Figure 4A, which demonstrates the cycling hormone levels of

both estrogen and progesterone over the course of a 1-year

simulation and where the number of ductal luminal cells remains

at a steady-state despite the physiological fluctuation of hormone

levels during the menstrual cycle. This behavior meets the

standard of face validity, insomuch that the cellular population

does not exhibit continued growth or passage to extinction within

the timeframe of the simulation. The DEABM’s simulated

response of the breast to pregnancy is seen in Figure 4B, which

demonstrated a 2.7-fold increase in luminal cell number sustained

during pregnancy and decrease of cell population fluctuations,

corresponding to the expansion of the mammary ductal structures

in preparation for and during lactation [11,41]. The next level of

validation testing involved determining if the DEABM plausibly

reproduced the general pattern of luminal cell population

fluctuations during a menstrual cycle. Figure 5A depicts the

results of 5 simulation runs and their average trajectory over the

course of a single menstrual cycle, demonstrating a plausible result

consistent with the known expansion of the luminal cell population

during the luteal phase of the menstrual cycle. A comparison is

made to two reference data sets (Figures 5B from Ref [42] and 5C

from [43]). We believe that the represented outputs are

functionally comparable and demonstrate plausibly correct

behavior on the part of the DEABM (for a more detailed

discussion concerning this comparison, see the Discussion). These

experiments establish the face-validity of the DEABM in its ability

faithfully model normal mammary physiology manifested as cell

population dynamics.

Figure 1. Overall schematic of cell-types and their interactions involved in duct epithelial cell life cycle. This figure depicts the
minimally sufficient set of cell types and their interactions necessary to represent the growth and maintenance of the breast duct epithelial cell
population. In particular note that given this representation ER+ cells do not have proliferative potential, a state that is maintained through the
suppression of cMet by RUNX3.
doi:10.1371/journal.pone.0064091.g001
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The next step in the development of the DEABM involved

evaluating its ability to generate realistic cancer incidences over an

extended period of simulated time (,40 years from menarche to

menopause). It is worth noting that at this point historically during

our development process the DEABM only included 7 functional

types of genes (absent RUNX3). As evidence of the utility of the

iterative process focused on establishing face validity, during the

calibration process for mutation rates it became evident that the

DEABM was behaving in a significantly implausible fashion.

While its parameters could be tuned to generate realistic overall

and longitudinal cancer incidences, the DEABM could not

generate any ER+ tumors. As ER status is perhaps currently the

most clinically significant defining tumor characteristic that guides

breast tumor treatment, the face validity of the DEABM depended

on its ability to generate a simulated tumor population with ER

status comparable to its real-life counterpart. It was readily

apparent that this was not an issue of parameter fitting, but rather

represented an insufficiency of the underlying conceptual model.

Specifically, the generation of cancer in the DEABM required

mutated cells to divide, and in the DEABM, given its rules at that

stage of development, ER+ cells could not divide. This led to the

realization that, functionally, the genesis of ER+ cancers may

require some means of reversing the suppression of the prolifer-

ation potential of ER+ luminal cells. Since, in the DEABM,

suppression of ER+ proliferation was achieved by suppression of

the receptor c-Met, a literature search was performed looking for a

gene that performed this function. The result of this search

suggested that perhaps RUNX3, which is capable of modulating

ER transcriptional activity and stability, could also play a role in

the generation of ER+ versus ER2 breast cancers. It was at this

point that RUNX3 was incorporated into the DEABM. See the

Materials & Methods for more details as to the rules associated with

RUNX3 and the means by which ER status on tumors were

implemented.

Furthermore, during the course of performing the cancer

incidence simulations it became apparent that the generation of

cancers required a succession of functional failures. No single

function loss alone was sufficient to generate a cancer; rather

cancerous behavior required loss of both growth regulation

(reflected by alterations to Myc, TGF-b-receptor, E-cadherin and

telomerase) in combination with loss of spatial containment

(reflected by the over expression of MMP2/3). Loss of DNA

repair capacity (reflected in alterations to TP53 and BRCA1)

predisposed to the formation of mutated functions, whereas

RUNX3 affected ER status, as noted above. We wish to emphasize,

however, that this finding does not imply that dysfunction of these

specific genes are required for oncogenesis, but rather, in keeping

with the functional emphasis of the DEABM, that there may be

identifiable patterns of functional impairment that are associated

Figure 2. Set of included representative ‘‘genes’’ and their relationship to cellular behaviors and general functions within the
DEABM. As the representational focus of the DEABM is on characterizing the functional dynamics associated with oncogenesis, potentially
detrimental ‘‘genes’’ have been included on their known influences on those functions that are plausibly involved and altered in the process of
tumorigenesis. Additionally, the arrows are intended to represent known direct regulatory effects; it is expected that there are many second and third
order effects that might lead a named gene to affect other downstream behaviors. *Note that the labeling of these ‘‘genes’’ is not intended to be a
comprehensive description of all the known effects of the named genes, but rather to label certain putative cellular behaviors possibly involved in
malignant transformation.
doi:10.1371/journal.pone.0064091.g002

Agent-Based Modeling of Breast Cancer
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with the generative history of breast cancers. We will elaborate on

this subject in the Discussion.

The ability of the DEABM to effectively recapitulate the

development and progression to malignancy corresponding to

known genetic abnormalities associated with tumorigenesis was

initially evaluated in simulations in which, a single copy of either

TP53 or Myc was ‘‘mutated’’ within the DEABM and experimen-

tal simulations (n-individual simulations per group = 500; N-

groups = 3) were conducted to determine alterations in the

frequency of the occurrence of invasive cancer. Simulations of

the wild-type/sporadic breast cancer group (i.e. no pre-existing

genetic abnormalities) demonstrated a 3.6 (range 2.3 to 4.9)%

cumulative incidence of cancer at the end of ,40 simulated years

of menstrual cycles, not too dissimilar to the cumulative incidence

rate of 2.94% in 55 year-old women as reported in the SEER 2010

review [44]. Compared to this group, the loss of function of p53

resulted in an expected, based on our knowledge of Li Fraumani

Syndrome [45], nearly 7-fold increase in cumulative risk of

invasive breast cancer, 24.6 (range 19.8 to 29.4)%, by the age of 55

(Figure 6). Similarly, the hyper-activity of the proto-oncogene Myc

resulted in over 2-fold increase in cumulative risk to 8.6 (range 6.4

to 10.8)% under the same conditions (Figure 6).

These results suggest that the DEABM was capable of

simulating sporadic tumorigenesis at a single endpoint (overall

cancer incidence), and recapitulating the known functional

consequences of both tumor suppressors and oncogenes; subse-

quent simulation experiments were performed to determine

whether it could reproduce a similar effect over an entire time

course. Because women with a germline mutation in BRCA1 have

such a drastically increased incidence in breast cancer risk, this

mutation afforded the opportunity to examine how the DEABM

would perform in reproducing cumulative risk of breast cancer

over time. As such, a single germline copy of BRCA1 was disabled

in the DEABM to simulate a familial germline BRCA1 mutation.

Strikingly, the DEABM was able to reproduce the notable increase

in breast cancer susceptibility seen in BRCA patients by 55 years

of age (reference range of cumulative cancer incidence ranging

from 17–58%) [46–50], with simulation results demonstrating

cumulative cancer incidences increasing to 31.6% BRCA1 (range

from 30.6–33.6%) from the 3.6% incidence seen the sporadic

group (Figure 7A). In addition, the longitudinal cumulative

incidence over time predicted by the DEABM was comparable

to previously assessed risk in populations with germline BRCA1

mutation [46–50] (Figure 7B), demonstrating the ability of the

DEABM to plausibly reproduce the incidences of invasive breast

cancer in both wild-type/sporadic and BRCA1 mutant popula-

tions.

Additionally, in terms of recapitulating ER status in these

simulated populations, ,65% (range 59–71%) of the simulated

breast cancers in the wild-type/sporadic population were ER+
(Figure 8A). In comparison, a survey of the literature suggests that

,68% (range 60–77%) of premenopausal breast tumors are ER+
[51–54]. These data suggest that the DEABM, following the

inclusion of RUNX3, is plausibly simulating the key pathways that

impact both breast tumorigenesis and hormone receptor mainte-

nance. Similarly, in the BRCA1 mutant population the DEABM

shows that only ,38% (range 29–44%) of tumors generated were

ER+ (Figure 8B), in concordance to published incidences of ER+
BRCA1 mutant tumors of ,36% (range 19–52%) [51,55–57].

These findings indicate that the DEABM incorporates plausible

mechanisms for ER+ tumorigenesis, suggesting a role of RUNX3

expression (or other genes performing a similar function) in the

selectivity of ER+ breast cancer previously unknown. Encourag-

ingly, post-simulation investigation identified data from The

Cancer Genome Atlas (TCGA) and Oncomine (www.oncomine.

org) that strongly suggest that downregulation or loss of RUNX3

Figure 3. Schematic of control logic concerning DNA damage, repair and functional consequences of unrepaired DNA damage
within the DEABM. A baseline premise of the DEABM is that DNA damage can occur during a luminal epithelial cell’s life-time, and that damage
that remains unrepaired by the time the cell is to divide can be passed on as a mutation, a certain subset of which may affect a critical cellular
function that may influence tumorigenesis. The DEABM incorporates abstract representations of DNA damage, damage repair, senescence, apoptosis
and passage of mutations to subsequent cellular generations.
doi:10.1371/journal.pone.0064091.g003

Agent-Based Modeling of Breast Cancer
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expression correlates to ER+ tumorigenesis (Figure 9). Combined

with the findings that RUNX3 is a modulator of ER function and

stability, the DEABM assisted in implicating a role for RUNX3 in

the generation of ER+ versus ER2 breast cancers. More

importantly, these findings suggest a class of pre-pre-cancerous

mutations that may set the stage for subsequent oncogene

activation/tumor suppressor loss.

Discussion

There is an increasing recognition that understanding the

complexity of cellular systems will require methods of study that go

beyond traditional reductionist approaches. Computational mod-

els, such as ABMs, have been proposed to play a vital role for the

generation, and most importantly, testing of, hypotheses within

this increasingly complex knowledge landscape [58]. Intrinsic to

addressing the gulf between mechanistic knowledge and system

level behavior is the recognition of the power of abstraction, with

an emphasis on representing function and behavior. The

application of the fundamental scientific principle that strives for

generalization is crucial in attempts to place the high-dimensional

data sets currently available into a mechanistic knowledge

structure that will allow the engineering of therapeutic interven-

tions. These concepts provide the rationale behind the develop-

ment and use of the DEABM. As such, the DEABM is not

intended to be a comprehensive depiction of the signaling

pathways governing mammary epithelium. Rather, since the

modeling goal is to examine cellular behavior at the system/

population level (i.e. recognizing that tumors are populations of

cells) in the transition from health to disease, the DEABM focuses

on incorporating the primary mechanistic functions, cellular

proliferation, apoptosis, paracrine signaling and genetic mutation,

that are universally recognized as cellular processes. It is this

emphasis on representing the interplay between well-defined,

albeit abstractly represented, functional outputs in the transition

for health to disease that sets the DEABM apart from prior

computational modeling of the breast. Previous ABMs of breast

cancer have focused on ductal carcinoma in situ (DCIS): a more

theoretical cellular automata model of DCIS examines the effect of

different proposed hierarchies of mammary stem on the genera-

tion of DCIS [59], an area of controversy explicitly not

incorporated into the DEABM; whereas other projects examining

the dynamics of the pathogenesis of specific subtypes of DCIS [60]

and how pressure and mechanical forces might impact tumor

microstructure [61], are aimed at examining particular sub-

processes at a relatively high degree of mechanistic resolution and

histological fidelity. Alternatively, the DEABM is intended to

facilitate a more global examination of the origins of breast cancer,

Table 2. Agent classes and their associated variables.

Agent Types Variables Description

Turtles (Luminal
cells, myoepithelial cells, progenitors, stem
cells)

Estrogen-Receptor Recipient of Estrogen signaling, carries value = 1 if expressed by the
cell agent, 0 if not.

Progesterone-Receptor Recipient of Progesterone signaling, carries value = 1 if expressed by
the cell agent, 0 if not.

c-Met expression Expression of c-Met receptor, carries value = 1 if expressed of by cell
agent, 0 if not.

Hayflick-number Telomere length, hayflick-number .40 ceases cell division

bax-level Pro-apoptotic protein, bax-level .60 induces apoptosis

DNA-integrity Accumulated DNA damage

mutations Accumulated somatic mutations

Cell-cycle-arrest Cell cycle arrest, set to 1 if dna-integrity,arrest-threshold

tgfb-copies Functioning TGF-beta genes (0, 1 or 2)

p53-copies Functioning p53 genes (0, 1 or 2)

brca1-copies Functioning BRCA genes (0, 1 or 2)

e-cadherin copies Functioning E-cadherin genes (0, 1 or 2)

Myc-copies Functioning c-Myc genes (0, 1 or 2)

Telomerase-expressiom Activated genes associated with telomerase expression (0, 1 or 2)

MMP-expression Activated genes associated with MMP secretion (0, 1 or 2)

RUNX3-copies Functioning RUNX3 genes (0, 1 or 2)

Patch-environmental variables

AREG-receptor Receptor for Amphiregulin

Amphiregulin-level Local concentration of Amphiregulin

HGF-level Local concentration of HGF

Rank-level Local concentration of HGF

TGFB-level Local concentration of TGFB

Basement-membrane Value = 1 if a patch possesses basement-membrane, 0 if not

doi:10.1371/journal.pone.0064091.t002
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i.e the transition from healthy breast tissue to invasive cancer. The

abstractions employed in the DEABM enhance the focus on this

larger picture, demonstrating that abstract treatments of complex

processes can be used to accurately represent global biology in

both states of health and disease. This finding reinforces the

implications of the nested nature of biological networks and the

overall robustness of biological systems, with the attendant

recognitions concerning the nature of system failure (i.e. multi-

factorial and cascading) and the types of control needed to recover

from failure [62]. Because the DEABM is the first attempt to

model the endocrine and paracrine signaling networks that

regulate the normal growth and involution dynamics of a

mammary epithelial cell population, it was designed to be a

minimally sufficient model to accomplish this goal. This approach

is consistent with the modeling and simulation paradigm of

progressive validation; as iterative model development progresses,

additional detail can be included [31,63]. Furthermore, it is

important to note, both in ABMs generally and in the DEABM in

particular, that the output data is not predetermined by the

programmer, but arises from the complex interactions between

agents. While some values were chosen arbitrarily because they

‘‘work’’, this is not effectively different from standard theoretical

models that describe complex systems without treating every detail

with respect to enzyme kinetics, local concentrations and the full

complexity of interactions present in vivo. To summarize, the

DEABM was developed as a proof-of-concept first-generation

modeling system that faithfully replicated a host of critical

endpoints seen in the biology of breast tumorigenesis.

Despite the relative simplicity and abstraction of the DEABM, it

was able to emulate a recognizable ‘‘normal’’ biological ductal

epithelial life-cycle based on response to variations in growth

factors and circulating hormones and incorporated the luminal cell

population fluctuations and expansion that are seen with the

menstrual cycle and pregnancy respectively. We acknowledge that

the metrics produced by the DEABM do not exactly match the

metrics present in the reference sets. However, these reference sets

are themselves not without limitations and represent a coarse

representation of the changes that occur to the breast epithelium

during the menstrual cycle. The ‘‘snap shot’’ nature of pathologic

evaluation cannot account for duration of events and rates of

change; also, age, parity, length of the cycle and perimenopausal

status can all cause significant variability in epithelial cell

population response to circulating hormones [42,43]. Neverthe-

less, we do believe that the represented outputs are functionally

comparable and demonstrate plausibly correct behavior on the

part of the DEABM. As we expand our model to include the aging

breast (see below), many of these factors that can lead to significant

variability will be incorporated. With respect to the generation of

malignancy, the DEABM recapitulated cancer incidences in both

sporadic cancer and BRCA1 mutant simulations. Furthermore, the

DEABM simulations of BRCA1 mutant patients demonstrated a

timeline of cumulative breast cancer risk comparable to that

reported in the literature. This finding suggests that agent-based

modeling is capable of dynamic behavior that accurately mimics

the plasticity of human tissue over time. Future development of the

DEABM will consist of adding more complex and detailed

components and mechanisms with the goal of obtaining higher

fidelity representation of the normal and neoplastic breast.

For example, the current DEABM has only been used to

simulate pre-menopausal breast cancer, certainly a limitation of

the model as most breast cancers occur in post-menopausal

women. While there is almost certainly conservation of central

processes between pre-menopausal and post-menopausal breast

cancer, there is an equal certainty that there will be fundamental

differences as well. Just as characterizing baseline ‘‘normal’’ breast

epithelial dynamics can provide insight into the fundamental

process structure of pre-menopausal tumorigenesis, we assert that

simulating the local conditions (paracrine, autocrine and intracrine

hormonal concentrations) that occur in the breast during the

‘‘normal’’ transition to menopause during the perimenopasual

period will be a necessary step in characterizing the pathogenesis

of post-menopausal breast cancer. Additionally, there is a growing

recognition of the influence of other breast tissue components,

such as adipose tissue and inflammatory cells, on the malignant

Figure 4. Post-calibration behavior of the DEABM reproducing baseline, normal breast epithelial dynamics. These graphs demonstrate
the ability of the DEABM to generate recognizable fluctuations in luminal cell mass during normal menses (Letter A), demonstrating the first stage of
the face validity of the DEABM in being able to reproduce self-sustaining cellular population without evidence of unconstrained growth. Furthermore,
the DEABM was also able to reproduce expected alterations in luminal cell population dynamics associated with pregnancy, initiation depicted by red
arrow (Letter B). These data.
doi:10.1371/journal.pone.0064091.g004
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transformation of breast epithelial cells. So whereas the initial

build of the DEABM started with the most basic components

necessary to reproduce baseline duct epithelial dynamics, we

recognize the importance of representing and investigating how

genetic alterations, hormones, and growth factors interact across

different cellular and tissue components. Therefore, future

development of the DEABM will involve the addition of these

components and breast architectural units such as Terminal

Ductal Lobular Unit, facilitating the extension of the DEABM to a

more comprehensive Breast Tissue ABM.

Because the goal of the present research was to start with the

basic dichotomy of ER+ and ER2 tumors, representation of

HER-2 overexpression was excluded. We recognize that for any

sufficiently complex model that would probe the effects of breast

cancer treatment (which the current version of the DEABM is not

intended to do), HER-2 overexpression and associated mecha-

nisms would be a necessary inclusion. At the current level of model

resolution an initial goal of being able to represent the mammary

epithelial life cycle HER-2 is not a necessary component, but the

knowledge that HER-2 does play a clinically significant role would

point future development of the DEABM in this direction. For

instance, since HER-2 is known to be a member of the epidermal

growth factor receptor (EGFR) protein family, and overexpression

is seen in ,20% of breast cancers [64], it can be readily seen by

examining the DEABM rule set that there may be a cross-receptor

activity between EGFR and HER-2 in breast fibroblasts in

response to amphiregulin produced by estrogen-stimulated ER+
luminal cells, which in turn would increase the production of HGF

to further stimulate proliferation. This is an example of the

inevitable need to expand the range of representation included in

the DEABM (and its successors), but also provides an example of

how future development should progress in a systematic fashion.

There is a temptation to try and ‘‘put it all in’’ and create as

comprehensive a model as possible from the outset, based on the

belief that understanding necessarily arises from volume of detail.

While this approach can provide useful information and insight,

we suggest that there is a complementary role for modeling

projects that come from the other direction, focusing on building

upon minimally sufficient abstractions that generate recognizable

behaviors that can be subjected to successive tiers of validation.

Figure 5. Demonstration of the DEABM to reproduce expected patterns of luminal cell growth in response to estrogen and
progesterone within a menstrual cycle. Panel A depicts the output of the DEABM in terms of differentiated luminal cell population during the
course of a single menstrual cycle period. The individual runs (n = 5) are depicted in light grey dashed plots and demonstrate the inter-run variance
expected from the stochastic nature of the DEABM. The average of these runs is seen in the solid black line, and reproduces the expected increase in
luminal cell mass seen during the luteal phase. The general trajectory of the DEABM seen in Panel A is noted to be similar to reference data sets
present in the literature, as seen in Panel B (reproduced with under the Creative Commons License from Ref [42]) and Panel C (reproduced with
permission from Ref [43]); both of which depict the degree of luminal cell proliferation during various phases of the menstrual cycle. Note in
particular the wide variance in the sample points present in the reference data sets, which represent multiple samples obtained from multiple
individuals.
doi:10.1371/journal.pone.0064091.g005
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With this type of approach, additional detail is added when needed

to represent a behavior or phenomenon that cannot be generated

with the existing model. To this end, more molecular detail would

be incorporated into the DEABM to recapitulate the histories

associated with known molecular subtypes of breast cancer and

further delineate as-yet-unknown intrinsic breast cancer subtypes

that may occur with distinct patterns and temporal sequences of

DNA damage, with the ultimate goal of accounting for intra-

tumoral variation.

It is well accepted that the compounding of significant DNA

mutation over the lifetime of an individual is the basis for

tumorigenesis; this is consistent with the concept of cascading

systems failure seen in multi-hierarchical systems [62]. However,

the ability to faithfully track the impact of these mutations over the

lifetime of a patient is not feasible. As such, the disparate sets of

mutations, or any sequential dependencies, that may result in the

genesis of ER+ versus ER2 tumors remain elusive. However, this

is a process that can be examined with agent-based modeling, as

we have done with the inclusion of RUNX3 into the DEABM.

After inclusion of the tumor suppressor RUNX3, the DEABM

replicated the rate of ER-receptor positive tumor incidence with

striking accuracy. However, RUNX3 was not added into the

DEABM based on its known tumor suppressor capability, rather it

was chosen for its effect on suppressing the proliferative potential

of ER+ cells, a functional capability that needed to be added to the

earlier version of the DEABM. As a result, in the DEABM the loss

of RUNX3 expression leads to an expanded ER+ population by

allowing ER+ luminal cells to express c-Met and to receive

proliferative stimulus via associated HGF signaling from nearby

fibroblasts, i.e. allowing ER+ cells to exhibit the key behavior,

replication, necessary for their subsequent mutations to manifest in

successive generations. Interestingly, loss of TGF-b signaling, the

upstream activator of RUNX3, produced the same effect. It has

been convincingly demonstrated that RUNX3 acts as a tumor

suppressor in breast cancer, and that it modulates the function of

ERa [23,25,26]. RUNX3 expression is also significantly lower in

ER+ mammary ductal carcinomas (versus ER2 cancers, see

Figure 8), suggesting that dysregulation of RUNX3 does play a role

in the preference for ER+ breast tumorigenesis. The ABM

provides a unique opportunity for us view some of our clinical

categorizations from a different perspective. For example, in our

model we chose a 9% ER positivity as our threshold for ER

positive tumors, which is very close to the 10% quoted in the

literature. This threshold was chosen because the percentage of

ER positive cells in benign epithelium is approximately 9%. Some

authors advocate a threshold of 1%, however, a lower threshold

for ER positivity would necessitate down regulation of ER positive

cells in our model that may be consistent with a partial loss of

RUNX3 function or alternative mechanism that may represent a

biologically different tumor. Further development of the model to

identify the alterations found in tumors with low ER expression

may help clarify the clinical threshold for treatment of ER positive

disease. A future step for our current model could be to mimic

current therapies for ER+ tumors that reduce the amount of

available estrogen through receptor blockade or decreased

availability. In addition to demonstrating known ‘‘therapeutic

effects,’’ additional effects might be gleaned, or mechanisms of

resistance may emerge. Other well studied targeted therapies such

as trastuzumab or prospective treatments could be evaluated in a

similar fashion.

The generation of largely ER2 tumors with BRCA1 mutant

DEABM simulations further supports our hypothesis. It is well

known that the overwhelming majority of people with germline

BRCA1 mutations develop basal-like (triple-negative) breast

cancer. After the inclusion of RUNX3 functionality, the DEABM

generated nearly 60% of tumors as ER-, compared favorably to

nearly 70% as reported in the literature. The ability of the model

to mimic clinical rates of tumor ER-status so closely, particularly

with regard to a mutation in a single gene (BRCA1) demonstrates

the potential benefit and utility of model-aided hypothesis

generation and evaluation. It is important to emphasize that the

hypothesis on the role of RUNX3 does not imply that it is the sole

and unique mechanism for the genesis of ER+ tumors. While

RUNX3 was chosen for inclusion in the DEABM because of its

multiple interaction points with pathways governing normal

growth and inhibitory signaling networks, there are likely multiple

potential control points involved in this process. For instance, the

enrichment for non-silent TP53 mutations in ER2 breast cancer

subtypes may potentially play a significant role in the selected

generation of ER2 cancers. Because both p53 and BRCA1 are

involved in DNA damage response, it is likely that increasing

sustained DNA damage is a risk factor for preferentially

developing ER2 breast cancer. In fact, evidence for this exists

already, as the majority of ER2 tumors are p53 positive which is

indicative of the presence of the mutated protein [1].

Looking forward, the DEABM, and associated models, could be

invaluable tools for testing novel hypotheses of oncogenesis based

on the enormous amount of genomic information that is now

available through programs such as The Cancer Genome Project.

The clinical utility of much of this information is yet to be

Figure 6. Comparison of cumulative cancer incidence generat-
ed in the DEABM for wild-type/sporadic, TP53 and Myc
mutation populations, as compared to the sporadic cumulative
cancer incidence at age 55 reported in the SEER review.
Cumulative cancer risk following ,40 simulated years of menstrual
cycles (15000 steps), n-individual simulations = 500 in each group (N-
group = 3). The baseline sporadic cancer risk was ,3.6 (range 2.3 to
4.9)%, similar to the cumulative incidence rate of 2.94% in 55 year-old
women as reported in the SEER 2010 review [44]. Dysfunction of p53
resulted in a nearly 7-fold increase in cumulative risk of invasive breast
cancer, 24.6 (range 19.8 to 29.4)%, and hyper-activity of the proto-
oncogene Myc resulted in over 2-fold increase in cumulative risk to 8.6
(range 6.4 to 10.8)%. These data demonstrate the ability of the DEABM
to generate recognizable and plausible increases in cumulative cancer
risk associated with known oncogenic mutations.
doi:10.1371/journal.pone.0064091.g006
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discovered, as doing so presents challenges in contextualizing such

information into mechanistically plausible sequences of events

within the (clearly recognized) protean natural histories of

tumorigenesis. For instance, we suggest that the investigatory

process depicted concerning RUNX3 could provide a guide for

the adoption of an integrated computational-experimental work-

flow. The formal process of model-making forces explicit

expression of what is known and understood about the system

under study. The instantiation of that knowledge with the

DEABM helps determine the sufficiency of that knowledge to

Figure 7. Demonstration of the ability of the DEABM to recapitulate cumulative and longitudinal cancer incidence in populations
with BRCA1 mutations. Panel A demonstrates that the DEABM generated an increased aggregate cancer incidence over 40 years of menstrual
cycles of ,31.6% (range from 30.6–33.6%, N-groups = 3) compared to both sporadic/wild-type simulations and the SEER review data. The simulated
BRCA1 values all fall well within the range of cumulative cancer incidences reported in BRCA1 population studies between 17–58% [46–50]. Panel B
demonstrates that in addition to reproducing plausible cumulative cancer incidences, there is similar matching between longitudinal incidence over
this ,40 year interval between the output of DEABM simulations and the aggregated data from the previously noted studies on BRCA1 [46–50].
Published BRCA1 population study plots are labeled by study author name, whereas the individual DEABM cohorts of n-individuals = 500 are labeled
by N-group number.
doi:10.1371/journal.pone.0064091.g007

Figure 8. Reproduction of ER tumor status in both wild-type/sporadic and BRCA1 mutated populations of breast cancer. These data
demonstrate the similarity between DEABM simulation runs and data extracted from the literature concerning the percentage of ER+ tumors
generated in both wild-type/sporadic and BRCA1-mutated populations [46–57]. Panel A depicts the ER+ percentage among wild-type/sporadic
populations from both the literature, ,68% (range 60–77%) of premenopausal breast tumors [51–54], and in simulated populations (n-
individuals = 500, N-groups = 3) of ,65% (range 59–71%) of the simulated breast cancers. Panel B demonstrates the same comparison of ER+ tumors
in the BRCA1 mutant population, where the DEABM shows that only ,38% (range 29–44%) of tumors generated were ER+ as compared to published
incidences of ER+ BRCA1 mutant tumors of ,36% (range 19–52%) [51,55–57]. For both Panel A and B published cancer population data is denoted by
the name of the study’s first author, whereas the DEABM runs are labeled with their N-group number. These findings indicate that the DEABM
incorporates plausible mechanisms for ER+ tumorigenesis, suggesting a role of RUNX3 expression (or other genes performing a similar function) in
the selectivity of ER+ breast cancer previously unknown.
doi:10.1371/journal.pone.0064091.g008
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explain known observations: in our case this was the lack of ER+
tumors. The explicit mechanistic representation within the

DEABM pointed to a potential gap: the identification of c-Met

as a control point for ER+ proliferation. This recognition led to a

literature search that identified RUNX3, which when inserted into

the DEABM, improved its ability match expected behaviors. The

plausibility of the potential role of RUNX3 was then further

confirmed by the findings of the retroactive search of The Cancer

Genome Atlas (TCGA) and Oncomine (www.oncomine.org)

(Figure 8).

We assert that agent-based modeling could assist in this

contextualization, by enhancing the investigation, understanding

and categorization the multiple possible trajectories resulting from

multiple sets of possible mutations into groups or classes of

functional tumor phenotypes, with prognostic and therapeutic

implications. Doing so would aid in the development of a

functional ‘‘taxonomy’’ of breast tumors, aiding the ongoing

process of molecular profiling by adding a behavioral layer of

organization into which specific gene signatures could be placed.

In summary, ABMs allow the visualization and measurement of

complex systems over long periods of time in unlimited

populations in a way that is not possible in either in vitro or in vivo

systems. The innovation of such models is to provide a platform in

which oncogenesis can be tracked across a series of identified

mutations that progress from precancerous states to, ultimately,

invasive cancer. Dynamic computational knowledge representa-

tion of this type introduces the ability to generate dynamic,

functional maps of oncogenesis, and offers the promise of an

additional means of better categorizing breast cancers.

Materials and Methods

The Materials & Methods section is divided into a description of

the development of the DEABM followed by a description of the

simulation experiments carried out using the DEABM. The

development of the DEABM followed the general process

described in the Overview, Design Concepts, Details (ODD) protocol

developed by Grimm, et al. [65], as modified to meet the specific

needs of agent-based modeling of biomedical systems [5,29–

31,66–69]. Additionally, the iterative nature of model develop-

ment follows the process described in a series of studies that

emphasize the successive addition of model features to match an

increasing number of desired observables as a means of enhancing

the scope of model representation [32–34]. The DEABM was

implemented using NetLogo 5.0, which can be obtained online at

http://ccl.northwestern.edu/netlogo/[9]. Description of the sim-

ulation experiments include those intended to first test the validity

of the DEABM in terms of effectively reproducing normal breast

cell population dynamics in response to different normal hormone

patterns (cyclical menses and pregnancy) without introducing

mutations, then introducing mutations in order to validate the

ability of the DEABM to reproduce recognized incidences of

breast cancer development.

Overview of DEABM Architecture
The DEABM represents a two-dimensional patch of bilayered

mammary ductal epithelium, envisioned as a portion of duct split

open and laid flat, as a two-dimensional, toroidal square grid

populated by motile (luminal and myoepithelial cells, as well as

their stem and progenitor populations) and immotile (fibroblasts)

agents. See Figure 1 for the interactions between these cell types.

In addition to providing locations for agents, grid spaces

(‘‘patches’’ in NetLogo terminology) also possess variables

representing extracellular concentrations of hormones, mediators

and the basement membrane. While the DEABM incorporates

spatial effects, it does so primarily to allow representation of the

dynamic consequences of spatial effects such as cellular crowding,

cell mass expansion, and the locality of paracrine effects, in a

relational fashion as opposed to a tissue realistic one. Thus the

‘‘space’’ of the DEABM is better viewed as a representation of the

cellular interaction/communication network rather than as an

attempt to replicate histological detail; this is in contrast to other

ABMs of breast cancer, the work of Macklin [60] and Norton [61],

which attempt to replicate specific morphological features of

DCIS. Given the emphasis on the relational structure between the

cellular populations, we utilize a ratio of 3 luminal cells to every 2

myoepithelial cells (based on extrapolating the findings from Van

Keymeulen et al. [70]), abstracting the layered relationship

between myoepithelial and luminal cells as the ‘‘carrying capacity’’

of each grid space. This allows the DEABM to represent some

degree of spatial plausibility and constraint while representing the

interactions and subsequent behaviors of the cellular populations

as they accumulate mutations and start to exhibit behaviors that

shift them from the healthy dynamic steady state. Table 2. lists the

agent-types and their internal state variables. Molecular pathways

and molecular interactions were abstractly represented using logic-

based and simple algebraic rules. State variables are updated and

agents execute the rules governing their behavior with each time

step of the model; for the current DEABM, 1 time step is

equivalent to 1 day. This timescale was specifically chosen to

reflect the length of the cell-cycle period observed in mammary

epithelial cell division [71–73]. Estrogen and progesterone levels

are represented as global variables with levels set based on

published values for a 28-day cycle at baseline, then altered for

pregnancy [38–40,74]. For a complete list of agent types and their

respective variables see Table 2. The complete code of the model

can be found online upon publication.

Figure 9. Relationship between RUNX3 expression and ER
status in breast cancer. Graphical representation of search results
from the Cancer Genome Atlas (TCGA) and Oncomine (www.oncomine.
org) to identify correlations between RUNX3 expression and both ER+
and ER2 breast tumors. These results suggest a trend towards
decreased expression of RUNX3 in ER+ tumors, a finding consistent
with our hypothesis that loss of RUNX3 function may be one of a class
of genetic abnormalities that results in the loss of suppression of the
proliferative potential of ER+ cells, and that this may be a precondition
in the development of ER+ tumors.
doi:10.1371/journal.pone.0064091.g009

Agent-Based Modeling of Breast Cancer

PLOS ONE | www.plosone.org 12 May 2013 | Volume 8 | Issue 5 | e64091



Description of Secreted Mediators Implemented as
Environmental Variables

Much of cell-to-cell communication takes place through the

secretion and receptor-activation of mediators secreted into the

extracellular space. The DEABM simulates this paracrine type of

behavior through the use of environmental (‘‘Patch’’) variables,

specifically representing amphiregulin, hepatocyte growth factor

(HGF), RANK-ligand and transforming growth factor beta (TGF-

b). These variables are listed in Table 2. The variables can be

conceptually viewed as representing the amount of these signaling

molecules present on a particular grid space. They are ‘‘produced’’

by the cellular agents based on specific rules (see below), and

‘‘absorbed’’ via receptor binding via a different set of rules (see

below); these actions are manifest by the cellular agents either

increasing or decreasing the value of the particular environmental

variable on the grid space occupied by the cellular agent.

Similarly, the value of the particular environmental variable on

a grid space represents the strength of the signal sensed and

transduced by the cellular agents residing on that grid space. To

simulate the spread of these mediators through the extracellular

milieu, the DEABM utilizes NetLogo’s ‘‘Diffuse’’ function, which

takes a set percentage of the environmental variable’s value on a

single grid space, reduces the value on that grid space by this

amount and spreads the reducing amount into the surrounding

grid spaces. As with all the parameters present in the DEABM, the

diffusion rates are qualitatively calibrated in relation to each other,

the behavior of the agents are checked against the global behavior

of the system, and their values are listed in the Supplementary

Materials 1.

The exception to the environmental/’’Patch’’ variables noted

above is the ‘‘Basement Membrane.’’ This variable is also a patch

variable, meaning that it is not specifically intended to represent a

descriptor of cellular state, but is not a diffusible entity. Rather, it is

a property of the particular grid space, produced by and affecting

the various cellular agents present on the particular grid space. For

simplicity’s sake the Basement Membrane is represented as a

binary variable: either it is present or not.

Description of Cell Types Implemented as Agents
Since the primary focus of the DEABM is on the dynamics of

ductal breast cancer oncogenesis, emphasis is placed on repre-

senting the components and factors potentially involved with

respect to the life-cycle of the luminal epithelial cells. The other

cellular types involved in the maintenance of the breast duct are

represented with an emphasis on their role on luminal cell

dynamics, and do not include their own capacity for malignant

transformation. The interactions between the different cell types

can be seen in Figure 1. The sections below describe the various

characteristics of the cell-types included in the DEABM.

Fibroblasts
Fibroblast function in the DEABM is heavily abstracted and is

focused on their role in terms of the duct epithelial life cycle, with

specific emphasis on their production of hepatocyte growth factor

(HGF). They are non-motile and their own life cycle is not

modeled in the DEABM. Their rules include:

1. Production of HGF when stimulated by amphiregulin, a ligand

of epidermal growth factor receptor, which is produced by

estrogen stimulated estrogen receptor positive (ER+) luminal

cells [75].

2. The production of HGF is down regulated by Transforming

Growth Factor-beta (TGF-b) [76–79].

3. HGF is the terminal mitogen that binds to the receptor c-Met

on breast myoepithelial and luminal cells and induces

proliferation [75].

Myoepithelial Cells
Myoepithelial cells are attached to the basement membrane and

form part of the structure of a breast duct that underlies the

luminal epithelial cells [80,81]. Their primary role in the DEABM

is to generate and maintain the basement membrane, which

provides a constraint on the growth dynamics of the luminal cells

[81]. The life cycle of myoepithelial cells is also represented,

including their respective stem and progenitor cells. In general,

modeled myoepithelial cells do not undergo mutations, with the

exception of an affect on their apoptosis function (see below).

Myoepithelial stem cells. As with the luminal stem cells (see

below) the life cycle and internal details of myoepithelial stem cells

is not modeled; in the DEABM they primarily serve to be the

original source of myoepithelial cells. At initialization, a simulation

run of the DEABM begins with 4 myoepithelial stem cells at the

center of the world. The initialization period ends when the

generated differentiated cell populations reach a dynamic steady

state.

1. Division Rules: They divide based on the presence of HGF to

produce one myoepithelial progenitor cell and one myoepi-

thelial stem cell. As a result, there is never an expansion of the

myoepithelial stem cell population itself.

2. Mutations: They do not accumulate damage or undergo

mutations (in the DEABM).

3. Basement Membrane: They do produce and maintain the

basement membrane on their resident patches (see below)

Myoepithelial Progenitor Cells

1. Origins: Myoepithelial progenitor cells can be generated by

one of 3 parent cell types, all in response to the presence of the

proliferative signal RANK-ligand: 1) myoepithelial stem cells,

2) prior myoepithelial progenitor cells, or 3) differentiated

myoepithelial cells (this last mechanism simulates mesenchymal

transformation, see below). RANK-ligand is produced by

stimulated progesterone receptor positive (PR+) luminal cells IF

local (i.e. residing patch) HGF levels are sufficient AND the

concentration of TGF-beta is below the inhibitory threshold

[76–79].) The HGF effect occurs via its binding to the c-Met

receptor on the myoepithelial progenitor cell.

2. Spatial Effects/Positioning: Myoepithelial progenitor cells

move one grid-space/day in a random direction until they

reach a patch that has a basement membrane AND is adjacent

to at least one differentiated luminal cell AND at least one

differentiated myoepithelial cell, at which point they cease

movement and begin to differentiate. This simulates the effect

of both binding to the basement membrane and cell-cell

interactions mediated by E-cadherin, which must be expressed

in order for this effect to occur [82–85].

3. Production of TGF-b: Myoepithelial progenitor cells secrete

TGF- b in response to HGF [76–79].

4. Apoptosis: Myoepithelial progenitor cells that do not adhere

and differentiate within 5 days will undergo apoptosis [86–88].

5. Mutations: Mutations of E-cadherin delay the initiation of

apoptosis due to failure of adherence [82–85] (see correspond-

ing section below in Luminal Cells for more details).
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Differentiated Myoepithelial Cells

1. Mesenchymal Transformation: Can undergo mesenchymal

transformation and manifest proliferative potential by convert-

ing back to proliferative myoepithelial cells via activation of

RANK receptors by RANK ligands produced by progesterone

stimulated PR+ luminal cells [80].

2. Basement Membrane: Myoepithelial cells produce the base-

ment membrane on its patch (represented as a binary patch

variable denoting whether the basement member is present or

not), and stimulate adjacent myoepithelial cells to produce the

basement membrane on their respective patches [81]. If the

myoepithelial cell dies (see below) then the basement

membrane on the now unoccupied patch degrades over time.

3. Apoptosis: Myoepithelial cells undergo apoptosis. They have a

state variable representing the apoptosis promoter Bax-1,

which increases by 1 each day. Apoptosis occurs when the Bax-

1 level reaches 60, consistent with the 60-day lifespan of

mammary epithelial cells found in the literature [72,89].

4. Production of TGF-b: Differentiated myoepithelial cells secrete

TGF- b in response to HGF [76–79].

Luminal cells. Luminal (epithelial) cells have the highest

degree of internal complexity of all the cell types represented in the

DEABM. Specifically, they include rules for DNA damage/repair,

cell cycle arrest, apoptosis, and functional mutations, as well as

existing in two distinct populations of ER+ or ER2 cells. They

arise from stem cells through to proliferative luminal cells, but can

also be stimulated to proliferative themselves if ER-. Given their

complexity, their various functions are described in separate

sections below:

Luminal stem cells. The DEABM does not attempt to

describe regulation of stem cell proliferation and treats continual

renewal of their own population as given. Initialization of each

simulation run of the DEABM starts with 4 luminal stem cells in

the center of the model world and is followed by an initialization

period during which these stem cells generate sufficient luminal

cells to reach a dynamic steady state.

1. Division: Luminal stem cells divide based on a stochastic

process with a probability/day of 25% in the presence of HGF.

2. Outcome of mitosis: The mitotic products of luminal stem cell

division are asymmetric. Mitosis results in self-renewal of the

stem cell and the birth of one new progenitor cell with a

genome identical to its parent stem cell. As a result, there is

never an expansion of the luminal stem cell population itself.

3. Somatic functions: Luminal stem cells undergo DNA damage/

repair, cell cycle arrest and mutations in the same manner as

somatic luminal cells (see below).

Luminal progenitor cells. These cells represent the motile

form of luminal cells immediately after division and before

adherence.

1. Origins: Luminal progenitor cells are produced by both stem

and differentiated luminal cells in response to HGF as long as

NOT suppressed by TGF-b [76–79] AND they express the c-

Met receptor to bind the HGF.

2. Secretion of TGF- b: They secrete TGF- b in response to HGF

[76–79].

3. Spatial Effects/Positioning: This set of rules/conditions is

intended to replicate a relatively basic behavior: the movement

of luminal progenitor cells from where they arise (as daughter

cells) to where they end up (as adherent differentiated luminal

cells). Capturing this behavior in a dynamic computational

model, however, requires a series of constraining attributes: 1)

under normal circumstances these luminal cells do not grow in

piles, i.e. the presence of a luminal cell in an area precludes a

migrating progenitor luminal cell from occupying that exact

same space, 2) there is a positional relationship between

luminal cells and myoepithelial cells, i.e. the luminal cells next

to the lumen and the myoepithelial cells adjacent to the

basement membrane, and 3) the relative continuous/contigu-

ous nature of the luminal epithelial layer. Therefore, in order

for a luminal progenitor cell to find a place where it can adhere

and differentiate requires it moving until the following

conditions are met:

a. The grid space it moves on cannot have more than the

allowable number of differentiated luminal cells (set as 3)

already on it.

b. The grid space it moves on must have at least one

myoepithelial cell with an intact basement membrane on

the grid space.

c. The grid space it moves on must have at least one

differentiated luminal cell directly on a directly adjacent grid

space.

If these conditions are not met by the end of 5 days simulated

time, the luminal progenitor cell will undergo apoptosis (see #4

immediately below). This set of rules enforces the spatial

configuration and associated limits on growth patterns for the

baseline DEABM in a fashion that we believe is consistent with its

degree of spatial representation (i.e. no 3rd Dimension or specific

representation of histological tissue architecture) and reflects the

role of myoepithelial cells in constraining luminal cell expansion

[81].

4. Apoptosis: Luminal progenitor cells that do not adhere and

differentiate within 5 days will undergo apoptosis, a process that is

implicated in lumen formation and involution in normal menstrual

cycles and the post-partum period [86–88].

5. Expression of TGF- b: They express TGF-b-receptor, which

if bound to TGF-b slows their proliferation [76–79].

Differentiated luminal cells. Differentiated luminal cells do

not change their position, representing their adherence to their

underlying myoepithelial cells. They also secrete TGF- b in

response to HGF [76–79]. Since the focus of the DEABM is on the

potential for neoplastic transformation of this particular cell line,

the internal functions of the luminal epithelial cells are modeled

with a greater degree of detail than the other cell types, as

described below:

‘‘Genes’’ as Functional Modules
The rule-based nature of the DEABM allows for a functional

modular organization of its code, which can then be mapped to

corresponding gene functions. A schematic listing modeled genes

and their respective influences on luminal cell function can be seen

in Figure 2. It should be noted that the list of modeled genes is not

intended to be comprehensive, as it is clearly recognized that there

are numerous genes involved in the cellular functions modeled;

additionally, we certainly recognize that many of these genes have

pleomorphic effects. Rather, since the goal at this stage of

DEABM development is to demonstrate the capability of this type

of model to reproduce recognizable dynamics, we have chosen to

focus on a set of highly-studied representative genes. Each cell

begins with two fully functional copies of eight genes that reflect

known or hypothesized tumor suppressors or oncogenes. Acquired
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mutations to each gene contribute to oncogenesis, but none are

sufficient for oncogenesis singularly. These genes/functional

modules are then the targets for the mutations that can potentially

occur due to DNA damage (see below).

1. Telomerase: Luminal cells can senesce based on telomerase

function tied to their hayflick number, which is inherited from

parent cells. This variable is increased by one following each

round of cell division; upon reaching 40, cells are no longer

able to divide further (i.e. enter senescence), simulating the

known phenomenon of the limited replicative potential of cell

lineages due to telomere shortening [90]. Failure of telomerase

activation increases the number of divisions a cell line can

propagate, potentially leading to immortalized lines.

2. E-cahedrin: As noted above, cell adherence and consequent

initiation of differentiation is mediated by E-cadherin. E-

cadherin is essential for luminal cell-cell adhesion, cellular

differentiation, and resistance to apoptosis. Failure of E-

cadherin delays the initiation of apoptosis in non-adhered cells

[82–85,91,92].

3. TGF-b-receptor: Binding of TGF-b to the cell’s TGF-b-

receptor slows proliferation. TGF-b-receptor activation is also

necessary for the expression of RUNX3 (see below). Loss of

TGF-b-receptor leads to reduced growth inhibition [76–79].

4. p53: p53 is involved in promoting the functions for DNA

repair, entry into cell cycle arrest and the initiation of apoptosis

(see below). It is complementary to the function of BRCA1 (see

below), including its effect on ER expression [93–95]. Failure of

p53 leads to impairment of all its associated functions.

5. Myc: Myc is a proto-oncogene that, if expressed, increases the

likelihood of cell division. At baseline, Myc is suppressed, and

mutations lead to loss of its suppression [96,97].

6. Regulation of matrix metalloproteinases (MMP): Under

baseline conditions MMPs are regulated, preventing degrada-

tion of the basement membrane. Mutations that lead to loss of

control of MMPs remove the movement restriction on

proliferative cells and allow mutated cells to grow beyond the

basement membrane [98,99]

7. BRCA1: BRCA1 is involved in DNA repair, entry into

senescence and the expression of ER. It affects both the ability

of DNA to be repaired, as well as a damaged cell’s entry into

cell cycle arrest. It is complementary to p53 [100–102].

8. RUNX3: RUNX3 is involved in both promoting the

expression of ER, as well as the suppression of c-Met. c-Met

is required for proliferation; loss of suppression of c-Met allows

cells to proliferate. Failure of RUNX3 is the means by which

ER+ can potentially proliferate [23–26,28,103,104].

DNA Damage and Repair
All members of the luminal cell line include rules for the

accumulation of DNA damage and the means to deal with that

damage through direct DNA repair, cell cycle arrest and

apoptosis. The process flow for DNA damage/repair and

consequent cell fate, and the effect of mutations (resulting from

DNA damage) can be seen in Figure 3. Some of the representative

genes for the functional modules included in the DEABM are

involved in the process, namely p53 and BRCA1. Luminal cells

possess a state variable ‘‘DNA-integrity,’’ initially set to an

arbitrary value of 1000, where each unit is assumed to represent

a gene function (of which there are two copies of the gene). Each

time step ( = 1 day) cells acquired a fixed amount of DNA damage

in addition to a variable amount determined by a stochastic

process; similarly, cells repair a fixed amount of DNA damage

each day in addition to a variable amount of DNA repair (both

amounts with arbitrary values but proportional to each other). If

accumulated DNA damage exceeds the amount of DNA repaired

during a given time step ( = 1 day) the cell’s ‘‘DNA-integrity’’ is

lowered by the difference. If a cell’s ‘‘DNA-integrity’’ falls below a

threshold (arbitrarily set to 97.5% integrity), the cell with intact

p53 enters cell-cycle arrest, where the cell does not divide and has

a decrease in the variable rate of DNA damage acquired per time

step (to simulate decreased metabolic activity of arrested cells).

During cell cycle arrest the cell attempts to repair accumulated

DNA damage. Both p53 and BRCA1 are needed for this full

capacity to manifest; a reduction in either’s gene levels through

mutation lead to some degree of decreased ability to repair its

DNA-integrity. Cell-cycle arrest is maintained until the cell repairs

its ‘‘DNA-integrity’’ to above the arrest threshold (.97.5%) or

damage continues to accumulate until its ‘‘DNA-integrity’’ falls

below the apoptosis threshold of 95% (set arbitrarily). If the

‘‘DNA-integrity’’ falls below the apoptosis threshold, and the cell

has at least one copy of each p53 and BRCA1, then the cell dies.

DNA damage present in a cell undergoing mitosis after leaving

cell cycle arrest (i.e. with a ‘‘DNA-integrity ,100% but .97.5%)

is accrued as mutations represented with the agent variable ‘‘new-

mutations,’’ which is set to the difference between the cell’s ‘‘DNA-

integrity’’ variable and 1000. There is a probability that some of

these mutations will affect one of the 8 focus genes/functional

modules noted above, but since the large proportion of mutations

would occur in genes not significant to the current focus of the

DEABM, the probability of acquiring a mutation to one of the 8

focus genes is relatively low. Therefore, the likelihood that one of

the focus genes would be affected is set to the number of new

mutations acquired divided by 2000 (based on the modeling

assumption that each cell carries 2 copies of each gene reflected in

its ‘‘DNA-integrity’’). As noted above, loss of copies of these 8

focus genes have defined effects on the behavior of cells.

All daughter cells that are the product of mitosis inherit the

simplified genome of their parent cell. This mechanism of

inheritance produces distinct lineages of heterogeneous cells with

respect to genotype and behavior. Cancer, in the DEABM,

emerges when a lineage of cells acquire a series of mutations that

allow overgrowth and invasion.

Definition of Cancer Outcome and Tumor Receptor
Status in the DEABM

Cancer was denoted by expansion of the luminal cell population

to greater than 3000 (well over 106 the normal luminal cellular

population), a point demonstrated in preliminary simulations to

eventually result in complete overgrowth of the model world. This

behavior was consistent with enough derangement of the system to

correspond to unconstrained growth. The simulation run was

stopped at this point (for computational efficiency purposes), and

the outcome was deemed positive for invasive breast cancer.

In terms of characterizing the ER status of a breast tumor, there

are varying qualifications for what is deemed ER-positive by

pathologists, ranging from 1% to 10% of nuclei [52,54–57]. In

addition to this variability, there are also recognized issues related

to the fact that reference tissue samples generally do not reflect the

entirety of the tumor mass (sample selection variance), thereby

adding error to the resultant calculation, or have varying amounts

of benign breast tissue present. Furthermore, since it is likely that

most luminal cells are capable of expressing ER at various times,

and due to these fluctuations only a fraction of cells actually show

expression of ER at any time, pathology samples only reflect a

‘‘snap shot’’ of the tumor’s hormone receptor potential. We have
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attempted to integrate the ambiguous and varied information

concerning ER-positivity with a plausible mechanism-based

inference: we define ‘‘ER-positivity’’ of breast tissue based on

the ER status of normal breast tissue (which we have determined

as 9%). Our rationale for this selection is that a potentially

estrogen-responsive tumor would be at least as responsive as

normal breast tissue.

Implementation of Hormone Receptor Status in Luminal
Cells

Luminal cells can be either estrogen receptor positive (ER+) or

negative (ER-). This is determined immediately following mitosis,

and is governed by a stochastic process. While the exact

mechanism responsible for governing whether mammary luminal

cells express ER remains unknown, the base rate of ER-alpha

expression has been documented to be between 4–12% of luminal

cells in normal, pre-menopausal breast tissue [17–22]. In the

DEABM there is a 10% probability that a newly formed luminal

proliferative cell will express ER in the pre-menopausal state.

Additionally, RUNX3 is known to suppress expression of ER,

while BRCA1 activity enhances expression of ER [101,102], as

does p53 [93–95]. Luminal cells can either be progesterone

receptor positive (PR+) or negative (PR1). In cells expressing ER,

high levels of estrogen induce expression of PR, consistent with

published data demonstrating that estrogen induces expression of

PR in mammary epithelium [105]. Hormone receptor status was

modeled as a simple on/off variable, and the positive and negative

feedback loops governing behavior were modeled with simple

algebraic equations. ER+ luminal cells secrete amphiregulin in

direct proportion to the level of circulating estrogen [76,77,106–

108]. Amphiregulin, a member of the epidermal growth factor

family, is taken up by fibroblasts, which in turn secrete HGF, the

ultimate mitogen taken up via the c-Met receptor in ER2 luminal

cells [75].
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