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Abstract

Correlation patterns between matched copy number variation and gene expression data in cancer samples enable the
inference of causal gene regulatory relationships by exploiting the natural randomization of such systems. The aim of this
study was to test and verify experimentally the accuracy of a causal inference approach based on genomic randomization
using esophageal cancer samples. Two candidates with strong regulatory effects emerging from our analysis are
components of growth factor receptors, and implicated in cancer development, namely ERBB2 and FGFR2. We tested
experimentally two ERBB2 and three FGFR2 regulated interactions predicted by the statistical analysis, all of which were
confirmed. We also applied the method in a meta-analysis of 10 cancer datasets and tested 15 of the predicted regulatory
interactions experimentally. Three additional predicted ERBB2 regulated interactions were confirmed, as well as interactions
regulated by ARPC1A and FANCG. Overall, two thirds of experimentally tested predictions were confirmed.
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Introduction

To establish causal gene regulatory relationships, experimental

manipulation of genes is usually required. Observational data on

its own is, except in a few very special situations, insufficient. The

main problem is that merely observed correlation between the

expression of a gene A and of a gene B is causally confounded: it

can be explained by a causal path from A to B, as well as one from

B to A, or by a third gene C influencing both, or by external

factors arising from experimental procedure or data preprocessing.

To establish unambiguously that a causal path leads from gene A

to gene B one has to manipulate or randomize gene A in order to

break any causal path leading into A (either from B or C or

external factors).

In certain circumstances, however, nature provides ‘natural’

randomization experiments. Studies utilizing ‘Mendelian random-

ization’ [1] in the search for causal genes in various genetic

diseases [2], [3] are an example. Cancer genomes provide another

example of natural randomization that we believe can be utilized

in the inference of causal gene relationships. The heavily altered

copy numbers of genes in the genomes of cancer cells provide

natural gene dosage randomization.

In order to test the hypothesis that natural copy number

variation, or ‘genomic randomization’, helps in inferring func-

tionally significant regulatory interactions within cancer genomes

we designed an algorithm that analyzes matched array compar-

ative genomic hybridization (aCGH) and microarray gene

expression profiling data.

Currently existing algorithms for integration of genome-wide

data from matched genomic and transcriptomic data, such as

ACE-it [4], GEDI [5], SLAMS [6] and VAMP [7] generally set

out to identify correlations between copy number changes and

differential gene expression levels at the same chromosomal loci,

with the aim of investigating the cis-acting effects of gene dosage on

gene expression alterations.

However Yuan et al. [8] integrate matched copy number and

transcriptomic data from breast cancer samples to investigate

regulatory relationships between gene pairs positioned at different

loci in the genome, so-called trans-acting effects. Their work differs

from the current study in the method of integration used and the

indirect confirmation of their predictions through gene set

enrichment studies rather than direct experimental validation of

predicted regulations. Lee et al. [9] have also looked for trans-

acting effects using the correlation of matched copy number and

transcriptomic data, presenting evidence of predictions through

gene set enrichment studies. Li et al. [10] have recently published

related work. They use matched gene expression and copy

number data to predict gene regulatory relationships, followed by

siRNA experimental validation. Their work differs from the

current study in the method of integration used, and in their

applications. They use NCI-60 cancer cell lines, whilst we use

primary human tumour samples for predicting regulatory
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relationships. Moreover, the experimental work concentrates on

one predicted regulating gene, whilst the experimental work

described here validates the predicted relationships of a number of

regulating genes.

Other studies have used correlation between copy number

variation and gene expression to find possible driver genes from

matched aCGH and microarray gene expression data in cancer

samples, that is, genes responsible for the breakdown of growth

and proliferation control in cancer cells. Some studies add a

second separate step, deriving gene regulatory networks from

expression data involving driver genes (for example [11], and

references therein). However, using expression profiles alone to

derive causal regulatory links, even after identifying possible

regulating genes using both aCGH and expression, is still prone to

the problem of causal confounding. Even if there is some

correlation between aCGH and expression profiles for gene A,

much of the correlation between expression profiles of gene A and

gene B could still be due to confounding.

Here we propose to tackle this problem directly by testing for

the correlation not only of copy number of gene A with its own

expression but also of copy number of gene A with the expression

of gene B, excluding any possible confounding on the level of

expression profiles only. We define a ‘regulating gene’ as one

whose enforced, manipulated up or down expression has a direct

or indirect effect on the up or down regulation of a ‘target gene’.

Primary candidates for regulating genes which can be identified by

integrating aCGH with expression data are genes having

corresponding changes in their mRNA expression levels following

copy number alterations. Candidate target genes are identified

through the procedure described in the following paragraph. The

key feature of a regulating-target gene pair is that expression levels

of the target gene can be influenced by manipulating the

expression of the regulating gene while keeping everything else

as equal as possible. The regulatory relationship between

regulating gene and target gene can be a direct relationship (of a

transcription factor on its target gene) or a very indirect one

through intermediate regulatory steps. In fact, one regulating gene

of interest in this study is ERBB2, a component of the epidermal

growth factor receptor, not a transcription factor. One of our aims

is to provide a tool for improved understanding of the specific

downstream transcriptional effects of genes at the top of signal

transduction chains.

The genomic randomization algorithm is based on three

conditions to identify potential interactions between regulating-

target genes: i) expression changes of a potential regulating gene

must correlate highly with its own aCGH status changes; ii)

expression changes of a potential target gene must correlate highly

with its regulating gene’s aCGH status changes; iii) the correlation

between a regulating gene’s expression changes and its potential

target gene’s aCGH status changes must be low. The last step is

required since copy number variation not only affects the coding

sequence for one gene but possibly many genes in the neighbor-

hood on a genome level. Criterion iii excludes the possibility that

the target gene is within such a neighborhood. We then used the

outcome from statistical tests of these three correlations to rank the

probability of a regulatory relationship for all gene pairs. Figure 1

illustrates the genomic randomization approach.

The problem of a third gene confounding the relationship

between regulating gene and target is circumvented by using

partial correlation conditioning on all other genes except the

regulating gene and target. We performed the analysis twice, using

partial correlation and using Pearson correlation. We compared

the results of the two analyses with the results of our experimental

tests of the predicted interactions in order to assess the importance

of using the computationally more complex partial correlation

analysis.

The association between copy number and gene expression will

in general be complex, the exact relationship being gene specific.

In this study we were interested in investigating by experimenta-

tion potential regulator-target pairs that were identified as having

a linear association between copy number and gene expression.

To test experimentally the ability of genomic randomization in

predicting potentially functional gene interactions, we adopted a

strategy that involved RNA interference (RNAi) experiments

targeted by a panel of four small interfering RNAs (siRNAs). All

experiments were performed in carefully selected cell lines

harboring amplifications of potential regulating genes to investi-

gate the effects of silencing selected regulating genes. Having

experimentally validated all five gene relationships predicted by

genomic randomization based on an initial dataset (54 samples),

we further tested and experimentally validated our method using

genome-wide data from a compilation of ten publicly available

cancer datasets (580 samples in total) consisting of different tissue

types with matched copy number and gene expression data.

We propose our approach as an instrument to dissect the effects

of novel regulating genes with important downstream target genes;

in particular the effects of receptors, as shown here for ERBB2 and

FGFR2, two examples of growth factor receptors. The down-

stream regulatory effects of growth factor receptors are only

understood in very broad terms. The main problem is that many

receptors affect similar signal transduction pathways, such as

ERK, MAPK, or Akt signalling. However, different receptors can

have markedly different effects on the gene expression profile of

cells, which is only partially reflected in the current knowledge of

signalling pathways.

All data utilized and analyzed in this study are publicly available

in online databases (sources cited in Table S1 in File S2). The code

in R can be found in file Code S1.

The aim of this study was to test and verify experimentally the

accuracy of a causal inference approach based on matched copy

number and transcriptomics datasets from cancer samples. Our

results clearly demonstrate the value of a detailed statistical

analysis of high-throughput data on cancer samples to unearth

crucial information about the missing details of biological

processes such as regulation through signal transduction in cancer.

The percentage of true positives is high enough for the results to be

useful as suggestions for experimental investigation or to be

included with other evidence in probabilistic models of gene

regulatory networks.

Materials and Methods

Data
Data analyzed included two previously reported studies of our

own [12], [13], in addition to eight others which were obtained

from online public databases (Table S1 in File S2). Data from one

of the 10 studies was generated on two different expression

platforms, and data from each of these platforms was treated

separately, so altogether 11 sets of data from a total of 10 studies

were included in the multiple dataset analysis.

Statistical Analysis
Matched array comparative genomic hybridization and micro-

array gene expression profiling data were integrated and analyzed

using the R statistical environment [14] and the R package

‘GeneNet’ (http://cran.r-project.org/web/packages/GeneNet)

[15]. Genes in a dataset that are worth investigating as potential

regulating genes must have a high correlation between their own
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aCGH status and own expression, indicating that copy number

changes are influencing the gene’s expression. For each of the

potential regulating genes we look for potential target genes, which

have a high correlation between the target gene’s expression and

the regulating gene’s aCGH status. An alternative approach would

be to look for target genes which have a high correlation between

the target gene’s expression and the regulating gene’s expression.

Correlating expression profiles from within the same experiment

can however result in false correlations; arising from the

experimental design or execution, or from data pre-processing

such as normalization.

The aCGH data was not thresholded for the analysis so that

variations in aCGH values less than a single amplification were

taken into account. Such variations are relevant because of the

heterogeneity of the cancer samples being studied. By using

matched aCGH and expression profiles we eliminated the effects

of a sample’s heterogeneity considering that both sets of data were

affected equally.

Figure 1. Schematic illustration of analysis. A. Starting with genome-wide data from array comparative genomic hybridization and microarray
gene expression, potential gene regulations were identified based on three conditions, marked i–iii in the figure and described in detail in the text. B.
Flow chart of steps involved to validate the predictions.
doi:10.1371/journal.pone.0063780.g001
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We set three conditions to identify potential regulatory

relationships between regulating genes and target genes: i)

Expression changes of a potential regulating gene must correlate

highly to its own aCGH status; ii) Expression changes of a

potential target gene must correlate highly to its regulating gene’s

aCGH status; iii) The correlation between a regulating gene’s

expression changes and its potential target gene’s aCGH status

must be low. In practice we used the general rule that the p-value

for condition iii must simply be greater than that for condition i in

order not to exclude regulator-target pairs with some degree of co-

amplification from the lists of predicted interactions. These three

conditions gave three corresponding significance levels for each

gene pair, which were used to rank gene pairs according to the

probability of a potential regulatory relationship.

For each dataset the aCGH data was location and scale

normalized using the median and mad, and the expression data

either median and mad normalized if the data distribution was

approximately normal, or Gaussian normalized if not. The aCGH

and expression probes were mapped by probe names to give the

maximum number of genes with corresponding aCGH and

expression profiles (Table S1 in File S2).

For all experiments performed in this study all cited p-values are

adjusted by the false discovery rate (fdr) method of Benjamini-

Hochberg (R function p.adjust with method parameter ‘BH’).

Single dataset: Genomic randomization analysis. For

the analysis of the single, esophageal adenocarcinoma (EAC),

dataset, for each gene pair, three partial correlations were

calculated corresponding to each of the three conditions. The

partial correlations were calculated using the R package ‘GeneNet’

and each correlation’s p-value found using a randomization of the

dataset as a null distribution. The randomization of the dataset

was achieved by randomizing the probe labels of the matrix of

expression values and is described further in the section

‘Randomization’ below. The p-values were adjusted for multiple

testing using the fdr method of Benjamini-Hochberg (R function

p.adjust with method parameter BH). For computational reasons

only a subset of probes were included in the initial analysis; 2,000

probes with the highest variance of their expression profiles were

selected.

Multiple datasets: Genomic randomization

analysis. For the analysis of the multiple datasets, in order to

include more than 2,000 probes in the analysis, initially Pearson

correlations rather than partial correlations were calculated, using

the same three conditions described above. Those genes with

probes present in all 11 data sets were identified, giving a list of

1,410 probes. The p-values of the Pearson correlations between

each probe’s aCGH profile and its own expression profile were

calculated for the 1,410 probes in each of the 11 datasets using

Fisher’s Z transform (R function cor.test). The alternative

hypothesis that the correlation is greater than zero was tested.

The 11 correlation p-values for a probe were combined using

Fisher’s method for combining p-values (R function survcomp::-

combine.test). The significance of the combined p-values was

calculated using a randomization of the datasets to generate a null

distribution of combined p-values (see below). The resulting

permutation combined p-values were adjusted for multiple testing

using the false discovery rate method of Benjamini-Hochberg, to

give an fdr for each probe based on its aCGH-expression

correlations in all 11 datasets. In addition, which of the 11

datasets indicated an aCGH-expression correlation was assessed

for each of the 1,410 probes using an arbitrary threshold of 0.05

on a probe’s 11 correlation p-values.

The 1,410 probes were ranked according to the permutation

combined p-value of the aCGH-expression correlation and the

number of datasets (N) in which the gene showed an aCGH-

expression correlation. The highest ranked genes for which there

are known cell lines containing amplifications of these genes

(CONAN - Cancer Genome Project, Wellcome Trust Sanger

Institute: http://www.sanger.ac.uk/cgi-bin/genetics/CGP/

conan/search.cgi) were selected for further investigation as

potential regulating genes; namely ERBB2, FANCG and

ARPC1A. We selected genes for which there are known cell lines

containing amplifications of these genes to obviate the necessity of

artificially inducing an amplification and over-expression pheno-

type, hence reducing the potential for in vitro bias.

Each of the three genes selected as potential regulating genes

were analyzed independently for potential target genes using

conditions ii and iii above. These two steps of the analysis were

applied to all potential target genes in each dataset (i.e all other

genes in the dataset, not just the initial 1,410 genes that had probes

in all 11 datasets). The p-values of the correlation of the potential

regulating gene’s aCGH status with the expression profiles of all

potential target genes were calculated (condition ii). We tested

separately the two alternative hypotheses; that the correlation is

greater than zero and that the correlation is less than zero. This

was done for each of the N datasets in which the potential

regulating gene showed an aCGH-expression correlation. The p-

values of the correlation of all potential target genes’ aCGH status

with the potential regulating genes’s expression were also

calculated (condition iii), again for each of the N datasets in

which the potential regulating gene showed an aCGH-expression

correlation.

Next, we combined the correlation p-values using Fisher’s

method, assessed their significance level using a null distribution of

combined p-values derived from a randomization of the datasets

(see below) and the resulting permutation combined p-values fdr

adjusted using the method of Benjamini-Hochberg. The number

of datasets in which the gene pair may have a relationship was

assessed by using an arbitrary threshold of 0.05 on the correlation

p-values. This number was relevant in order to ensure no single

dataset or cancer type was introducing bias to the analysis.

For each of the three potential regulating genes the potential

target genes were filtered by the permutation combined p-value of

the correlation between the regulating gene’s expression and the

target gene’s aCGH status, which had to be low. The genes were

then ranked according to the permutation combined p-value of the

correlation between the regulating gene’s aCGH status and the

target gene’s expression changes, and by the number of datasets in

which the correlation p-values indicated that the gene pair had a

relationship. The highest ranked gene pairs were selected for

experimental validation (provided that primers could be optimised

for the target genes).

Subsequently, post-experimental validation, we repeated the

analysis but using partial instead of Pearson correlations. For

computational reasons this analysis was restricted to 15000 probes

so if there were more probes in a dataset the top 15000 with the

highest variance of their expression profiles were selected. For

each of the 11 datasets partial correlations were calculated using

the R package ‘GeneNet’ and their p-values found using a

randomization of the dataset as a null distribution. For each gene

pair the 11 p-values were combined using Fisher’s method, their

significance level assessed using a null distribution of combined p-

values derived from a randomization of the datasets and the

resulting permutation combined p-values fdr adjusted using the

method of Benjamini-Hochberg.

Analysis of Copy Number and Transcriptomics Data
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Randomisation
In order to determine a null distribution we need to randomise

the data matrices. We could choose to randomise the data

matrices entirely, by permuting both the rows (i.e. pair up probes

between acgh and expression experiments randomly) and columns

(i.e. pair up samples between acgh and expression experiments

randomly), but we considered the resulting random data to be too

dissimilar to the original data, leading to over-optimistic p-values.

We required randomised data that still reflects the structure in the

data. We make the assumption that in general the acgh and

expression profiles in the data are not biologically correlated, so

that any observed correlation is occurring by chance alone. We

generate the null distribution using random pairings of acgh and

expression profiles. Figure S6 in File S1 plots the distribution of

Pearson correlations of a random selection of acgh and expression

profiles from the EAC dataset, Fisher Z-transformed (solid line),

and overlain with the theoretical distribution for the correlations

between two random variables (dashed line). The distributions are

similar but the distribution for random selections of acgh and

expression profiles has a greater variance, so p-values generated

using this null distribution will be larger. The assumption that the

acgh/expression correlations created by the structure in the data

have no biological origins will only partly be true. So using this

approach may produce overly pessimistic p-values, erring on the

side of caution. Further experimental work would be required to

determine whether using a null distribution generated differently,

using entirely randomised data, would be acceptable or result in

too many false positive predictions of gene pair relationships.

Single dataset. For the EAC dataset we require the

frequency with which correlations occur between randomly

selected acgh and expression profiles. The procedure for doing

this is as follows. Firstly we randomise the expression matrix by

permuting the probe indices. Using the randomised expression

matrix and the acgh matrix we calculate and record 106

correlations, which constitutes the null distribution.

Multiple datasets. For each of the 11 datasets in the

multiple dataset study we independently generated 106 correla-

tions using the acgh matrix and the expression matrix, randomised

by permuting the probe indices. These were converted to

correlation p-values. In the case of Pearson correlations this was

achieved using Fishers Z transform (R function cor.test). In the

case of partial correlations this was achieved using a null

distribution of partial correlations generated from random datasets

of the same dimensions as the experimental dataset. This gave a

106611 matrix of correlation p-values. For each row of the matrix

we combined the 11 p-values using Fisher’s method, creating a

vector of 106 combined p-values, which constituted the null

distribution.

Experimental Validation
RNA-interference (RNAi) assays. We screened a panel of

cancer cell lines to characterize the amplification and over-

expression status of selected regulating genes (ERBB2, FGFR2,

ARPC1A and FANCG) to validate experimentally (Figure S1 and

Figure S4 in File S1). We intentionally used a panel of four

targeting-siRNAs (Qiagen) to silence the expression of any

potential regulating gene to reduce off-target effects, and measured

the regulatory effects in terms of mRNA readout of potential target

genes following effective knockdown of their respective regulating

genes (Table S3 in File S2). siRNA transfection procedures were

carried out with Qiagen HiPerfect transfection reagent following

manufacturer’s protocols with optimized conditions (Table S4 in

File S2). Briefly, appropriate amounts of siRNAs/HiPerfect

mixture were diluted in serum-free culture media (Gibco) and

added to each well in a 24-well plate, in two-three technical

replicates, and RNA were harvested from transfected cells at 48

hours post-transfection. We then repeated the same experiments

under identical conditions three more times, giving four biological

replicates per assay carried out.

Over-expression and rescue siRNA experiments. We

then tested the regulatory relationship between ERBB2-BST1 in

a reciprocal experimental setting by forcing the over-expression of

ERBB2 in HSC39 cells, which do not harbor amplifications of

ERBB2, using a commercially available ERBB2-over-expression

plasmid vector (QIAgenes Expression Kit: catalogue number

EIM0042728, plasmid ID 5160249; Qiagen). We generated an

empty vector from this plasmid by cutting out the gene insert from

the vector backbone using two unique restriction enzymes (PacI

and XhoI; New England Biolabs) and re-ligation of blunt ends

following addition of blunt ends to the cut vector backbone (data

not shown) to serve as a transfection control in all experiments

utilizing the ERBB2-over-expression vector. Plasmid DNA trans-

fection was carried out using Lipofectamine 2000 (Invitrogen)

following manufacturer’s protocol. Briefly, 800 ng of plasmid

DNA or empty vector were transfected into cells with serum-free

Opti-MEM media (Gibco), and then culture media with serum

were added to the cells at 6 hours post-transfection. We measured

the effects of ERBB2 over-expression in cells by quantifying the

RNA extracted from transfected cells at 48 hours post-transfection

using qRT-PCR.

We used rescue siRNA experiments to show specificity of our

RNAi assays in selectively knocking down ERBB2, hence

determining the specificity of the regulatory relationship between

ERBB2-BST1. We carried out rescue siRNA experiments in

OE19 cells. At 5–6 hours post-plasmid DNA transfection when

fresh culture media were added to the cells, we transfected the cells

with the panel of four ERBB2-targeting siRNAs, and harvested the

RNA from cells at 48 hours post-plasmid transfection.

RNA extraction. All post-transfection RNA extractions were

carried out at selected harvesting time-points using Qiazol

(Qiagen) according to manufacturer’s protocol. Briefly, cells were

washed with phosphate-based saline buffer before 100 ml Qiazol

were added to each well on a 24-well plate and cells lysed by

repetitive pipetting. The quality and quantity of RNA extracted

were determined using (NanoDrop Technologies).

Quantitative-reverse transcription-PCR. We quantified

the effects of RNAi, vector-mediated over-expression and rescue

siRNA experiments by measuring the post-transfection mRNA-

converted cDNA levels of regulating and target genes using qRT-

PCR (RotorGene6000, Qiagen). All qRT-PCR reactions were

carried out using SYBR-green JumpStart Taq Ready Mix kit

(Sigma-Aldrich), following manufacturer’s protocol.

Statistical analysis of validation experiments. Statistical

significance was determined by a linear mixed model analysis

using function lme of the mixed model package nlme from the R

statistical software suite. The biological sample effect was

considered a random effect. While treatment by either a control

procedure or one of the four siRNAs was considered a fixed effect.

Each treatment-sample combination was performed on two or

three technical replicates. The outcome of each experiment

suppressing the regulating gene was a positive value of abundance

of mRNA of the target gene. In order to enable modelling by a

linear model assuming normal noise and equal variances in

treatment groups, a log transform was applied to the mRNA

abundance values. After this transformation Bartlett’s test for

nonequal variance (R function bartlett.test) and Shapiro’s test (R

function shapiro.test) for normality of residuals resulted in high p-

values for all linear models, thus providing no reason to reject the

Analysis of Copy Number and Transcriptomics Data
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assumptions of homoscedasticity and normality of residuals. The

effect of one or two outliers was quite drastic. In order to make the

analysis more robust, we therefore resolved to remove outliers

whose studentized residuals were more than 2.326 away from 0,

which corresponds to the lower and upper one percentile of the

standard normal distribution.

The effect of interest was the contrast between the control and

the mean of the four siRNA treatments. All p-values are one-sided

since we predict the direction of the effect: negative, when the

regulating gene acts as suppressor; positive, when the regulating

gene acts as inducer. Finally, a multiple-testing adjustment using

the Benjamini-Hochberg method was applied to all the experi-

ments performed. A result is called significant if the BH adjusted p-

values of the mixed model analysis is v0:05 and the predicted

direction of the regulating gene effect (positive or negative) was

correct as judged by the fitted contrast value. These statistically

significant results are marked by a double or triple star (Table 1).

Significance of over-expression assays was determined by

comparing samples treated with ERBB2-over-expression plasmid

vectors to samples treated with an empty vector, analyzed using a

two-tailed t-test with Mann-Whitney post-test (Prism v5.01,

GraphPad Software, Inc., San Diego, CA, USA). Significance of

rescue siRNA assays was determined by comparing samples

treated with ERBB2-over-expression plasmid vectors, giving

protective effects against targeting siRNAs, and samples treated

with empty vectors, hence not protected against targeting siRNAs.

Results

Single Dataset: Identification of Potential Regulatory
Interactions

We first tested the genomic randomization algorithm in a

dataset of 54 esophageal adenocarcinoma (EAC) samples with

matched aCGH and microarray gene expression data [12], [13].

We used the three conditions described above, namely i)

expression of a potential regulating gene must correlate highly

with its own aCGH; ii) expression of a potential target gene must

correlate highly with its regulating gene’s aCGH; iii) the

correlation between a regulating gene’s expression and its potential

target gene’s aCGH must be low.

Table 1. Results for all predicted regulatory gene interactions that were tested experimentally, single and multiple datasets
combined.

Regulator Target genes direction dir ok p-values out signif fdr Cell line

ERBB2 BST1 + 1 0.000 1 *** 0.000 OE19

IFIT1 + 1 0.010 0 *** 0.029 OE19

PPP2R3A + 0 0.000 1 0.000 BT474

KCNS1 + 0 0.002 2 0.007 BT474

PFDN5 2 1 0.000 1 *** 0.000 BT474

GAL3ST4 2 1 0.013 1 ** 0.031 BT474

PPP2R3A + 1 0.160 1 0.213 OE19

KCNS1 + 1 0.030 1 ** 0.048 OE19

PFDN5 2 1 0.000 1 *** 0.000 OE19

GAL3ST4 2 1 0.011 0 ** 0.029 OE19

FGFR2 JAK1 + 1 0.027 2 ** 0.046 HSC39

NFIA + 1 0.000 1 *** 0.000 HSC39

SAMD12 + 1 0.017 2 ** 0.034 HSC39

ARPC1A NCBP2 + 1 0.424 2 0.443 AsPc1

VTI1B + 1 0.044 1 * 0.066 AsPc1

YEATS2 + 0 0.128 1 0.181 AsPc1

TNFRSF8 2 1 0.017 1 ** 0.034 AsPc1

PTGDS 2 1 0.000 1 *** 0.000 AsPc1

MFNG 2 1 0.207 1 0.261 AsPc1

FANCG KIRREL3 + 1 0.377 1 0.431 BT474

PBX3 + 1 0.027 1 ** 0.046 BT474

CKB 2 1 0.365 1 0.431 BT474

ALDH6A1 2 0 0.425 1 0.443 BT474

PCDHB6 2 0 0.490 1 0.490 BT474

A total of 24 different regulating-target gene interactions were tested, of which 13 (54.2%) validated (pv0:05).
+/2: Positive/negative gene regulations as predicted by genomic randomization (‘+’: regulating gene acts as an inducer, reduced expressions of the regulating gene
lead to reduced expressions of its target genes; ‘2‘: regulating gene acts as a suppressor, reduced expressions of the regulating gene leads to increased expressions of
its target genes).
dir: ‘1’ means regulation direction from validation followed genomic randomization prediction.
p-value: Statistical significance according to a linear mixed model analysis.
out: Number of outliers removed for analysis.
signif: Statistical significance according to p-values and correct directions of regulating gene effects: *pv0:10, **pv0:05, ***pv0:01.
fdr: p-values following Benhamini-Hochberg multiple-testing adjustment.
doi:10.1371/journal.pone.0063780.t001
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Using the significance of the first of the three conditions, the

correlations between expression and aCGH, we identified

potential regulating genes (Figure 2A and Table S2 in File S2,

and Sheet S1 in Results S1). There were 28 genes with fdrv0:05
and 61 with fdrv0:25; fdr being the false discovery rate indicated

by the Benjamini-Hochberg adjusted p-values. We selected two

potential regulating genes for experimental validation, namely

ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog

2) and FGFR2 (fibroblast growth factor receptor 2). These were

selected based on the statistical significance of the correlations

(ERBB2: fdr~0:023, FGFR2: fdr~0:020) and also because of

their role as receptors in signalling pathways and their biological

importance as both have known roles in carcinogenesis.

We used the second condition, the correlation between the

expression of a potential target gene and its regulating gene’s

aCGH, to predict target genes for ERBB2 and FGFR2 in turn.

The resulting lists (Table 2 and Sheets S2–S5 in Results S1) were

filtered according to the third condition, namely that the

correlation between a regulating gene’s expression and its target

gene’s aCGH must be low. For ERBB2 there were 19 genes

positively correlated and 11 negatively correlated with fdrv0:25.

For FGFR2 there were 12 genes positively correlated and 0

negatively correlated with fdrv0:25. The highest ranked

predicted target genes were selected for experimental validation,

namely ERBB2-BST1, ERBB2-IFIT1, FGFR2-JAK1, FGFR2-

NFIA and FGFR2-SAMD12 (Figure 2B–C and Table 2).

Single Dataset: Experimental Validation of Predicted
Interactions

For experimental validation, we selected cancer cell lines that

harbor amplifications of ERBB2 (OE19) and FGFR2 (HSC39),

and used cell lines without these amplifications as controls (Figure

S1 in File S1). This allowed us to test whether gene amplifications

and over-expression of regulating genes were indeed the driving

force behind the observed regulatory interactions between genes.

To increase the stringency and reduce off-target effects in these

validation tests, we used a panel of four different gene-targeting

siRNAs in each RNAi assay and carried out each identical

experiment (biological replicate) at least three times with

appropriate technical replicates each time. In addition, for a

selected gene pair, vector-mediated over-expression and siRNA

rescue experiments were performed to demonstrate the regulatory

relationship between the regulating gene and its target gene. The

experimental readout for all validation assays was mRNA

expression level changes measured using qRT-PCR assays.

In data interpretation, a positive regulation predicted by

genomic randomization means a successful validation assay must

show reduced gene expression of potential target genes following

silencing of their regulating gene with an overall statistical

significance (pv0:05), and vice versa. In the following we report

adjusted p-values of a mixed effects analysis of variance (ANOVA)

test of the contrast between the logarithm of mRNA values in the

untreated control and the four treatments by siRNAs. Treatment

effects were assumed fixed and biological sample effects as

random.

Matching our predictions, RNAi assays demonstrated that

siRNA-mediated ERBB2 silencing led to significant reduction in

expression levels of bone marrow stromal cell antigen I (BST1;

pv0:0001) and interferon-induced protein with tetratricopeptide

repeats 1 (IFIT1; p~0:029). siRNA-mediated FGFR2 silencing

led to reduced expression levels of Janus kinase I (JAK1;

p~0:046), nuclear factor I/A (NFIA; pv0:0001) and sterile alpha

motif domain containing 12 (SAMD12; p~0:034) (Figure 3).

Silencing of these regulating genes showed no effect in cell lines
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without amplifications of ERBB2 and FGFR2 (see Figure S2 in

File S1).

In a reciprocal experimental setup, we observed elevated

mRNA expression levels of ERBB2 and BST1 in HSC39 cells,

which do not have ERBB2 amplifications and over-expression,

following transfection with ERBB2-over-expression vector (Figure

S3a in File S1). We further proved the specificity of siRNA-

mediated ERBB2 silencing with siRNA rescue experiments, in

which OE19 cells were protected from ERBB2-targeting siRNAs

through vector-mediated ERBB2 over-expression, leading to no

reduction in expression levels of either ERBB2 or BST1 (Figure

S3b in File S1). These results thus far validated all five (100%) of

the predicted regulatory gene interactions brought forward for

experimental testing, suggesting the potential of the genomic

randomization algorithm in identifying novel functional gene

relationships. The results are contained in Table 1.

Multiple Datasets: Identification of Potential Regulatory
Interactions

Having demonstrated the ability of the technique to identify

gene interactions in esophageal adenocarcinoma genomes, we

obtained publicly available copy number and gene expression data

from nine other studies (Table S1 in File S2) to add to the EAC

dataset to further test the applicability of the approach. Combined

analysis of these ten cancer datasets using genomic randomization

generated a list of 1,410 potential regulating genes (Table 3 and

Sheet S6 in Results S1). We selected the three highest ranked

potential regulating genes from the list in Table 3 for which there

are known cell lines containing amplifications of these genes

(CONAN - Cancer Genome Project, Wellcome Trust Sanger

Institute: http://www.sanger.ac.uk/cgi-bin/genetics/CGP/

conan/search.cgi); namely ERBB2 (v-erb-b2 erythroblastic leuke-

mia viral oncogene homolog 2), ARPC1A (actin related protein 2/

3 complex subunit 1A) and FANCG (Fanconi anemia comple-

mentation group G).

We then identified potential target genes for each of these

potential regulating genes using genomic randomization (Table 4

and Sheets S7–S12 in Results S1). The number of genes with fdr

adjusted p-valuev0:05, involved in more than 4 datasets and on

different chromosomes to their potential regulating gene (hence

potential trans-acting regulations) are 25 for ERBB2/positive, 27

for ERBB2/negative, 2 for ARPC1A/positive, 13 for ARPC1A/

negative, 0 for FANCG/positive and 2 for FANCG/negative.

Fifteen potential regulating-target pairs were selected for exper-

imental validation (see Table 4). These were the highest ranked

trans-acting regulating-target pairs, excluding those target genes for

which primers could not be optimised for the qRT-PCR assays

(note: on different chromosomes, hence potential trans-acting

regulations, except for one pair, FANCG-PBX3). Both positive

and negative regulations were included to serve as reciprocal

experimental controls.

Multiple Datasets: Experimental Validation of Predicted
Interactions

Using a similar RNAi experimental setting as before, we

performed a thorough investigative validation to verify relation-

ships between predicted regulating-target pairs in cell lines with

amplification of ERBB2, ARPC1A or FANCG (Figure S4 in File

S1). siRNA-mediated ERBB2 silencing was performed in two cell

lines that harbor ERBB2 amplifications and over-expression,

BT474 and OE19 cell lines. ERBB2 silencing in these cells led to

significant up-regulation of prefoldin subunit 5 (PFDN5; p~0:000)

and galactose-3-O-sulfotransferase-4 (GAL3ST4; p~0:031) ex-

pression levels in both cell types. In addition, reduced expression of

potassium voltage-gated channel, delayed rectifier, subfamily S,

subunit 1 (KCNS1) was observed in OE19 cells (p~0:048), though

not seen in BT474 cells (Figure 4A–B). In the pancreatic AsPc1

cell line, siRNA-mediated ARPC1A silencing led to significant up-

regulation of tumor necrosis factor receptor superfamily, member

8 (TNFRSF8; p~0:034) and prostaglandin D2 synthase 21 kDa

(PTGDS; p~0:000) (Figure 4C). Lastly, regulatory relationships of

predicted target genes with FANCG were tested in breast BT474

cell line, showing that a predicted target gene, pre-B-cell leukemia

homeobox 3 (PBX3; p~0:046) was affected by FANCG silencing

(Figure 4D). The qRT-PCR results for the gene pairs which did

not validate are shown in Figure S5 in File S1. The results are

contained in Table 1.

Figure 2. Quantile-quantile plots of observed versus expected
partial correlations in the EAC dataset. (for the 2000 probes with
the maximum expression variance) A. Partial correlations between each
probe’s array comparative genomic hybridization (aCGH) profile and its
own expression profile. The two potential regulating genes selected for
experimental validation (ERBB2 and FGFR2) are marked in the plot. B.
Partial correlations between ERBB2’s aCGH profile and the expression
profiles of all other probes. The two genes, IFIT1 and BST1, selected for
experimental validation are marked. C. Partial correlations between
FGFR2’s aCGH profile and the expression profiles of all other probes.
The three genes, JAK1, NFIA and SAMD12, selected for validation are
marked. In all plots 5% confidence intervals are marked by dashed lines.
doi:10.1371/journal.pone.0063780.g002

Table 2. Single dataset: List of top 10 potential target genes
whose expression was highly correlated with the aCGH status
of regulating genes, ERBB2 and FGFR2.

Regulating
gene Chrom

Target
gene Chrom fdr sign

ERBB2 17 IFIT1 10 0.024 +

BST1 4 0.049 +

SLCO1B3 12 0.053 +

PPARGC1A 4 0.058 +

ALPPL2 2 0.074 +

PRRX2 9 0.092 +

MSX2 5 0.104 +

RHOU 1 0.161 +

GSTM3 1 0.200 +

ATP10B 5 0.200 +

FGFR2 10 JAK1 1 0.003 +

NFIA 1 0.044 +

SAMD12 8 0.082 +

DCUN1D1 3 0.100 +

DSG1 18 0.136 +

PNLIPRP2 10 0.180 +

PTPN2 18 0.180 +

DRD5 4 0.180 +

CKMT2 5 0.204 +

MCART1 9 0.204 +

Based on the false discovery rate (fdr), which is the Benjamini-Hochberg
adjusted p-values. The sign of the correlation (positive or negative, +/2) is
indicated. Hypothetical proteins have been excluded from the list. The top
three gene pairs were selected for subsequent experimental validations; except
for ERBB2-SLCO1B3 because primers designed for SLCO1B3 could not be
optimized for qRT-PCR assays. Chrom ~ Chromosome.
doi:10.1371/journal.pone.0063780.t002
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Comparing Pearson and Partial Correlation Analyses
For the multiple datasets, the gene pairs that were tested

experimentally were predicted by a Pearson correlation analysis.

For comparison we retrospectively ran a partial correlation

analysis on the multiple datasets for these gene pairs (see Methods

section for details). Conversely, the gene pairs that were tested

experimentally from the single esophageal cancer dataset were

predicted from a partial correlation analysis, so for comparison we

also ran a Pearson correlation analysis on this dataset. In this way

we could compare the predictions made by a partial correlation

analysis and a Pearson correlation analysis in light of the results

from the 24 validation experiments. The results of this comparison

are given in Table 5. We found that for Pearson correlation (with

fdr p-valuesv0:05), 9 of the 24 validation experiments were

predicted correctly (i.e. 9 true positives or true negatives). The

partial correlation analysis however predicted 16 of the 24

validation results correctly, a success rate of 66%. This suggests

that using partial correlations increases the accuracy of the method

by an amount that warrants the additional computational

complexity.

Figure 3. qRT-PCR quantifications of mRNA levels in RNA interference assays in selected cancer cell lines with amplifications of
regulating genes. (a) Silencing of ERBB2 in OE19 cells, which harbor ERBB2 amplifications, showed significant reduction of the mRNA levels of: (i)
ERBB2 and its predicted target gene, (ii) BST1 (p~0:000) and (iii) IFIT1 (p~0:029). (b) Silencing of FGFR2 in HSC39 cells, which harbor FGFR2
amplifications, showed significant reduction of the mRNA levels of: (i) FGFR2 and its predicted target genes, (i) JAK1 (p~0:046), (ii) NFIA (p~0:000)
and (iii) SAMD12 (p~0:034). Note: (R) regulating genes targeted by targeting siRNAs; (T) potential target genes tested, predicted to be positively-
regulated (+) by regulating genes; (2ve) non-silencing negative siRNAs. siRNAs used in the panel are named according to their commercial product
name (Qiagen). The vertical-axes for all plots are fixed from 0.0–2.0, except for the plot for IFIT1, where the vertical-axis is customized due to the
variability in the gene expression changes.
doi:10.1371/journal.pone.0063780.g003
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Discussion

In this paper we propose a new approach to predicting

regulating genes and their targets from matched aCGH and

expression data on cancer samples and we test our predictions

rigorously using gene silencing, over-expression and qRT-PCR.

Our experimental evidence validated 13/24 (54.2%) of regulating-

target gene interactions tested based on genomic randomization

predictions at an adjusted significance level of 0.05. These

included 5/24 (21%) highly statistically significant and novel

regulations (adjusted pv0:01). Overall, 14/24 (58.3%) could be

deemed as highly possible functional interactions across a number

of cancer types (adjusted pv0:10) (Table 1). For ERBB2 in

particular, 5/6 (83.3%; adjusted pv0:05) predicted target genes

were demonstrated to be influenced by ERBB2 expression levels.

Our initial analysis used partial correlation analysis on the single

dataset and, for computational reasons, Pearson correlations on

the multiple dataset analysis. A retrospective analysis suggests that

partial correlations predict interactions better than Pearson

correlations.

The sensitivity and specificity are for the experimentally

validated gene pairs, which were the top ranked gene pairs.

Further work will be required to determine what the sensitivity

and specificity would be for genes ranked lower down in the lists.

Leek et al. [16] present a statistical approach to this type of

problem that reduces the amount of further experimentation

required.

The lack of statistical significance in the validation of some

regulating-target gene interactions that were predicted by the

analysis could be due to more than one gene being involved in the

regulation of the selected target genes, or due to differences

between cell lines and cellular physiological conditions. In general

the correlation of a predicted regulating-target gene interaction

was significant in only some of the datasets used and entirely

uncorrelated in the remaining, indicating the importance of tissue

type in these gene regulatory relationships, and strongly suggesting

that the selection of cell line of appropriate tissue origins and

physiological conditions are key to successful validation. This is an

aspect of the technique that requires further investigation and

experimentation. If two or more potential regulating genes are

always amplified together, and by the same amount, in every

sample of a dataset then it will of course be impossible to separate

the potential effects of these co-amplified genes.

Fisher’s method assumes independence of p-values. In practice

we find that if a regulator-target pair has a high correlation in one

dataset it does not mean that the pair will necessarily have a high

correlation in any other dataset, so there is some degree of

Table 3. Multiple datasets: List of potential regulating genes
arranged according to the number of datasets in which the
gene has significant aCGH-expression correlations, and
according to the fdr adjusted p-values, derived from 11
individual correlation p-values.

Regulating
gene Chromosome fdr

Number of
datasets{

ERBB2* 17 0.00004 9

GRB7 17 0.00004 8

ARPC1A* 7 0.00004 7

STIP1 11 0.0002 7

FANCG* 9 0.0005 7

RBM6 3 0.0006 7

RAD23B 9 0.0006 7

SRRM2 16 0.0006 7

PPFIA1 11 0.00004 6

PEX1 7 0.00004 6

{Number of datasets contributing to the significance of each correlation was
important to ensure that no single cohort or cancer type was introducing bias
to the analysis.
*Regulating genes selected for subsequent validation assays via RNAi
experiments. Cell lines with amplifications of these genes were reported
(CONAN - Cancer Genome Project, Wellcome Trust Sanger Institute: http://
www.sanger.ac.uk/cgi-bin/genetics/CGP/conan/search.cgi). GRB7 was not cho-
sen because of its proximity with ERBB2.
doi:10.1371/journal.pone.0063780.t003

Table 4. Multiple datasets: List of top 10 potential target
genes (5 positive correlations and 5 negative correlations) for
the three potential regulating genes selected for experimental
validation: ERBB2, ARPC1A and FANCG.

Regulating geneChrom
Target
gene Chrom Num fdr

ERBB2/positive 17 PPP2R3A* 3 6 0.0019

GAS2 11 5 0.0012

KCNS1* 20 5 0.0022

PTPN11 12 4 0.0008

SRPK1 6 4 0.0010

ERBB2/negative 17 PFDN5* 12 6 0.0005

GAL3ST4* 7 5 0.0092

OLFML3 1 5 0.0107

ARL3 10 4 0.0014

COX7A1 19 4 0.0016

ARPC1A/positive 7 NCBP2* 3 4 0.0401

VTI1B* 14 4 0.0413

GTF3C3 2 3 0.0225

YEATS2* 3 3 0.0321

SPTBN2 11 3 0.0347

ARPC1A/negative 7 TNFRSF8* 1 5 0.0017

PTGDS* 9 5 0.0038

MFNG* 22 5 0.0112

IL16 15 4 0.0076

TGFBR2 3 4 0.0080

FANCG/positive 9 CTLA4 2 4 0.0800

KIRREL3* 11 3 0.0076

PBX3* 9 3 0.0124

AGTR2 X 3 0.0137

GLRA2 X 3 0.0172

FANCG/negative 9 CKB* 14 4 0.0104

ALDH6A1* 14 4 0.0250

PCDHB6* 5 3 0.0158

CRYGD 2 3 0.0294

HADHA 2 3 0.0510

Target genes are arranged according to the number of datasets (Num) in which
the gene pair has significant aCGH-expression correlations, and the fdr adjusted
combined p-values. Target genes located on the same chromosome as their
potential regulating genes are excluded from the lists. Asterisks (*) mark the
potential target genes investigated in validation experiments.
Chrom = Chromosome.
doi:10.1371/journal.pone.0063780.t004
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Figure 4. qRT-PCR quantifications of mRNA levels following RNA interference assays in selected cancer cell lines with
amplifications of regulating genes. (a) Effects of ERBB2-targeting siRNAs treatment in BT474 cells, showing: (i) effective silencing of ERBB2
(p~0:000); leading to significant up-regulations of (ii) PFDN5 (p~0:000) and (iii) GAL3ST4 (p~0:031). (b) Effects of ERBB2-targeting siRNAs treatment
in OE19 cells, showing: (i) effective silencing of ERBB2 (p~0:000); leading to (ii) down-regulation of KCNS1 (p~0:048; (iii) up-regulation of PFDN5
(p~0:000) and (iv) up-regulation of GAL3ST4 (p~0:029). (c) Effects of ARPC1A-targeting siRNAs treatment in AsPc1 cells, showing: (i) effective
silencing of ARPC1A (p~0:000); leading to significant up-regulations of (ii) TNFRSF8 (p~0:034) and (iii) PTGDS (p~0:000). (d) Effects of FANCG-
targeting siRNAs treatment in BT474 cells, showing: (i) effective silencing of FANCG (p~0:000); leading to significant up-regulation of (ii) PBX3
(p~0:000). Note: (R) regulating genes targeted by targeting siRNAs; (T) potential target genes, positively- (+) or negatively-regulated (2) by
regulating genes; (2ve) non-silencing negative siRNAs; siRNAs used in the panel are named according to their commercial product name (Qiagen).
The vertical-axes for plots showing silencing of regulating genes are fixed from 0.0–2.0 whilst the vertical-axes for plots of target genes were
customized according to the variability in the gene expression levels.
doi:10.1371/journal.pone.0063780.g004
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independence. However there is likely to be some dependence

which may result in overly optimistic p-values. In contrast, the

randomisation method adopted for generating null distributions

was conservative.

In contrast to other methods of integrating aCGH and

expression data for the prediction of driver genes (for example,

[11]), we use aCGH data also to circumvent the problem of causal

confounding that arises whenever prediction of regulatory

relationships is based solely on expression correlation. Hence our

approach fully utilizes the genomic randomization provided

naturally in cancer samples to predict regulatory relationships.

Since the genes for which a regulatory network can be derived

are all, by definition, affected by copy number variation, they

almost certainly contain many key players involved in the disease

process itself. The regulatory gene pairs we validated show a range

of potential in terms of their novelty and known biological

functions. For example, FGFR2-JAK1 relationship has been

previously demonstrated from a purely experimental paradigm,

where signal transducer and activator of transcription 3 (STAT3)

was shown to bind to FGFR2 [17].

ERBB2 is an important receptor tyrosine kinase in cancer and

amplification of this locus has been identified as a therapeutic

target in cancers such as breast and gastric adenocarcinoma [18],

[19]. It codes for a membrane bound receptor tyrosin kinase of the

erbB growth factor family, comprising ERBB1, ERBB2, ERBB3,

and ERBB4. Since it is the preferred dimerisation partner of the

other members of the family, a higher concentration of ERBB2

protein probably increases EGFR signalling. This signal trans-

duction chain leads into several well known pathways such as the

mitogen-activated protein kinase (MAPK), the phosphoinositide 3-

kinase (PI3K/Akt), or the signal transducer and activator of

transcription (STAT) pathway. Overall EGF signalling promotes

cell growth and division and suppresses apoptosis. The transcrip-

tional target genes in these pathways are reasonably well

characterised. However, as our analysis shows, the strongest effect

of increased or decreased ERBB2 concentration is seen on genes

outside these pathways.

Search of known signalling pathways involving ERBB2 shows

no intersection with target genes found in our approach. However,

this is mainly due to the very generic character of signalling

pathways as available in the literature. Our approach therefore

Table 5. Comparing the false discovery rate (fdr) adjusted p-values obtained from an analysis of both datasets using Pearson
correlation and using partial correlation, and the performance of their predictions in light of the results from the 24 validation
experiments.

Genes Experiment Pearson Partial

Regulator Target Fdr fdr performance fdr performance

ERBB2 BST1* 0.000 0.329 FN 0.024, 0.288 TP, FN

IFIT1* 0.010 0.245 FN 0.049, 0.015 TP, TP

PPP2R3A (0.000) 0.002 FP 0.018 FP

KCNS1 (0.002) 0.002 FP 0.002 FP

PFDN5 0.000 0.001 TP 0.005 TP

GAL3ST4 0.013 0.009 TP 0.021 TP

PPP2R3A 0.160 0.002 FP 0.018 FP

KCNS1 0.030 0.002 TP 0.002 TP

PFDN5 0.000 0.001 TP 0.005 TP

GAL3ST4 0.011 0.009 TP 0.021 TP

FGFR2 JAK1* 0.027 0.937 FN 0.003, 0.014 TP, TP

NFIA* 0.000 0.937 FN 0.044, 0.300 TP, FN

SAMD12* 0.017 0.937 FN 0.082, 0.029 FN, TP

ARPC1A NCBP2 0.424 0.040 FP 0.587 TN

VTI1B 0.044 0.041 TP 0.757 FN

YEATS2 (0.128) 0.032 FP 0.641 TN

TNFRSF8 0.017 0.002 TP 0.001 TP

PTGDS 0.000 0.004 TP 0.045 TP

MFNG 0.207 0.011 FP 0.1 TN

FANCG KIRREL3 0.377 0.008 FP 0.016 FP

PBX3 0.027 0.012 TP 0.005 TP

CKB 0.365 0.010 FP 0.083 TN

ALDH6A1 (0.425) 0.025 FP 0.102 TN

PCDHB6 (0.490) 0.016 FP 0.014 FP

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative, based on a fdr p-value threshold of 0.05. () = experimental direction of change does not
agree with prediction.
*predictions from the single dataset. Partial correlations in italics were calculated using a 2000 probe subset of the single dataset, otherwise partial correlations were
calculated from the multiple datasets using up to 15000 probes.
doi:10.1371/journal.pone.0063780.t005
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constitutes an important complementary step to reveal the

biological function of genes such as ERBB2. Knowledge gained

from our analyses could be used as a way to delineate how

potential target genes are linked to one another and to their

regulating genes in a ‘gene interactome network’ map. Our

genomic randomization prediction coupled with experimental

evidence suggests that BST1, PFDN5, KCNS1 and GAL3ST4 are

novel downstream targets of ERBB2 and hence the EGF signalling

pathway. Of these, PFDN5 is interesting because of its role in

repressing the transcriptional activity of proto-oncogene v-myc

myelocytomatosis viral oncogene homolog (MYC) [20], [21].

BST1, recently reported to be part of a risk locus for Parkinson’s

disease via genome-wide association study, might be another

interesting target due to its role in B cell growth regulation [22].

Besides, KCNS1 and GAL3ST4 could be functionally important

due to their respective roles as an ion channel and an enzyme that

catalyzes the process of protein glycosylation.

The third potential regulating gene validated in this study was

ARPC1A. Being a cytoskeletal protein, ARPC1A has been

reported to be involved in the regulation of cell migration and

invasion in pancreatic cancer [23]. Interestingly, ARPC1A has

also been reported to be regulated by the EGF signaling pathway

[24]. None of the predicted target genes of ARPC1A have been

previously reported in the context of cancer. Other biologically

interesting targets include PBX3 and FANCG. PBX3 has been

reported to be over-expressed in prostate cancer [25], whilst

FANCG belongs to a group of proteins known as the Fanconi

anemia complementation family and has been reported to be

important in DNA damage repair pathways [26].

In this study we chose four potential regulating genes and their

predicted target genes for experimental validation due to time and

reagent constraints. There are other promising regulating-target

gene predictions listed in Tables 3 and 4. For example, stress-

induced phosphoprotein 1 (STIP1), an adaptor protein that

coordinates the assembly of heat shock proteins, has been reported

to be over-expressed in colon and pancreatic cancers [27]. A

recent study reported the association of STIP1 with tumour

invasion in pancreatic cancer using RNAi silencing [28],

highlighting STIP1 as a potential cancer gene. Other regulating

genes identified that could play a role in carcinogenesis include the

RNA binding motif protein 6 (RBM6), which has been identified

as part of a novel fusion gene in acute megakaryoblastic leukemia

[29]; and protein tyrosine phosphatase, receptor type, f polypep-

tide (PTPRF), interacting protein (liprin), alpha 1 (PPFIA1), which

is amplified in up to 15% of breast cancer and frequently co-

amplified with cyclin D1 (CCND1) [30].

We demonstrated regulatory relationships for individual pairs

using qRT-PCR that enabled us to test the predictions in

specifically designed experiments, which we deemed much more

robust than validation by gene enrichment analysis as reported in

other studies [11]. Results suggest partial correlation analysis is

superior to Pearson correlation. The level of experimental

validation suggests this computational approach is a useful

additional tool in the search for evidence of gene regulatory

relationships. The percentage of true positives is high enough for

the results to be useful as suggestions for experimental investiga-

tion or to be included with other evidence in probabilistic models

of gene regulatory networks.
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