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Abstract

Dingoes (Canis lupus dingo) were introduced to Australia and became feral at least 4,000 years ago. We hypothesized that
dingoes, being of domestic origin, would be adaptable to anthropogenic resource subsidies and that their space use would
be affected by the dispersion of those resources. We tested this by analyzing Resource Selection Functions (RSFs) developed
from GPS fixes (locations) of dingoes in arid central Australia. Using Generalized Linear Mixed-effect Models (GLMMs), we
investigated resource relationships for dingoes that had access to abundant food near mine facilities, and for those that did
not. From these models, we predicted the probability of dingo occurrence in relation to anthropogenic resource subsidies
and other habitat characteristics over , 18,000 km2. Very small standard errors and subsequent pervasively high P-values of
results will become more important as the size of data sets, such as our GPS tracking logs, increases. Therefore, we also
investigated methods to minimize the effects of serial and spatio-temporal correlation among samples and unbalanced
study designs. Using GLMMs, we accounted for some of the correlation structure of GPS animal tracking data; however,
parameter standard errors remained very small and all predictors were highly significant. Consequently, we developed an
alternative approach that allowed us to review effect sizes at different spatial scales and determine which predictors were
sufficiently ecologically meaningful to include in final RSF models. We determined that the most important predictor for
dingo occurrence around mine sites was distance to the refuse facility. Away from mine sites, close proximity to human-
provided watering points was predictive of dingo dispersion as were other landscape factors including palaeochannels,
rocky rises and elevated drainage depressions. Our models demonstrate that anthropogenically supplemented food and
water can alter dingo-resource relationships. The spatial distribution of such resources is therefore critical for the
conservation and management of dingoes and other top predators.
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Introduction

Dingoes (Canis lupus dingo) most likely arrived in Australia on

boats from Asia at least 4,000 years ago [1–3]. Sometime after

their introduction and adoption by indigenous Australians,

dingoes became feral and have since occupied nearly every

terrestrial habitat on the mainland [4]. Dingoes, like free-roaming

dogs elsewhere, interact with humans and the water and food

resources they provide either purposely or accidentally though

refuse and artificial water points [5]. Given dingoes’ anthropo-

centricity, we sought to clarify habitat use by dingoes in the

presence of anthropogenic resource subsidies. This was best

achieved in a region where human activity was focal and by

analyzing dingo home-range data.

The home range of an animal or group of conspecific animals is

often described by a multifaceted polygon that contains all the

movements the animals need to attain resources for survival and

reproduction [6]. Most animals do not traverse their home range

using random walks. Instead, their movements typically reflect

heterogeneous dispersion of resources across the landscape. Over

the last decade, we have greatly improved data collection about

the movements of medium to large sized animals (.1 kg) through

relatively cheap Global Positioning System (GPS) technology [7].

This in turn has stimulated detailed investigations into how such

species use space and resources, as well as the development of

powerful analytical techniques to better quantify space–resource

interactions.
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Arguably the most popular technique for quantifying the

relative use of habitat is Resource Selection Function (RSF)

modelling [8]. An RSF is defined as any function that is

proportional to the probability of an animal using a particular

resource [9]. Resource selection modelling provides spatially

explicit predictive models for animal occurrence by comparing

habitat characteristics at any two of the following three types of

sites: those that are used by animals; those that are unused; and

those that are potentially available [10]. This approach has been

applied to a wide variety of species including brown bears (Ursus

arctos) [11,12], moose (Alces alces) [13], mountain caribou (Rangifer

tarandus caribou) [14], and rufous bristlebirds (Dasyornis broadbenti)

[15], among others.

Despite the ability of RSF models to provide useful analytical

data, no attempt has been made to develop a RSF for dingoes, or

any other mammalian predator in Australia, despite an over-

whelming amount of data being collected on their space use (e.g.

[16–19]). One possible reason for this is the inherent difficulties

involved in developing a RSF from large datasets. For example,

compared with traditional VHF radio-tags, GPS units have the

capacity to provide many regular fixes throughout the day for

months, with the deployment period depending on frequency of

fixes and battery life, which in turn is set by the weight of collar

that animals can carry without affecting their activity patterns.

While this allows collection of diurnal and nocturnal space use

data without undue disturbance to target animals, it also

challenges the usual assumption of independence that underlies

RSF models [20]. To overcome this, data are sometimes removed

on the assumption that an increased time-lag between fixes also

increases independence [21]. However, as noted for studies

employing more traditional VHF radio-tracking, post hoc censoring

of fixes defeats the advantages of employing GPS technology [18]

and collecting large and more informative datasets [11].

There is debate among specialists about suitable methods for

analysis of such autocorrelated data [22]. Here, we use the second

of the suggested methods of Fieberg et al. [22] which is a

potentially powerful approach to generate a RSF by using

Generalized Linear Mixed-effect Models (GLMMs) [10] that

accommodate hierarchical correlation structures. Although the

use–availability sampling design of GLMMs is dependent on the

sampling rates of used and available points and is computationally

demanding [21,22], GLMMs allow predictive models of individual

and group space use from serially correlated data. Sequential GPS

fixes constitute such data (under the assumption of random effects

within individuals causing correlations among the repeated

measures (i.e. fixes) (see Fieberg et al. [22] for discussion of

applicability of mixed-effects models to clustered used and

available points)). Hence, to advance our understanding of

anthropogenic influences on dingoes’ use of space and to develop

predictive models of resource selection, we explored the use of

GLMMs with a large data set of fixes from GPS-collared dingoes.

Our primary objective in developing the RSF was to determine

what predictors of occurrence, including anthropogenic resources,

describe dingo space use in the Tanami Desert of central Australia.

In that remote, arid region there are few focal anthropogenic

resource subsidies provided by mining and pastoral industries; any

differences between the home ranges used by anthropocentric

dingoes and others are likely maximized there. From an analytical

perspective, we also provide commentary on the capacity of

GLMMs to develop RSFs from large data sets of GPS fixes. In

doing so, we advance an alternative methodology that uses effect

sizes, not just P-values, to determine which predictors to include

when selecting robust final models of probability of dingo

occurrence in different habitats. This is particularly important

for GPS tracking data since, if only P-values are used (the more

traditional approach), the sheer number of fixes means that even if

serial and spatio-temporal correlation is correctly modelled,

standard errors and P-values will be very small and will lead to

the ubiquitous statistical significance of all predictors used in the

models.

Materials and Methods

Study Region and Resource Availability
The study region, covering approximately 18,000 km2 in the

western portion of central Australia’s Tanami Desert (130u 189 E,

20u 309 S), was delimited by the perimeter of all GPS fixes that

were obtained from collars fitted to dingoes between April 2008

and April 2010 (Figure 1). Land-use in the study region includes

gold mining operations and pastoral activities. Mining operations

are located at The Granites and Dead Bullock Soak (DBS).

Disused gold mines with open-cut pits and no human occupation

are located at Windy Hill and Tanami Mine, and cattle are kept

on Tanami Downs. At the time of this study, there were 13

human-provided watering points permanently available to dingoes

(Figure 1). Also available to dingoes were large quantities of food

scraps within refuse facilities at The Granites and to a lesser extent

at DBS. A roadhouse is located at Rabbit Flat and a farm house is

occupied by pastoral workers on Tanami Downs. A series of major

and minor tracks associated with both pastoral and mining

operations exists throughout the study region (Figure 1).

There are no large hills in the study region, and digital elevation

models [23] indicate an elevation profile between 225 m and

475 m above sea level. Lower-lying areas are associated generally

with drainage depressions, salt lakes and palaeochannels. Wildfires

occurred at scattered sites throughout the study region in 2007,

resulting in vegetation of several age classes [unpublished data].

No major fires occurred during the present study.

Study Animals and Telemetry Data
One hundred and eleven dingoes were live captured and

released between April 2008 and April 2010 and collars housing a

GPS data logger and a VHF transmitter (Sirtrack, Havelock

North, New Zealand and Bluesky Telemetry, Aberfeldy, Scotland)

were fitted to a sample of 23 adults. Both male and female dingoes

were collared, but only if they weighed more than 20 times the

weight of the collar. Collar weight also limited the sampling period

so, to ensure that dingoes were tracked under all seasonal

conditions, collaring was staggered throughout the study period.

In doing so, we sampled dingoes in as many areas as possible along

a latitudinal transect between DBS and Mt Davidson (Figure 1)

whilst ensuring replicates of both males and females in the sampled

areas where GPS fixes (locations logged and stored as longitude-

latitude co-ordinates) had been recovered from retrieved collars.

The GPS unit on every collar was programmed to estimate a fix

each hour, with sampling rates based on battery-life calculations.

Seven collars suffered mechanical failures and did not return any

data, and three were not found, but the remainder logged GPS

information for up to 10 months at a time. Data from the collars

included an Horizontal Dilution Of Position (HDOP) value as well

as the number of satellites used to calculate each fix. The HDOP

was used to determine a Maximum Allowable Error (MAE) of fix

accuracy by multiplying the HDOP value by the accuracy of the

GPS device, which was 2.5 m [24]. Fixes with an HDOP value .8

were excluded to balance the number of usable fixes against

positional accuracy, yielding a MAE of 40 m.

Resource Selection by Australian Arid Zone Dingoes
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Digital Environmental Data Sources
Explanatory/predictor variables (italicized below) that were

thought to influence landscape-level distribution of dingoes were

derived from 16 Geographic Information System (GIS) layers

(Table 1). Six major land-units were used to broadly characterize

landscape types (Figure 1). A measure of land cover was calculated

from the mean values of 16–day 250 m Enhanced Vegetation

Index (EVI) composites, taken over the study period, from the

TERRA Moderate Resolution Imaging Spectroradiometer [25].

The mean EVI value was calculated in ArcView v9.2 (Environ-

mental Systems Research Institute Inc.) using cell statistic tools in

the Spatial Analyst extension. For analysis and ease of interpre-

tation, mean EVI values were normalized by scaling the mean to

zero and standard deviation to one.

Elevation data were derived from the Shuttle Radar Topography

Mission 90 m Digital Elevation Model [23]. Roads were classified

into two categories based on traffic use and size. Roads (major)

included the Tanami Highway, the bulk haul road between DBS

and The Granites and the access route to Tanami Downs from

Rabbit Flat (Figure 1). Roads (minor) included all other tracks

(Figure 1). Road alignment was confirmed using GEODATA

Topo 250K v3 data [26] in association with onsite verification.

Mine sites (old) included disused old open-cut pits, while mine sites

(current) included all operational areas where ore was being

extracted. Camps included areas around mine workers’ sleeping

quarters, mess areas and operational office areas. Refuse facilities

Table 1. Description and characteristics of environmental and human-associated predictor variables used to model the probability
of occurrence of dingoes in the Tanami Desert.

Variable Name Code Resolution (m)Units Data range

Land-unit Elevated drainage depression EDD 40 Category 0 or 1

Lateritic sandplain LASP 40 Category 0 or 1

Loamy sandplain LOSP 40 Category 0 or 1

Palaeochannel PAL 40 Category 0 or 1

Rocky rise RR 40 Category 0 or 1

Salt lake SL 40 Category 0 or 1

Landcover Enhanced vegetation index EVI 40 n/a 32–2601

Terrain Elevation ELEV 40 Meters 227–475

Human Distance to road (minor) ROADMIN 40 Meters 0–49 564

Distance to road (major) ROADMAJ 40 Meters 0–132 616

Distance to mine (old) MINEOLD 40 Meters 0–112 856

Distance to mine (current) MINECURR 40 Meters 0–137 556

Distance to camps CAMPS 40 Meters 0–136 618

Food resources Distance to refuse facility (minor) TIPMIN 40 Meters 0–171 744

Distance to refuse facility (major) TIPMAJ 40 Meters 0–137 977

Water resources Distance to water WATER 40 Meters 0–80 285

doi:10.1371/journal.pone.0063931.t001

Figure 1. Location of the study region. (a) Study region (box), Tanami Desert (grey), in relation to major towns and roads in central Australia, and
(b) study region where resource selection function modelling was undertaken. The general area where GPS fixes were retrieved is denoted by the red
oval. Land-units are based on the regolith units of Wilford and Butrovski [50] and land-units of Domahidy [51].
doi:10.1371/journal.pone.0063931.g001
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(major) included areas where commercial quantities of human-

provided food scraps and other domestic refuse are discarded,

while refuse facilities (minor) included areas where household

quantities of refuse are discarded. The water GIS-layer included

all permanent human-provided water sources such as those

around bores, leaks in pipelines and where natural water had

accumulated at the base of old mine sites. All potential water

sources were inspected regularly over the study period and only

those that were permanent were included.

Data Preparation
Following retrieval of data from radio-collars, GPS fixes were

plotted in ArcView v9.2. After overlaying all digital data (Table 1)

in the same geographic projection the distance (m) from GPS fixes

to each continuous predictor was calculated using the distance

between points and nearest neighbour option in Hawth’s tools

[27]. The attribute scores for all other predictors were derived

using spatial joins. The kernel density estimator was chosen as a

measure of home range because this non-parametric method is

particularly robust in estimating probability density distributions of

any shape [28]. The 100% kernel estimator was used because this

likely represented the outer extremes of movement and thus

encompassed the total range of resources that were potentially

available to each dingo. As opposed to the adaptive kernel, the

fixed kernel is more stable for defining probability contours of

greater than 80%, so we used the latter. Kernel estimates were

calculated in R [29] in the package adehabitat v1.8.3 [30] using

the function kernelUD. The level of smoothing was determined by

the default adhoc method (i.e. a bivariate normal kernel) as this

resulted in shapes that appeared to be biologically realistic. Kernel

boundaries were re-projected in ArcView v9.2 and converted into

a grid (raster). Cells inside each kernel estimate were set as 1 and

those outside as 0. A cell size of 40 640 m was chosen as this was

the largest MAE derived from the GPS fixes. The raster

boundaries were set as the outer limits of the study region

(Figure 1). This resulted in a grid with 2279 rows and 4848

columns (11 048 592 cells or pixels).

Separate rasters of all digital data were created using the same

parameters as the kernel estimates with the exception that each

pixel represented the distance (m) from its centre to a continuous

predictor or categorical unit value. In the case of the GPS data

each cell also corresponded to presence (1) or absence (0) of a GPS

fix. To check for any errors, maps of each raster were assessed for

outliers using colour coding. Kernel estimates of home ranges were

also cross-tabulated with GPS frequency data. No errors were

detected.

To create the available resource units for each dingo, pixels

were randomly sampled from inside the boundaries of its

estimated kernel home range. Available resource units were

sampled randomly at a rate of five times the number of GPS fixes

obtained for each dingo; there is little benefit in taking more than

four or five controls per case [31]. Distances to continuous

predictors and attribute values for available resource units were

derived from a merged spreadsheet of all digital data. We checked

for errors by randomly extracting rows from the merged file to

Table 2. Chi-squared (x2) tests of the deviance of the final
logistic regression models to a null model and the mean
average prediction for where dingoes were present
(prediction–present) and absent (prediction–absent).

Model Scale x2 Df P
Prediction –
Present

Prediction
–Absent

Mine 2 59464 11 *** 0.79 0.04

Intermediate 2 13065 7 *** 0.25 0.15

Away 2 10499 7 *** 0.28 0.14

All dogs 2 52913 8 *** 0.33 0.13

Df = degrees of freedom. *** = P,0.001.
doi:10.1371/journal.pone.0063931.t002

Figure 2. Effect size of continuous predictors on occurrence of dingoes in the Tanami Desert based on the results from the final
generalized linear mixed model. Odds ratios are provided 695% confidence intervals (CI). See Table 1 for X-axis acronyms.
doi:10.1371/journal.pone.0063931.g002
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ensure they were identical to the originals, and by making maps

that were then compared with the originals using colour coding.

No errors were detected.

Resource Selection Modelling
We developed an RSF model following the methods proposed

by Gillies et al. [10] of using GLMMs with a binomial family and

logit link function as well as a random intercept (individual dingo).

This modelling approach is analogous to Design III in Thomas

and Taylor [32] and Manly et al. [20] in that we sampled resource

use for each individual dingo and calculated resource availability

from a randomly sampled area within animals’ home ranges [20];

this is also referred to as a case–control study. The approach of

Gillies et al. [10] in using random intercepts for each dingo is

particularly relevant to our study because there was unequal

sampling intensity due to the death of three dingoes and

incomplete data from two GPS collars. Fieberg et al. [33] and

Fieberg et al. [22] recommend that GLMMs, rather than

Generalised Estimating Equations (GEEs), be used for popula-

tion-level response patterns, such as those of dingoes to

anthropogenic resources and other parameters. Only the results

Table 3. Parameter estimates (b) and standard errors (SE) for predictors included in the final logistic regression models.

Mine Intermediate Away All dogs

Predictor b SE P b SE P b SE P b SE P

Loamy sandplain (reference) NA NA NA NA NA NA NA NA NA NA NA NA

Elevated drainage depression 1.24 0.08 *** 1.11 0.02 *** 1.54 0.03 *** 0.94 0.02 ***

Lateritic sandplain 20.31 0.06 *** 0.45 0.03 *** 0.52 0.04 *** 0.13 0.02 ***

Palaeochannel 1.59 0.13 *** 1.20 0.02 *** 0.94 0.03 *** 1.38 0.02 ***

Rocky rise 1.81 0.05 *** 0.34 0.02 *** 0.54 0.04 *** 0.04 0.02 *

Salt lake 3.04 1.13 ** 0.07 0.13 *** 20.38 0.16 * 20.19 0.10 *

Enhanced vegetation index 20.48 0.02 *** 20.25 0.01 *** 20.05 0.01 *** 20.58 0.01 ***

Elevation 0.32 0.02 *** – – – 0.30 0.01 *** 0.33 0.00 ***

Distance to road (minor) 20.65 0.03 *** 20.11 0.00 *** – – – – – –

Distance to road (major) 20.15 0.01 *** – – – – – – – – –

Distance to mine (old) 20.50 0.01 *** – – – – – – – – –

Distance to mine (current) – – – – – – – – – – – –

Distance to camps – – – – – – – – – – – –

Distance to refuse facility (minor) 20.70 0.01 *** – – – – – – – – –

Distance to refuse facility (major) 20.45 0.01 *** – – – – – – – – –

Distance to water – – – 20.08 0.00 *** 20.10 0.00 *** 20.11 0.00 ***

Scale was modelled at 1 km for distance predictors and 10 m for elevation. *** = P,0.001, ** = P,0.01, * = P,0.05.
doi:10.1371/journal.pone.0063931.t003

Figure 3. Predicted resource selection by ‘mine’ dingoes in the Tanami Desert at a scale of 1 km for distance predictors and 10 m
for elevation.
doi:10.1371/journal.pone.0063931.g003

Resource Selection by Australian Arid Zone Dingoes

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e63931



from GLMMs with a random intercept were considered (but see

discussion for further commentary about GEEs).

Because we collared dingoes in different areas throughout the

study site with varying levels of human-provided resources,

dingoes were grouped post hoc (following Newsome et al. [34])

into three categories based on inspection of the GPS data. These

were: dingoes that almost wholly associated with the mine facilities

(‘mine’); those that had no association with mine facilities and were

focused around a single artificial watering point (‘away’); and those

that moved between multiple-artificial watering points and the

mine (‘intermediate’). In doing so we fully evaluated resource

selection by groups of dingoes that utilized similar human-

provided resources. Grouping all animals would not provide such

detail to compare resource selection; however, to provide a

reference, we modelled the data for all dingoes (‘all dogs’) as well.

Replication was obtained at the level of the individually monitored

dingoes in each model.

For each category of dingo all continuous predictor variables

were screened to test for collinearity using pair-wise correlations in

R. From each set of correlated predictors (i.e. r .0.8), the one that

made most sense biologically was selected for inclusion in the

model while others were removed [35]. Box-plots of land-units

against each continuous predictor were also generated to

determine if confounding factors prevented separation of observed

effects due to land-units or predictors. The models were adjusted to

account for such effects.

By selecting predictor variables based on the ecology of the

dingo population, the output of logistic regressions yielded

estimates proportional to the probability of resource use in a pixel

or polygon [36]. Models could be contrasted by comparison of

deviances [20] or other model selection techniques such as the

Figure 4. Predicted resource selection by ‘intermediate’ dingoes in the Tanami Desert at a scale of 1 km for distance predictors and
10 m for elevation.
doi:10.1371/journal.pone.0063931.g004

Figure 5. Predicted resource selection by ‘away’ dingoes in the Tanami Desert at a scale of 1 km for distance predictors and 10 m
for elevation.
doi:10.1371/journal.pone.0063931.g005
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Akaike Information Criterion [37]. However, when determining

which predictors to include in the final model it was important to

understand the effect size of predictors and not rely solely on

statistical significance [38]. This was particularly important as we

were dealing with samples where autocorrelation may have led to

inappropriately small standard errors (and low P-values), as was

evident in the results of our full and final GLMM. To understand

the effect size, we converted the logistic regression parameters to

odds ratios to review the effect size of each predictor on dingo

occurrence. Data for the ‘mine’, ‘intermediate’ and ‘away’

categories were also modelled at three spatial scales to allow

interpretation of the effect of scale on dingo behaviour and gain

understanding of the effect size of each predictor. The spatial

scales were 1 m (Scale 1), 1 km (Scale 2) and 10 km (Scale 3) for

distance predictors, and 1 m (Scale 1), 10 m (Scale 2) and 100 m

(Scale 3) for elevation. Data for ‘all dogs’ were modelled at the same

spatial scale as the other models to provide a comparison.

Full model deviances (all predictors) were then compared to a

null model (no predictors) with a chi-squared distribution test using

the ‘anova()’ function in R. As a binomial distribution was

modelled, the deviance was not expected to follow a chi-squared

distribution; however, the difference in the deviance between the

full and null models was expected to follow a chi-squared

distribution [39]. For each model, the data were then split into

pixels where a dingo was sampled (present) or not (absent). The

average prediction was calculated for each category for all pixels.

Here, better models will have a higher average prediction for

pixels where dingoes were present and lower average prediction

where they were not. We then converted the parameters of the

logistic regressions to odds ratios by taking their exponentials. The

odds ratio represents the odds of finding a dingo compared to the

preceding integer (if the predictor is continuous) or a reference

category (if the predictor is categorical). For example, if the odds

ratio for distance to water is 0.5 and the scale of effect is 1 km, there

is a 50% less chance of finding a dingo in a pixel that is 1 km away

from water compared to a pixel that is 0 km away from water.

The odds ratio was plotted with 95% confidence intervals (CI)

for each group of dingoes at the three spatial scales to compare the

effect size of each predictor on the models. We considered that, if

the effect size was still small at the Scale 2 (1 km) and Scale 3

(10 km) levels (i.e. with an odds ratio difference to 1 of #0.05), the

predictor did not have a meaningful impact on dingo occurrence.

The choice of scale size was based on the average hourly velocity

or displacement of the studied dingoes, which ranged from 0.2–

1.2 km/h. Hence, a predictor was excluded if it had no influence

on dingo behaviour at a scale within the upper limits (1 km) of

these movement rates as well as within a scale well beyond

(10 km). The review of effect sizes was also used to choose an

appropriate scale for a final model and predictive map. Effect sizes

that were within a useable and meaningful range for prediction

were chosen; i.e., where predicted probabilities of occurrence

would change in a consistent gradient that was not too fine or too

coarse over the chosen scale of effect, thus allowing ease of

interpretation for management implications.

Parameter estimates from final RSF models were used to

generate probability functions of the relative occurrence for each

category of dingoes across the study region (i.e. 0–1 for every pixel

in the study region). Due to limited computer memory R was

unable to predict the entire 11 million(+) rows of data; thus, data

were split into smaller pieces of 2 million rows using a World

Programming Systems (WPS) module (World Programming Ltd).

After making the predictions, files were imported into ENVI v4.8

(ITT Visual Information Solutions) and output with a header file

containing the co-ordinates and properties of the grid. Image-to-

image conversion used ArcView v9.2 to create a tagged image file

format (.tiff). To display the.tiff (i.e. the final predictive map), the

layer properties were set as stretched values with standard

deviations and n = 2.

Ethics Statement
This research was undertaken under the Animal Care and

Ethics Authority O06/009 from Orange Animal Ethics Commit-

tee, clearance number A05020 from Charles Darwin University

Animal Ethics Committee and permit number 33607 from

Northern Territory Parks and Wildlife. The Central Land Council

provided permit number CD004 for conducting research on

Aboriginal Land. We adhered to all conditions related to the

study.

Figure 6. Predicted resource selection by ‘all’ dingoes in the Tanami Desert at a scale of 1 km for distance predictors and 10 m for
elevation.
doi:10.1371/journal.pone.0063931.g006
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Results

Data Overview
Data from 13 collared dingoes (four adult females, nine adult

males) were obtained during the study period. Collars remained on

dingoes on average for 198 days (range 33–300). Analysis of the

spatial distribution of GPS fixes resulted in two male and two

female dingoes being placed into the ‘mine’ category model (15

658 GPS fixes; range 1995–4626 per dingo), five males into the

‘intermediate’ category model (22 890 GPS fixes; range 2559–

6752 per dingo), and two male and two female dingoes into the

‘away ‘category model (14 876 GPS fixes; range 713–6495 per

dingo). Data were not recoverable from the remaining 10 collars.

Correlations and Confounding Factors
Some predictors within the combined home range areas of each

category of dingo were highly correlated (r .0.8) with distance to

refuse facility (major). In the ‘mine’ models these included mine

(current), water and camps. In the ‘intermediate’ models they

included road (major), mine (current), refuse facility (minor) and camps.

In the ‘away’ models they included road (major), mine (old), mine

(current), refuse facility (minor) and camps. In the ‘all dogs’ model they

included road (major), mine (current), refuse facility (minor) and camps. All

correlated predictors were removed from the analyses.

There were also several confounding factors in relation to the

distribution of land-units and other predictors. In the ‘mine’ model,

elevated drainage depressions tended to be further away from road

(major); palaeochannels tended to be further away from roads (minor

and major) and refuse facilities (major); and salt lakes tended to be

further away from road (minor) and refuse facilities (major). For all

models, salt lakes, palaeochannels and loamy sand plains tended to

be in areas of lower elevation. Rocky rises also occurred more

frequently in areas of higher elevation.

Spatial Scale and Effect Size – Review of Full Models
Chi-squared tests of the deviance of the full models to the null

models indicated that the full models provided a significant fit to

the data (all at P,0.001) (Table S1). There was very little

difference between the average prediction for where dingoes were

present or absent between models within the same category.

However, the average prediction for dingo presence was much

higher in the ‘mine’ models at all three spatial scales compared

with the ‘intermediate’ and ‘away’ models. The average prediction

for where dingoes were absent was also much lower in the ‘mine’

model compared with the ‘intermediate’ and ‘away’ models. This

indicates that the ‘mine’ models had much better predictive

capabilities compared with the other models (Table S1).

All chosen predictors had a significant impact on the full model

parameters (at P,0.001) (Table S2). However, the effect size of

continuous predictors was so small in the Scale 1 models as a dingo

moved 1 unit away (i.e. 1 m) that no impact on dingo occurrence

was detectable (Figure S1). At Scale 3, the effect size was so large

that movement of one unit away from the resource meant the

chance of seeing a dingo was very low (Figure S1). The Scale 2

model was therefore considered the most appropriate to develop a

final RSF. However, several predictors in the ‘intermediate’,

‘away’ and ‘all dogs’ models still had very small effect sizes at the

Scale 2 level. In the ‘intermediate’ model, distance to mine (old) and

distance to refuse facility (major) had relatively small effect sizes

compared with all other chosen predictors. The effect sizes of

distance to road (minor) and refuse facility (major) were also relatively

small for the ‘away’ model compared with all other chosen

predictors (Figure S1). In the ‘all dogs’ model at the Scale 2 level,

distance to mine (old), road (minor) and refuse facility (major) had

relatively small effect sizes compared with all other chosen

predictors (Figure S2). All the predictors with small effect sizes

were therefore removed from the final models.

Final Models
Chi-squared tests of deviance of the final models to null models

indicated that they all provided a significant fit to the data

(P,0.001) (Table 2). There was very little difference between the

average predictions for where dingoes were present or absent

between the full model and final models (Table 2). Hence,

predictive power was much better in the ‘mine’ models compared

with the ‘intermediate’, ‘away’ and ‘all dogs’ models.

All the chosen predictors in the final models had a significant

impact on dingo occurrence (Table 3). However, the effect size of

each predictor on dingo occurrence varied across each category of

model. In particular, human-provided predictors, such as distance

to refuse facility (major), were much more important in the ‘mine’

model compared with the ‘intermediate’, ‘away’ and ‘all dogs’

models (Figure 2).

Predictive Maps
The variation in resource use across the four models was

reflected in the predictive maps (Figures 3–6). In particular, due to

the large effect size of human predictors in the ‘mine’ models, the

probability of dingo occurrence was restricted to only a small area

around the mine sites (Figure 3). In the ‘intermediate’, ‘away’ and

‘all dogs’ models, higher probabilities of occurrence were

distributed across the study region, with higher values occurring

within some land-unit boundaries. In the ‘intermediate’ model

there was generally a higher probability of occurrence in the

palaeochannel land-unit (Figure 4). In the ‘away’ and ‘all dogs’

model there was generally a higher probability of occurrence in

the rocky rise and elevated drainage depression land-unit (Figures 5

and 6). In all cases, there were higher probabilities of occurrences

in close proximity to water (Figures 4–6).

Discussion

Our primary objective, from an ecological point of view, was to

identify what predictors of occurrence influence dingo space use in

the Tanami Desert. For dingoes that live primarily around mine

sites, the most important predictor for dingoes (i.e. that with the

largest effect size) was distance to refuse facility (major). Human-

provided food resources are therefore a key predictor for dingo

occurrence around mine sites. For dingoes in the ‘intermediate’

and ‘away’ models, environmental variables had an important

influence on the relative probability of occurrences of dingoes

across the study region. In the ‘intermediate’ model there was

generally a higher probability of occurrence in the palaeochannel

land-unit, particularly in those close to water. In the ‘away’ models

there was generally also a higher probability of occurrence in

rocky rises and in the elevated drainage depression land-units

adjacent to them.

The most important factors ordinarily affecting the distribution

of dingoes are water, food and cover [4]. In theoretical frameworks

describing the ecology of arid Australia [40,41], the distribution of

higher-order consumers is predicted to be restricted largely to, and

reliant on, more productive refugia in the landscape such as

calcrete and drainage substrates. In the Tanami Desert, the dingo

has previously been shown to occur more often on fluvial

substrates than on sand plains [42]. Lundie-Jenkins et al. [43]

also found that drainage channels appeared to be important

corridors for movement of dingoes at a site 15 km south-east of

The Granites. Our data accord with the ideas of Stafford Smith
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and Morton [40] and Morton et al. [41] and previous track-based

studies [42,43]. However, our data highlight the potentially large

impact of providing supplementary resources on dingo distribu-

tion. Particularly in the ‘mine’ model, there was no functional

relationship between dingo occurrence and environmental vari-

ables that would otherwise be important in a system without

anthropogenic resource subsidies.

Our findings, in relation to the effect of supplementary

resources on dingo distribution, are pertinent to gaining an insight

into how anthropogenic activity can influence dingo distribution.

The overall importance of human-provided water for dingoes in

the Tanami Desert is highlighted by the fact that there was only a

25–30% chance of finding an ‘intermediate’ or ‘away’ dingo in a

pixel that was 10 km from water, compared to a pixel that was

0 km away. Dingoes generally drink water every day, about a litre

in summer and half a litre in winter [44], but see Allen [17]. It is

therefore unsurprising that water is a key driver of dingo space use.

However, from a management point of view, this finding poses the

question of whether or not dingoes would survive in the Tanami

Desert without human-provided watering points. Given the high

occurrence of the ‘away’ dingoes in rocky rises (Figure 1), it is

possible that suitable substrates (in rock holes) could hold water

following rainfall. During our study though, rainfall was below

average at 219 mm and 263 mm in 2008 and 2009, respectively

[45]. While this may have been enough to fill some rock holes for

short periods, the timing of our study when rainfall was low

perhaps increased the reliance of dingoes on human-provided

water.

Robley et al. [18] noted that the ‘spatial scale at which wild dog

management occurs needs to be reconsidered’. While this

statement referred to the size of buffer zones that need to be

applied in conventional programs for the poison baiting of wild

dogs for livestock protection in south-eastern Australia, it applies

equally to areas where the maintenance of dingo populations is the

management objective. As demonstrated in our models, watering

points were important predictors of dingo occurrence to the extent

that as one moves up to 10 km away, the probability of dingo

occurrence becomes relatively low (Figures 3–6). Hence, in arid

Australia, where the availability of water is highly variable and

largely dependent on rainfall, the spatial distribution of permanent

watering points is a critical factor when considering the use of

conservation reserves for dingoes [46]. Water in the Scale 3 model

showed an exceptionally low odds ratio (,0.3) for the ‘interme-

diate’ and ‘away’ dingoes. This suggests that dingoes in the

Tanami Desert require water resources to be not much more than

10 km apart, and certainly no more than 20 km apart (where the

odds ratio of detecting a dingo drops to below 0.1).

Our study is the first to generate a RSF from GPS data for

dingoes. Because our experimental design was unequally balanced

(i.e. different numbers of fixes for each animal sampled) and

excluding data from the models was not a preferred option, we

adopted the analytical method of Gillies et al. [10]. In a review of

this approach, Koper and Manseau [21] argued that it can be

sensitive to incorrect variance-covariance and correlation specifi-

cations, with an internal correlation structure that could lead to

biased standard errors. According to Koper and Manseau [21],

Gillies et al. [10] stated that random effects can account for

correlations from recording multiple fixes from each animal.

However, the statement of Gillies et al. [10] in fact refers to

clustering, or correlation amongst the animals. It does not refer to

the autocorrelation that exists within each animal due to the close

proximity of fixes.

In our models, the standard errors of the parameter estimates

were very small (Table 3) for at least two reasons. First, a very large

number of used and available data points was included (up to 100

000 per model), and secondly these points were assumed to be

independent. The number of data points can have a very large

influence on standard errors, even if the dependence issue is

solved. If, for example, we had only used every 100th data point in

an attempt to ensure independence (gap between fixes would be

approximately four days), this would have given up to 1000 data

points for some models, which is enough for standard errors to still

be very small. In consequence, the standard errors in our models

were so small that even odds ratios that were close to one were

statistically significant. It would have therefore been optimal to

generate robust standard errors to compare to the model standard

errors in this study. Generalized Estimating Equations (GEEs) can

be used to fit robust standard errors [21,22]. However, this process

could not be completed in R using geepack v1.0-17 [47–49] with

our large dataset. Even so, Gillies et al. [10] noted that the robust

standard errors of GEEs may be biased towards animals with

higher sample sizes, so this method may not have provided any

more confidence in our models. Additionally, the problem of

having predictors that were all statistically significant meant that

traditional statistical methods for assessing likelihood, and

hypothesis testing for model selection, were not helpful in

determining the predictors to include in final models. By reviewing

effect sizes at three different spatial scales we overcame this

problem.

The issue of all predictors being significant is likely to arise with

large datasets even if serial and spatiotemporal correlation is

accounted for. Focusing efforts on overcoming issues related to

data size is therefore likely to be more important than dealing with

serial and spatiotemporal correlation. Hurlbert and Lombardi [38]

stated that if sample sizes are too large, one may be ‘‘in danger’’ of

getting very low P-values and establishing the sign and magnitude

of even small effects with too much confidence. This issue of ‘Big

Data’ or ‘Obese N’ has been overlooked in many reviews of

approaches to RSF models because the focus is solely on

autocorrelation (e.g. [22]). However, in our study, by analyzing

the data at three spatial scales and reviewing the effect sizes, it was

possible to identify which variables had meaningful effects on

dingo occurrence. This in turn allowed the development of final

models that included only these predictors. Reviewing effect sizes

at different spatial scales is therefore one potential way to

overcome the problem of having large datasets obtained from

GPS tracking studies. This is a problem that will become more

common as GPS tracking devices become more prevalent and

data sizes increase.

Supporting Information

Figure S1 Effect size of continuous predictors of
occurrence of dingoes in the (a) ‘mine’, (b) ‘intermedi-
ate’ and (c) ‘away’ categories based on the results from
full generalized linear mixed models (GLMM) at three
spatial scales in the Tanami Desert. Odds ratios are

provided 695% confidence intervals (CI).* ELEV at Scale 3 in (a)

is not shown as it had an odds ratio of 25.48 (95% Confidence

Interval (CI) lower bound 16.95, CI upper bound 38.36); and in (c)

it is not shown as it has an odds ratio of 6.56 (CI lower bound 5.38,

CI upper bound 7.99). The spatial scales were 1 m (Scale 1), 1 km

(Scale 2) and 10 km (Scale 3) for distance predictors, and 1 m

(Scale 1), 10 m (Scale 2) and 100 m (Scale 3) for elevation.

(PDF)

Figure S2 Effect size of continuous predictors of
occurrence of dingoes in the ‘all dogs’ model based on
the results from the full generalized linear mixed model
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(GLMM) at a spatial scale of 1 km (Scale 2) for distance
predictors and 10 m (Scale 2) for elevation. Odds ratios are

provided 695% confidence intervals (CI).

(PDF)

Table S1 Chi-squared (x2) tests of the deviance of the
full models to a null model (no predictors) and mean
average prediction for where dingoes were present
(prediction – present) and absent (prediction – absent).
Df = degrees of freedom. *** = P,0.001.

(PDF)

Table S2 Parameter estimates (b) and standard errors
(SE) for continuous predictors included in the full
models in the Tanami Desert. Models were fitted with a

random intercept following Gillies et al. [10]. *** = P,0.001.

(PDF)

Acknowledgments

Many members of the Warlpiri community assisted in the field. Particular

thanks to Shaun Wilson who assisted on most field trips. Many other

people assisted with this work, in particular those from the Invasive Animal

CRC, Newmont Tanami Operations, the Central Land Council and Low

Ecological Services. Bill Low and Mathew Crowther provided valuable

comments on early drafts.

Author Contributions

Conceived and designed the experiments: TN GB PF CD CH. Performed

the experiments: TN GB PF CD. Analyzed the data: TN CH. Contributed

reagents/materials/analysis tools: TN CH. Wrote the paper: TN GB PF

CD CH.

References

1. Corbett LK (2001) The Dingo in Australia and Asia. Adelaide: JB Books Pty Ltd.

2. Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J (2004) A

detailed picture of the origin of the Australian dingo, obtained from the study of

mitochondrial DNA. Proc Nat Acad Sci USA 101: 12387–12390.

3. Ardalan A, Oskarsson M, Natanaelsson C, Wilton AN, Ahmadian A, et al.

(2012) Narrow genetic basis for the Australian dingo confirmed through analysis

of paternal ancestry. Genetica 140: 65–73.

4. Fleming PJS, Corbett LK, Harden R, Thomson P (2001) Managing the Impacts

of Dingoes and Other Wild Dogs. Canberra: Bureau of Rural Sciences.

5. Newsome TM (2011) PhD Thesis: The ecology of the dingo (Canis lupus dingo) in

the Tanami Desert in relation to human resource subsidies [PhD Thesis].

Sydney: The University of Sydney.

6. Kenward RE (2000) A Manual for Wildlife Radio-tagging. London: Academic

Press.

7. Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a

critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc

Lond B Biol Sci 365: 2303–2312.

8. McLoughlin PD, Morris DW, Fortin D, Vander Wal E, Contasti AL (2010)

Considering ecological dynamics in resource selection functions. J Anim Ecol 79:

4–12.

9. Manly B, McDonald L, Thomas D (1993) Resource Selection by Animals:

Statistical Design and Analysis for Field Studies. London: Chapman and Hall.

10. Gillies CS, Hebblewhite M, Nielsen SE, Krawchuk MA, Aldridge CL, et al.

(2006) Application of random effects to the study of resource selection by

animals. J Anim Ecol 75: 887–898.

11. Johnson DS, Thomas DL, Ver Hoef JM, Christ A (2008) A general framework

for the analysis of animal resource selection from telemetry data. Biometrics 64:

968–976.

12. Chetkiewicz CLB, Boyce MS (2009) Use of resource selection functions to

identify conservation corridors. J Appl Ecol 46: 1036–1047.

13. Erickson WP, McDonald TL, Skinner R (1998) Habitat selection using GIS

data: a case study. J Agr Biol Enviro St 3: 296–310.

14. Johnson CJ, Seip DR, Boyce MS (2004) A quantitative approach to conservation

planning: using resource selection functions to map the distribution of mountain

caribou at multiple spatial scales. J Appl Ecol 41: 238–251.

15. Gibson LA, Wilson BA, Cahill DM, Hill J (2004) Spatial prediction of rufous

bristlebird habitat in a coastal heathland: a GIS-based approach. J Appl Ecol 41:

213–223.

16. Claridge AW, Mills DJ, Hunt R, Jenkins DJ, Bean J (2009) Satellite tracking of

wild dogs in south-eastern mainland Australian forests: implications for

management of a problematic top-order carnivore. Forest Ecol Manag 258:

814–822.

17. Allen BL (2012) Do desert dingoes drink daily? Visitation rates at remote

waterpoints in the Strzelecki Desert. Aust Mammal 34: 251–256.

18. Robley A, Gormley A, Forsyth D, Wilton A, Stephens D (2010) Movements and

habitat selection by wild dogs in eastern Victoria. Aust Mammal 32: 23–32.

19. Purcell B (2010) Dingo. Collingwood Victoria: CSIRO Publishing.

20. Manly B, McDonald L, Thomas D, McDonald T, Erickson W (2002) Resource

Selection by Animals: Statistical Analysis and Design for Field Studies. 2nd ed.

Boston: Kluwer Academic Publishers.

21. Koper N, Manseau M (2009) Generalized estimating equations and generalized

linear mixed-effects models for modelling resource selection. J Appl Ecol 46:

590–599.

22. Fieberg J, Matthiopoulos J, Hebblewhite M, Boyce MS, Frair JL (2012)

Correlation and studies of habitat selection: problem, red herring or opportunity.

Philos Trans R Soc Lond B Biol Sci 365: 2233–2244.

23. Jarvis A, Reuter H, Nelson A, Guevara E (2008) Hole-filled seamless SRTM

data V4. Available: http://srtm.csi.cgiar.org/. Accessed 2011 June 10.

24. Navman Wireless OEM Solutions (2006) Jupiter 31 GPS receiver module data
sheet. Available: http://www.navmanwirelessoem.com/assets/files/Docs/

products/Jupiter_31/J31_DataSheet.pdf. Accessed 2009 May 20.

25. Earth Observing System Data and Information System (2008) Earth Observing

System Clearing House (ECHO)/Warehouse Inventory Search Tool (WIST)

Version 10.X [online application]. Greenbelt, MD: EOSDIS, Goddard Space
Flight Center (GSFC) National Aeronautics and Space Administration (NASA).

Available: www.wist.echo.nasa.gov/api/. Accessed 2010 April 17.

26. Geoscience Australia (2006) GEODATA TOPO 250K series 3.

27. Beyer H (2004) Hawth’s Analysis Tools for ArcGIS. Available: www.
spatialecology.com/htools. Accessed 29 November 2009.

28. Seaman DE, Powell RA (1996) An evaluation of the accuracy of kernel density

estimators for home range analysis. Ecology 77: 2075–2085.

29. R development Core Team (2009) R: A Language and Environment for
Statistical Computing. Version 2.92. R Foundation for Statistical Computing,

Vienna, Austria.

30. Calange C (2009) Package ‘‘adehabitat’’ v 1.8.3.

31. Van Belle G (2008) Statistical Rules of Thumb. 2nd ed. New York: Wiley.

32. Thomas D, Taylor E (1990) Study designs and tests for comparing resource use

and availability. J Wildl Manage 54: 322–330.

33. Fieberg J, Rieger RH, Zicus MC, Schildcrout JS (2009) Regression modelling of

correlated data in ecology: subject-specific and population averaged response
patterns. J Appl Ecol 46: 1018–1025.

34. Newsome TM, Ballard GA, Dickman CR, Fleming PJS, van de Ven R (2013)

Home range, activity and sociality of a top predator, the dingo: a test of the

Resource Dispersion Hypothesis. Ecography doi: 10.1111/j.1600–

0587.2013.00056.x.

35. Green RH (1979) Sampling Design and Statistical Methods for Environmental

Biologists. New York: Wiley.

36. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating

resource selection functions. Ecol Model 157: 281–300.

37. Burnham K, Anderson D (2002) Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. New York: Springer-Verlag.

38. Hurlbert SH, Lombardi CM (2009) Final collapse of the Neyman-Pearson

decision theoretic framework and rise of the neoFisherian. Ann Zool Fennici 46:
311–349.

39. Faraday JJ (2006) Extending the Linear Model with R: Generalized Linear,

Mixed Effects and Nonparametric Regression Models. London: Chapman and

Hall.

40. Stafford Smith DM, Morton SR (1990) A framework for the ecology of arid

Australia. J Arid Environ 18: 255–278.

41. Morton SR, Stafford Smith DM, Dickman CR, Dunkerley DL, Friedel MH, et

al. (2011) A fresh framework for the ecology of arid Australia. J Arid Environ 75:

313–329.

42. Southgate R, Paltridge R, Masters P, Ostendorf B (2007) Modelling introduced

predator and herbivore distribution in the Tanami Desert, Australia. J Arid

Environ 68: 438–464.

43. Lundie-Jenkins G, Corbett LK, Phillips CM (1993) Ecology of the rufous hare-

wallaby, Lagorchestes hirsutus Gould (Marsupialia: Macropodidae), in the Tanami
Desert, Northern Territory. III. Interactions with introduced mammal species.

Wildlife Res 20: 495–511.

44. Newsome AE, Catling PC, Corbett LK (1983) The feeding ecology of the dingo

II. Dietary and numerical relationships with fluctuating prey populations in

south-eastern Australia. Austral J Ecol 8: 345–366.

45. Bureau of Meteorology (2010) Rabbit Flat, Northern Territory September 2010

Daily Weather Observations. Available: www.bom.gov.au/climate/dwo/

IDCJDW8044.latest.shtml. Accessed 2010 September 15.

46. Dickman CR, Glen AS, Letnic M (2009) Reintroducing the dingo: can

Australia’s conservation wastelands be restored? In: Hayward MW, Somers MJ,

Resource Selection by Australian Arid Zone Dingoes

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e63931



editors. Reintroduction of Top-Order Predators. London: Wiley-Blackwell. 238–

269.
47. Yan J (2002) Yet another package for generalized estimating equations. R news

2: 12–14.

48. Yan J, Fine J (2004) Estimating equations for association structures. Statistics in
Medicine 23: 859–874.

49. Halekoh U, Hojsgaard S, Yan J (2006) The R package geepack for generalized

estimating equations. Journal of Statistical Software 15: 1–11.
50. Wilford J, Butrovski D (1999) Tanami Granites Regolith-Landforms Map Series;

(1: 100,000 map scale). WA: CRC, LEME, CSIRO, Wembley.

51. Domahidy G (1990) Hydrogeology of The Granites - Tanami Mining Region.
Northern Territory: Power and Water Authority.

Resource Selection by Australian Arid Zone Dingoes

PLOS ONE | www.plosone.org 11 May 2013 | Volume 8 | Issue 5 | e63931


