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Abstract

Objective: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, but diagnosed by subjective
clinical and rating measures. The study’s aim was to apply Gaussian process classification (GPC) to grey matter (GM)
volumetric data, to assess whether individual ADHD adolescents can be accurately differentiated from healthy controls
based on objective, brain structure measures and whether this is disorder-specific relative to autism spectrum disorder
(ASD).

Method: Twenty-nine adolescent ADHD boys and 29 age-matched healthy and 19 boys with ASD were scanned. GPC was
applied to make disorder-specific predictions of ADHD diagnostic status based on individual brain structure patterns. In
addition, voxel-based morphometry (VBM) analysis tested for traditional univariate group level differences in GM.

Results: The pattern of GM correctly classified 75.9% of patients and 82.8% of controls, achieving an overall classification
accuracy of 79.3%. Furthermore, classification was disorder-specific relative to ASD. The discriminating GM patterns showed
higher classification weights for ADHD in earlier developing ventrolateral/premotor fronto-temporo-limbic and stronger
classification weights for healthy controls in later developing dorsolateral fronto-striato-parieto-cerebellar networks. Several
regions were also decreased in GM in ADHD relative to healthy controls in the univariate VBM analysis, suggesting they are
GM deficit areas.

Conclusions: The study provides evidence that pattern recognition analysis can provide significant individual diagnostic
classification of ADHD patients and healthy controls based on distributed GM patterns with 79.3% accuracy and that this is
disorder-specific relative to ASD. Findings are a promising first step towards finding an objective differential diagnostic tool
based on brain imaging measures to aid with the subjective clinical diagnosis of ADHD.
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Introduction Despite these neurobiological underpinnings, accurate diagnosis
for ADHD is a challenge and based solely on subjective clinical
and rating measures, which are often unreliable with diagnostic
variability between clinicians, cultures and countries [12]. It is
therefore highly desirable to find objective, neuroimaging based
diagnostic biomarkers to aid traditional diagnostic methods for
ADHD. Attempts to find objective neuroimaging biomarkers for
individual patients with ADHD, however, have been limited by

Attention Deficit Hyperactivity Disorder (ADHD) is the most
commonly diagnosed childhood disorder, defined by age-inappro-
priate problems with inattention, impulsivity and hyperactivity [1].
ADHD is a multi-systemic neurodevelopmental disorder that has
consistently been associated with abnormalities in structure,
function and functional and structural connectivity in fronto-
striatal, temporo-parietal and fronto-cerebellar networks [2—11].
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the use of univariate group statistics with little success to provide
individual diagnosis.

Recent multivariate pattern classification or regression analysis
(MVPA) methods for imaging data, however, take into account
interactions between regions (i.e. brain structure/function patterns)
and are ideally suited to make predictions for individual subjects
based on brain imaging patterns, as opposed to group-level
inferences. These methods can provide sensitive and specific
diagnostic indicators for individual patients with other psychiatric
disorders such as autism, depression and schizophrenia [13,14].
Gaussian Process Classifiers (GPCs) are kernel classifiers, similar to
support vector machines (SVMs), which have excellent perfor-
mance for MRI [15,16] and provide probabilistic predictions that
quantify predictive uncertainty. Given that MVPA take into
account interrelations between regions, they are particularly
suitable for multisystem disorders of widespread network abnor-
malities, such as ADHD [6,7,9-11].

However, to date, few imaging studies have used multivariate
analysis techniques to classify ADHD patients. An early study
employing discriminative features derived from resting state fMRI
reported promising accuracy of 85%, but the extremely small
sample (9 ADHD patients) makes the generalizability of this result
uncertain [17]. Recently, a competition was launched to apply
multivariate methods on a multicenter resting state functional
imaging dataset of 285 children and adolescents with ADHD and
491 healthy controls, together with anatomical and phenotype
data (ADHD-200 Consortium; http://fcon_1000.projects.nitrc.
org/indi/adhd200/). The published studies applied a range of
classification approaches including random forests, gradient
boosting, multi-kernel learning and support vector machines
[18-21]. Accuracies derived by internal cross-validation ranged
from 55-78%, although the accuracies reported on an external
test dataset for which diagnostic labels were withheld were
substantially lower (61% for the winning team [19]). This
difference was attributed to a lack of standardization between
sites, leading to multiple confounds including missing data, site-
specific differences in behavioral measurements, imaging acquisi-
tion, processing, and protocols, scanner quality and other
unmeasured confounding and mediating variables. Furthermore,
the competition dataset was highly unbalanced, with more control
subjects than ADHD patients (63% and 37% respectively) and
balanced accuracy measures that accommodate this imbalance
[22] are consistently lower than the figures reported (e.g. 57.5%
for the winning team). In addition, the competition scoring
rewarded specificity more than sensitivity so that all teams
reported high specificity, but poor sensitivity (21% for the winning
team). Also, none of the studies used probabilistic classification
models (e.g. GPC), which have important advantages for clinical
studies, including accurate quantification of predictive uncertainty
and the ability to adjust predictions to accommodate unbalanced
diagnostic settings or variations in disease prevalence [23].
Another important issue not addressed to date is the necessity of
evaluating the specificity of a classification model for ADHD
relative to other disorders with overlapping symptoms and
comorbidity (e.g. autism spectrum disorder (ASD)).

The aim of the present study was to address these challenges in
three ways: First, to test the hypothesis that GPCs applied to grey
matter (GM) images from ADHD adolescents and healthy controls
acquired in the same scanner and protocol can identify distributed
structural neuroimaging patterns that will provide sensitive and
specific diagnostic predictors of ADHD. Second, to demonstrate
that these predictors are disorder-specific to ADHD when
compared to another childhood disorder, of ASD. Third, to
provide patterns of predictive weights to characterize the

PLOS ONE | www.plosone.org

MRI Based Classification of ADHD

discriminating brain regions underlying the predictions. Fourth,
to carry out univariate voxel-based morphometry (VBM) case-
control comparisons to investigate whether regions that accurately
classifty ADHD patients or controls overlap with regions that can
be identified in conventional group comparisons and to replicate
previous structural imaging deficit findings in frontal, temporo-
parietal, striatal and cerebellar regions in ADHD.

Materials and Methods

Participants

Twenty-nine, mostly medication-naive, right-handed adolescent
boys with a clinical diagnosis of inattentive/hyperactive-impulsive
combined ADHD between 10-18 years were recruited from
clinics (Table 1). Diagnosis was assessed by an experienced child
psychiatrist using the standardized Maudsley diagnostic interview
[24] which contains items on symptoms of ADHD symptoms and
all other major psychiatric disorders according to the DSM-IV [1].
All patients scored above clinical cut-off for hyperactive-impul-
sive/inattentive symptoms on the parental Strengths and Difficul-
ties Questionnaire (SDQ) [25] and the Conners’ parent rating
scale (CPRS) [26]. The majority of patients (73%) were
medication-naive, 6 patients (20%) received regular methylpheni-
date medication but had a washout of 48 hrs before scanning and
2 patients had been treated with methylphenidate in the past.
Twenty-nine age-matched right-handed healthy boys
recruited through advertisements. They scored below clinical
cut-off for the SDQ) and CPRS (Table 1).

Nineteen right-handed age-matched medication-naive adoles-
cent boys with ASD were recruited through clinics. ASD diagnosis
was made using ICD-10 research diagnostic criteria [27]
confirmed by the Autism Diagnostic Interview-Revised (ADI-R)
[28] and the Autism Diagnostic Observation Schedule (ADOS)
[29]. Boys with ASD were excluded if they scored above 7 on the
hyperactive-impulsive/inattentive ratings on the SDQ, ASD boys
had to score above and ADHD boys below the clinical threshold
for the Social Communication Questionnaire (SCQ) [30](Table 1).

Participants were excluded if they had comorbid psychiatric
disorders including learning disability, reading, speech or language
disorder as assessed with the Maudsley diagnostic interview,
neurological abnormalities, epilepsy, drugs or substance abuse and
1Q <70 on the Wechsler Abbreviated Scale of Intelligence (WASI)
[31]. Participants were paid £50 for taking part in the study.
Written informed consent was obtained from participants over 16
years and from parent/guardians of the participants if they were
under 16 years of age. None of the participants had compromised
capacity to consent. The study was approved by the South London
Research Ethics committee.

were

MRI Image Acquisition

Images were acquired using a 3T GE Signa HDx system
(General Electric, Milwaukee, WI, USA) at the Centre for
Neuroimaging Sciences, Institute of Psychiatry, King’s College
London, UK. The body coil was used for RF transmission and an
eight channel head coil for RF reception. High resolution
structural 3D Tl-weighted SPGR images were acquired. Full
brain and skull coverage was required for each subject and
detailed quality control carried out on all MR images according to
previously published quality control criteria [32,33].

VBM-DARTEL Image Preprocessing

The images were first visually inspected for artifacts and
structural abnormalities. Next, VBM [34] was conducted to
investigate differences in GM volumes between the ADHD and
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control groups using SPMS8 (Statistical Parametric Mapping,
Wellcome Department of Imaging Neuroscience, London, UK,
http://www fil.ion.ucl.ac.uk/spm). The T1-weighted volumetric
images were preprocessed using the VBM protocol with
modulation [35] where the images were first segmented into
GM, white matter (WM), and cerebrospinal fluid (CSF). The
Diffeomorphic Anatomical Registration using Exponential Lie
algebra (DARTEL) algorithm was applied to the segmented brain
tissues to generate a study-specific template, and to achieve an
accurate inter-subject registration with an improved realignment
of smaller inner structures [36]. The normalized modulated
segmented GM images were next affine transformed into MNI
space and smoothed with an 8-mm isotropic Gaussian kernel,
providing a balance between predicted subcortical and cortical
effects, and to accommodate the assumptions of Gaussian
Random Field Theory and the Matched Filter Theorem, and
subsequently used as input into the MVPA classification
algorithm. The use of an 8 mm smoothing kernel was chosen in
order to provide a balance between predicted subcortical and
cortical effects since effects in small subcortical structures might
not be detected with larger smoothing kernels (>8 mm) optimised
for putative large cortical clusters while effects in larger cortical
clusters might not be detected with smaller smoothing kernels.
Therefore, according to the requirements of both Gaussian
Random Field Theory and Matched Filter Theorem and to be
consistent with most structural MRI studies, we utilise a smoothing
kernel of 8 mm across the whole brain.

Statistical Analysis

Multivariate pattern recognition approach: Gaussian
Process Classification. We used a binary Gaussian Process
Classifier (GPC) [15,16], which is a supervised pattern recognition
approach that assigns a predictive probability of group member-
ship to each individual based on a set of “training” data. GPCs are
kernel classifiers similar to the widely used Support Vector
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Table 1. Demographic and Clinical Data for Participants.

Measure Controls (N=29) ADHD (N=29) ASD (N=29) F test P value post-hoc contrasts*
Age (years) 14.4 (2.48) 13.8 (1.84) 14.9 (1.86) 1.73 0.19

Age range 10.7-17.9 10.5-16.5 12.1-17.9

IQ 109 (10.4) 97.2 (6.91) 113 (15.7) 14.8 <0.001 ADHD<C, ASD
1Q range 81-125 84-109 84-138

CPRS ADHD score 46.6 (6.54) 75.8 (7.29) 58.7 (7.51) 8102 <0.001 C<ASD<ADHD
SDQ hyperactivity-impulsive/inattention 2 (1.77) 8.32 (2.09) 4,74 (1.91) 76.7 <0.001 C<ASD<ADHD
score

DSM-IV total score 45.7 (6.56) 80.1 (10.3) 58.9 (8.57) 94.9 <0.001 C<ASD<ADHD
DSM-IV inattentive score 45.4 (4.67) 71.8 (8.14) 55.6 (7.87) 82.6 <0.001 C<ASD<ADHD
DSM-IV hyperactive/impulsive score 47.4 (9.12) 83.5 (9.85) 60.4 (12.4) 72.3 <0.001 C<ASD<ADHD
ADOS Communication scores - - 2.24 (1.48)

ADOS Social scores - - 7.35 (3.92)

ADOS stereotyped behaviour scores - - 1.11 (0.99)

ADI social scores - - 16.3 (4.59)

ADI communication scores - - 13.9 (3.77)

ADI repetitive behaviour scores - - 5.17 (2.85)

Data expressed as mean (SD). Abbreviations: 1Q =intelligence quotient as assessed with the Wechsler Abbreviated Scale of Intelligence; ADHD = Attention Deficit
Hyperactivity Disorder; ASD = Autism Spectrum Disorder; CPRS = Conners’ Parent Rating Scale; SDQ = Strengths and Difficulties Questionnaire; ADOS = Autism
Diagnostic Observation Schedule; ADI = Autism Diagnostic Interview. *Post-hoc t-tests were Bonferroni corrected.

doi:10.1371/journal.pone.0063660.t001

Machines (SVMs) and have shown high levels of performance for
neuroimaging data [15,16]. Moreover, GPCs have advantages
over SVMs especially for clinical applications where classes are
likely to be heterogeneous. Specifically, the probabilistic predic-
tions they provide encode a measure of predictive confidence that
quantifies diagnostic uncertainty and can capture variability within
clinical groups. More importantly, probabilistic methods furnish
simple and effective methods to compensate for unbalanced
training datasets (as outlined below) and probabilistic predictions
can also be easily adjusted to compensate for the prior frequency
of diagnostic classes in experimental populations. This means that
inference remains coherent in classification scenarios where the
frequency of each class in the test set are different from the
frequencies observed in the training set and is useful to
accommodate variations in disease prevalence [15,16,23].

We used a linear binary GPC to discriminate between ADHD
and control subjects as implemented in the Pattern Recognition
for Neuroimaging Toolbox (PRoNTo) software (http://www.mlnl.
cs.ucl.ac.uk/pronto) (for details see [15,16]). Whole-brain GM
images were used as input patterns and the expectation
propagation approximation was used to estimate the posterior
predictive distribution, which produces excellent performance for
binary classification. We employed a leave-one-subject-out cross-
validation (LOO-CV) approach to assess classifier generalizability,
whereby we excluded a matched pair of subjects to comprise the
test set, and inferred all parameters from the remaining data
(training set), before applying this classifier to predict the labels for
the test samples. For the binary classifiers, performance was
evaluated using receiver operating characteristic (ROC) curves
derived from the probabilistic predictions and classification
accuracy which measures the classifier performance in a
categorical sense. The ROC curve compares the classifier’s true
positive rate (ie. the percentage of ADHD subjects correctly
classified as ADHD) and false positive rate (i.e. the percentage of
misclassified control subjects) as the decision threshold is varied.
The area under the curve (AUC) is thus a summary measure of the
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performance of the classifier across all decision thresholds, where a
classifier with perfect classification would achieve an AUC of 1
and a classifier guessing at chance-level would achieve an AUC of
0.5.

To derive categorical predictions from the probabilistic
predictions derived from the GPC, we thresholded the predictions
according to the frequency of classes in the training set (i.e. 0.5 if
the classes are balanced). We computed the sensitivity and
specificity as the proportion of ADHD patients or controls
respectively having the correct label, averaged across all test splits.
Finally we computed the (balanced) accuracy as the mean of
sensitivity and specificity, which quantifies the overall categorical
classification performance of the classifier in a way that
accommodates potential class imbalance in the data.

We also employed an additional metric for the binary classifiers,
known as “target information”. This measure quantifies the
information gain obtained by the classifier and is measured in bits.
A simple baseline classifier that always makes probabilistic
predictions based on the proportion of samples from each class
in the training set will obtain a target information of zero and a
classifier that obtains perfect accuracy and perfect confidence will
obtain a target information of one. See [16,37,38] for more details.

For the multi-class classifier, we primarily assessed performance
using the obvious generalizations of sensitivity, positive predictive
value and balanced accuracy, because the other metrics do not
generalize naturally to the multi-class setting.

Permutation testing was used to derive a p-value to determine if
the balanced accuracy exceeded chance levels (50%). This is
preferred to a parametric test, as it does not require distributional
assumptions. To achieve this, we permuted class labels 1000 times,
each time randomly assigning patient and control labels to each
image and repeating the entire cross-validation procedure. We
then counted the number of times the permuted test accuracy was
higher than the one obtained for the true labels. This number was
then divided by 1000 to give a p-value for the classification.

We also correlated the GPC predictive probabilities with age,
1Q, SDQ hyperactivity-impulsive/inattention subscale and the
CPRS ADHD T-scores.

Specificity of the classifier to ADHD: classification of
ADHD vs. non-ADHD individuals. To establish the degree of
clinical specificity of the classification algorithm to ADHD, we
wanted to assess whether the clinical specificity of the classifier
remained high, when we added another disorder-group to the
control group, i.e. we aimed to discriminate ADHD from “non-
ADHD”, including another disorder group.

For this purpose, we included another sample of 19 patients
with ASD and trained a linear binary GPC to discriminate ADHD
from a combined group of ASD and healthy controls (i.e. “not
ADHD?”). In this case, we employed a LOO-CV approach where
we excluded a single subject per cross-validation fold, and assessed
classifier performance by the same metrics noted above. Note,
however, that since this dataset is unbalanced, we employed a
categorical decision threshold defined by the frequency of classes
in the training set.

Specificity of the Classifier to ADHD: Classification of
ADHD vs. ASD Patients. To further establish the degree of
clinical specificity of the classification algorithm to ADHD relative
to ASD specifically, we trained another linear binary GPC to
discriminate ADHD from the group of 19 ASD patients. As above,
we employed a LOO-CV approach where we excluded a single
subject per cross-validation fold, and assessed classifier perfor-
mance by the same metrics noted above. Since this dataset is
unbalanced, we employed a categorical decision threshold defined
by the frequency of classes in the training set.
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Multi-class Gaussian Process Classification of GM
In addition, we also performed a 3-class GPC
classification which aims to simultaneously discriminate each
group (ADHD, healthy controls and ASD) from one another. As
above, we employed a LOO-CV approach where we excluded a
single subject per cross-validation fold, and assessed classifier
performance primarily in terms of balanced classification accura-
cy. In contrast to the binary classifiers described above, we use the
Laplace approximation to the posterior predictive distribution (see
[16,37,38] for details). A direct multi-class classifier of this type
provides a pattern of predictive weights for each of the classes. As
in the binary context, the weight vector coefficients encode the
contribution of each voxel to the decision function for each group
relative to the others. A high positive score in the weight vector for
a given group denotes a strong positive contribution to a
prediction in favor of that group, while a high negative score for
the same group denotes a strong negative contribution.

Mass-univariate Approach: VBM Analysis. Group differ-
ences were evaluated for GM, WM, CSF volumes and total
intracranial volume (TIV) (the sum of GM, WM and CSF
volumes) obtained in the tissue segmentation step of the VBM-
DARTEL preprocessing. The normalized modulated and
smoothed GM images in each group were entered into a voxel-
wise two-sample #test analysis where conventional VBM-type
analysis was employed using a relatively stringent significance
threshold of p<<0.05, family-wise error rate (FWE) corrected at the
cluster level. Cluster sizes were adjusted for smoothness non-
uniformity by means of the VBM) toolbox [39]. To facilitate the
interpretation of the multivariate pattern findings and to further
compare the results obtained with VBM and GPC, we lowered the
threshold to a more lenient cluster value of p<<0.001 uncorrected
for multiple comparisons to identify regions that may have
contributed to the classification but did not survive multiple
comparison correction.

tissues.

Results

Participant Characteristics

Groups did not significantly differ in age, but in IQ) (see Table 1).
ADHD boys had significantly lower 1Q) scores relative to the other
two groups, which is typical in this population [40].

Gaussian Process Classification of GM Tissues (ADHD
versus Healthy Controls)

GPC based on whole brain analysis differentiated ADHD
patients from healthy controls with 79.3% accuracy (p<<0.001).
The sensitivity of classification for the ADHD group was 75.9%,
while the specificity of the classification for controls was 82.8%.
The positive and negative predictive values (PPV/NPV) for the
classifier were 81.5% and 77.4%, respectively (Figure 1). The area
under the ROC curve (.e. AUC) was 0.83 and the classifier
delivered 0.28 bits of information per test case.

Figure 2A shows the discrimination weight map (w-map)
showing global spatial patterns that best discriminated the groups.
The weights represent spatially distributed patterns showing the
relative contribution of each voxel to the decision function with
positive weights indicating a positive contribution toward predict-
ing ADHD and negative weights indicating a positive contribution
toward predicting controls.

Regions in the discriminating patterns predictive of controls
included predominantly bilateral hemispheres and cerebellar
vermis, middle temporal, inferior and dorsolateral prefrontal
cortices (IFC/DLPFC), caudate and thalamus, precuneus/cuneus
and inferior and superior parietal regions as well as left
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Figure 1. Predictive Probabilities for the Gaussian Process
Classifier discriminating ADHD and Controls. The x-axis describes
the probability with which each subject is predicted to be an ADHD
patient (equal to 1- the probability of being a control).
doi:10.1371/journal.pone.0063660.g001

ventromedial frontal cortex, including anterior cingulate (ACC)
and supplementary motor area (SMA) (Figure 2A,B).

Regions in the discriminating pattern predictive of ADHD
patients were most predominantly in earlier developing ventral

MRI Based Classification of ADHD

classified healthy controls, such as bilateral ventrolateral, premotor
and ventral temporal cortices, limbic regions including hippocam-
pus, amygdala, hypothalamus, ventral striatum/putamen, insula,
posterior cingulate and brain stem. There was also a small cluster
in the inferior vermis that had greater classification weights for
ADHD, as opposed to the rest of the cerebellum that showed
greater weights for classifying controls (see above) (Figure 2A,B).

No correlations were observed between GPC  probability
measures and clinical measures within each group.

To test for potential effects of IQ or age on the classification
patterns, we also correlated these within each group. No
significant correlations were observed.

Gaussian Process Classification of GM Tissues (ADHD vs.
non-ADHD)

The binary classifier trained to discriminate ADHD patients
from the group of healthy controls and ASD patients (i.e. non-
ADHD) achieved a balanced accuracy of 77.1% (p<<0.001). The
sensitivity of this disorder-specific classification for the ADHD
group was 79.3% and the specificity was 75.0%. The PPV and
NPV were 65.7% and 85.7% respectively, the AUC was 0.83 and
the classifier delivered 0.26 bits of information per test case.
Figure 3B shows the discrimination w-map showing global spatial
patterns that best discriminated the ADHD and non-ADHD

groups.
No significant correlations were observed between GPC and
either age, IQ or clinical measures within either group.

brain regions relative to the more dorsal counterparts that

Figure 2. 2-class Multivariate and Conventional Maps. A. Multivariate discrimination weight map for ADHD vs. Controls (unthresholded).
Gaussian Process Classification classified ADHD patients and healthy controls with 82.8% and 75.9% sensitivity, respectively; leading to an overall
accuracy of 79.3%. Multivariate discrimination weight-map —intensity values illustrate the relative positive weight distributions (ADHD; orange) and
negative weight distributions (controls; light blue). Within each colour code, the lighter colors (i.e., light orange-yellow, light blue) indicate strongest
weights for the GPC analyses and for the conventional mass-univariate case-control comparison lighter colors indicate higher p-values of structural
differences. B. Multivariate discrimination weight map (thresholded). The map only shows voxels with a weight value above 40% of the maximum
weight value C). Conventional mass-univariate t-statistic map. Controls had increased grey matter relative to patients, thresholded at cluster-wise
p<<0.001 uncorrected. No areas showed increased grey matter in ADHD relative to controls.

doi:10.1371/journal.pone.0063660.9g002
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Figure 3. 2-class multivariate weight maps. A) Multivariate discrimination weight map for ADHD vs. Controls (unthresholded). Gaussian Process
Classification classified ADHD patients and healthy controls with 82.8% and 75.9% sensitivity, respectively; leading to an overall accuracy of 79.3%.
Multivariate discrimination weight-map -intensity values illustrate the relative positive weight distributions (ADHD; orange) and negative weight
distributions (controls; blue). Within each colour code, the lighter colors (i.e., light orange-yellow, light blue) indicate strongest weights for the GPC
analyses. B) Multivariate discrimination weight map for ADHD vs. non-ADHD (unthresholded). Gaussian Process Classification classified ADHD patients
and non-ADHD with 79.3% and 77.1% sensitivity, respectively; leading to an overall accuracy of 78.2%. Multivariate discrimination weight-map-
intensity values illustrate the relative positive weight distributions (ADHD; orange) and negative weight distributions (non-ADHD; violet). Within each
colour code, the lighter colors (i.e., light orange-yellow, light violet) indicate strongest weights for the GPC analyses. C) Multivariate discrimination
weight map for ADHD vs. ASD (unthresholded). Gaussian Process Classification classified ADHD patients and ASD patients with 93.1% and 68.4%
sensitivity, respectively; leading to an overall accuracy of 80.8%. Multivariate discrimination weight-map-intensity values illustrate the relative
positive weight distributions (ADHD; orange) and negative weight distributions (ASD; green). Within each colour code, the lighter colors (i.e., light

orange-yellow, light green) indicate strongest weights for the GPC analyses.

doi:10.1371/journal.pone.0063660.g003

Gaussian Process Classification of GM Tissues (ADHD vs.

ASD)

The binary classifier trained to discriminate ADHD patients
from ASD patients achieved a balanced accuracy of 85.2%
(p<<0.001). The sensitivity of this disorder-specific classification for
the ADHD group was 86.2% and the specificity was 84.2%. The
PPV and NPV were 89.3% and 80.0% respectively, the AUC was
0.91 and the classifier delivered 0.33 bits of information per test
case. Figure 3C shows the discrimination w-map that shows the
global spatial patterns that best discriminate the ADHD and ASD
groups. The weights represent spatially distributed patterns
showing the relative contribution of each voxel to the decision
function with positive weights indicating a positive contribution
toward predicting ADHD and negative weights indicating a
positive contribution toward predicting ASD. Regions in the
discriminating patterns predictive of ASD included predominately
the bilateral cerebellar hemispheres and cerebellar vermis,
superior and middle temporal gyri, predominantly right inferior
cortex, anterior cingulate and SMA, caudate, thalamus, and
limbic areas such as parts of the insula, (anterior) nucleus
accumbens, (dorsal) substantia nigra and (dorsal) fornix.

No significant correlations were observed between GPC and
either age, I1Q) or clinical measures within each group.

PLOS ONE | www.plosone.org

Multi-class Gaussian Process Classification of GM Tissues

The 3-class classifier trained to discriminate among ADHD,
healthy controls and ASD adolescents achieved a balanced
accuracy of 68.2% (p<<0.001) which easily exceeded the 33.33%
accuracy that would be predicted for a 3-class classifier by chance.
The sensitivity of this classification for the ADHD, healthy controls
and ASD groups were 75.9%, 65.5%, and 63.2%), respectively;
and the PPV were 62.9%, 73.1% and 75%, respectively (see
Figure S1 for the 3-class w-maps).

Therefore, the GPC accurately discriminated all classes from
one another. We emphasize that multi-class classification is a more
difficult problem than binary classification and the accuracies
listed above reflect substantially better predictive performance
than would be the case for the same numerical values derived from
a binary classifier.

VBM-DARTEL Analysis of GM Volume Differences

The ADHD group had significantly smaller GM, CSF and TIV
volumes than controls (Table 2). Using the conventional voxel-wise
two-sample t-test VBM analysis with a stringent FWE correction of
$<<0.05 at cluster level, the ADHD group had significantly smaller
GM volume in right cerebellum (anterior and posterior lobe)
(»p<<0.0001) and in left inferior parietal lobule ($<<0.03) (Table 3,
Figure 2C). At an uncorrected cluster threshold of p<<0.001, the
ADHD group also had smaller GM volumes in bilateral IFC, right
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middle and inferior temporal gyri, and in a more ventral region of
left inferior parietal lobe reaching into postcentral gyrus
(Figure 2C, Table 3). Given that based on previous meta-analyses
of structural MRI studies in ADHD [2,4], we also hypothesized
reduced GM volumes in the basal ganglia, we tested for trend-level
findings in this region and found reduced GM volumes in left
caudate (MNI coordinates (x,y,z): 8; 8,-6) in ADHD relative to
healthy control boys, at a trend level of an uncorrected cluster
threshold of p<<0.086.

Discussion

We show that it is possible to correctly classify mostly
medication-naive ADHD boys from controls based on their GM
patterns with an overall accuracy of 79.3%, providing a sensitivity
of 81.5% and a specificity of 77.4%. Crucially, this classifier also
demonstrated excellent disorder-specificity relative to ASD with a
sensitivity of 86.2% and a specificity of 84.2%), showing that 1) the
patterns of structural abnormality predictive of ADHD are not
attributable to psychopathology in general, such as ASD, which
shares symptoms and is frequent comorbid with ADHD [41] and
2) that all diagnostic groups could be simultanecously and
accurately discriminated from one another.

The regions of the discriminative pattern most predictive of
ADHD were mostly in earlier developing ventral frontal,
premotor, temporal, limbic and brain stem regions. The regions
of the discriminative pattern most predictive of controls included
typically later developing more dorsolateral and inferior prefrontal
regions, ACC/SMA, dorsal striatum, thalamus and inferior
parietal areas that form fronto-striato-parieto-cerebellar networks
mediating the higher level cognitive control, attention and timing
functions that are impaired in ADHDI6,7,9-11]. Furthermore,
several of the IFC, cerebellar and inferior parietal regions that had
higher weights for classifying healthy controls based on the
multivariate analyses, were also reduced in GM in ADHD relative
to healthy boys, suggesting they were GM deficit regions. The
findings of increasing classification weights for ADHD in earlier
developing ventral fronto-temporo-limbic networks by contrast to
more dorsal DLPFC and IFC striato-parieto-cerebellar networks
for controls are in line with evidence from univariate longitudinal
structural imaging studies of a delay in brain maturation for
ADHD [42,43].

The classification accuracy findings of over 79% based on
ADHD brain structure measures and its disorder-specificity
relative to ASD with a 85% of accuracy are promising and, if
replicated, suggest that it may be possible in the future to use
machine learning based pattern recognition analyses to aid in the
differential diagnostic classification of ADHD with a more

Table 2. Global volume group differences in ADHD and
controls.

Controls ADHD

(N=29) (N=29) t test p value
GM volume (ml) 790 (53.5) 749 (59.9) 2.69 0.009
WM volume (ml) 515 (44.0) 497 (47.3) 1.50 0.138
CSF volume (ml) 341 (429) 318 (30.2) 230 0.025
TIV volume (ml) 1646 (130) 1565 (129) 2.36 0.022

Data expressed as mean (SD). ADHD: Attention Deficit Hyperactivity Disorder;
GM: grey matter; WM: white matter; CSF: cerebrospinal fluid; TIV: total
intracranial volume (= GM+WM+CSF volumes).
doi:10.1371/journal.pone.0063660.t002
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objective and reliable measure such as a short structural MRI
scan.

The pattern classification analysis revealed relatively high
prediction accuracy for ADHD, with a classification accuracy of
79.3%. The overall accuracy obtained in this study is thus not only
higher than all studies derived from the ADHD-200 competition
using resting state and structural MRI data (ranging between 67%
and 76%)[18-21], but it also demonstrates high sensitivity and
high specificity relative to healthy controls and ASD patients.
Finally, our approach is readily interpretable in that it provides a
discriminative pattern that quantifies the discriminative value of
different brain regions and can be easily related to VBM findings
that quantify difference between disease groups in a univariate
manner.

Interestingly, the distributed GM patterns that showed the
highest weights for classifying the ADHD boys were in predom-
inantly subcortical areas, including most parts of the limbic system
(amygdala, hippocampus, hypothalamus, insula, ventral striatum
and posterior cingulate) and in brain stem, as well as in more
ventral frontal, premotor and temporal regions, which contrasted
with the distributed network of more dorsal DLPFC and IFC,
dorsal striatum and inferior parietal areas that correctly classified
controls. Furthermore, the predictive probabilities for ADHD
patients were correlated with ADHD severity ratings, reinforcing
their diagnostic classification utility. Subcortical as well as
ventrolateral frontal and striatal regions that classified ADHD
develop earlier than the more dorsal cortical and striatal brain
regions that were characteristic for the classification of controls
[44,45]. The pattern classification findings are hence in line with
the notion of a maturational delay of GM development in ADHD
patients, as demonstrated in univariate analyses that showed a
delay in ADHD in the maturation of cortical thickness and surface
morphology of between 2 and 5 years, most prominently in
dorsolateral prefrontal, superior temporal and inferior parietal
brain regions [42,43,46]. This is further supported by the fact that
the same lateral DLPFC/IFC-caudate-parieto-cerebellar networks
that classified controls in their GM mediate the late developing
higher level functions of cognitive control, timing and attention
[47] that are typically impaired in ADHD patients in cognition
and functional activation[6,9-11,48].

All brain regions that were reduced in ADHD patients in their
GM relative to controls in the univariate analyses overlapped with
brain regions that showed a higher weight for classifying controls,
suggesting that the regions in the multivariate patterns predictive
of controls reflect GM deficit areas in ADHD. The findings of
reduced GM 1in the lateral parts and vermis of the cerebellum, in
bilateral inferior frontal, left parietal, and right temporal cortices
replicates previous findings of reduced GM in these regions in
whole brain [3,49] as well as region of interest (ROI) analyses
[5,50]. The findings of the largest and most significant reduction in
GM in the cerebellum replicates previous findings [51,52], also
outlined in a meta-analysis of ROI structural MRI studies [5]. The
cerebellum is one of the latest areas to develop [53], together with
the frontal and superior temporal lobes [45] and the finding is
hence in line with the notion that ADHD patients have deficits in
late maturing brain regions, likely due to a maturational delay. We
only observed reduced GM in the caudate at a more lenient
uncorrected threshold of p<<0.078, and in the left hemisphere,
which was unexpected, given that a reduction of right basal
ganglia GM was the most consistent finding in two recent meta-
analyses of whole brain structural MRI studies [2,4]. The sample
size of this study is relatively small for univariate structural image
analyses and the basal ganglia GM deficits may only be observable
with larger sample sizes.
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Table 3. Reduced grey matter in ADHD relative to healthy control boys in the traditional VBM analysis.

Brain regions Brodmann area Talairach Coordinates Voxels Cluster p-value
R & L Cerebellum 27;-58; —44 17628 <0.0001

L inferior parietal/pre—/postcentral 40/2/1/3/4 —51; —18;45 765 0.007

L inferior frontal 44/45/9 —40;20;31 981 0.003

R inferior frontal 44/45 48;15;19 421 0.034

L inferior parietal/postcentral 40/2/1/3 —56; —19;22 599 0.014

R middle/inferior temporal 21/37/39 60; —52;,0 1255 0.001

increase in grey matter was observed for ADHD relative to controls.
doi:10.1371/journal.pone.0063660.t003

Importantly, we demonstrated that the achieved classification is
disorder-specific to ADHD, as similar and even increased accuracy
was achieved when we added a psychiatric control group of ASD
adolescents and when we compared ADHD and ASD alone with
each other, where we achieved a sensitivity of 86.2% and a
specificity of 84.2%. The findings extend the previous literature of
multivariate pattern analyses of ADHD by showing for the first
time that the patterns that classify ADHD patients are disorder-
specific and do not classify ASD patients. The findings extend
previous findings of disorder-specific classification in adults with
ASD, where the classifier was not suitable to classify adult patients
with ADHD [54].

The pattern of brain regions that discriminated the ASD from
the ADHD group is largely in areas that have been found to be
different in ASD patients relative to controls such as in cerebellar
hemispheres and cerebellar vermis, ACC caudate/thalamus,
inferior frontal cortex, middle and superior temporal and right
inferior parietal regions [55-58]. The discriminating brain regions
identified for ASD have also been implicated in the mediation of
three core behaviors that are impaired in ASD; namely social
impairment (ACC, fusiform gyrus, inferior frontal cortex, and
posterior parietal cortex), communication deficits (SMA, basal
ganglia, substantia nigra, and thalamus), and repetitive behaviors
(ACC, basal ganglia and thalamus) [59]. Furthermore, the finding
of inferior parietal patterns classifying ASD versus ADHD echoes
and extends the univariate VBM findings of the only structural
MRI study which compared between ADHD and ASD adoles-
cents and found ASD-specific enhanced GM relative to controls in
right supramarginal gyrus [60]. The positive contribution for
classifying ASD in the cerebellum is interesting in view of the only
fMRI comparison between the two disorders during a vigilance
task, where we showed that ASD patients had a disorder-specific
cerebellar overactivation relative to both healthy controls and
ADHD adolescents [61]. Finally, the disorder-specificity of the
classifier is further confirmed by our 3-class classification that
showed a far higher than chance accuracy of 75.9%, 65.5%, and
63.2%, in classifying ADHD, healthy controls and ADHD, by
clearly distinctive structural GM patterns.

Together, the findings suggest that it is possible to use
multivariate pattern recognition analyses for disorder-specific
classification of ADHD based on structural imaging data. If
replicated this may have future implications as a possible aid in
differential diagnosis, in particular for difficult to diagnose patients.

The strength of the study is the use of probabilistic GPC
methods that confers multiple benefits for clinical studies. Another
strength is the inclusion of mostly (73%) medication-naive ADHD
patients, since long-term stimulant medication has been associated
with more normal GM and cortical thickness of fronto-cingulate,

PLOS ONE | www.plosone.org

Regions that survived a cluster-wise FWE correction at p<<0.05 are indicated in bold. All other regions were observed at an uncorrected cluster-wise p<<0.001. No

parietal, cerebellar and striatal regions[2,52,62-65] and 100%
medication-naive ASD patients. To increase the homogeneity of
the sample, we included only males with the combined hyperac-
tive-impulsive and inattentive subtype of ADHD. However, this
limits the diagnostic classification patterns to the male ADHD
subtype. Also, future diagnostic utility of pattern classification
analyses will rely on its ability to sub-classify even more refined
ADHD subtypes such as attention deficit alone without hyperac-
tivity or ADHD with emotional dysregulation based on their brain
structure patterns.

A limitation is a relatively modest sample size. While the study
advances neuroimaging towards providing useful diagnostic
markers for ADHD, it does not definitively quantify their
discriminative value. Also, patients differed in 1Q), which is typical
for this population [40]. However, no correlation was observed
between 1Q) and GPC probabilities making it unlikely that 1Q
played a crucial factor. Lastly, while the overall classification
accuracy of 79.3% and in particular the specificity of 81.5% was
respectable, this would still leave a relatively large percentage of
incorrectly classified individuals. Future studies in larger samples,
perhaps including other structural measures such as cortical
thickness, may provide better classification accuracy.

In conclusion, this is the first study demonstrating probabilistic
GPC methods for accurately classifying ADHD patients based on
their brain structure patterns. We achieved a considerable overall
classification accuracy of 79.3% based on distributed and clearly
distinct GM  brain structure patterns, with later developing
dorsolateral fronto-striato-parieto-cerebellar networks discriminat-
ing controls and earlier developing ventrolateral/premotor fronto-
limbic-brain stem networks discriminating ADHD. Importantly,
the classifier was both sensitive and specific for ADHD and was
also disorder-specific relative to ASD. The findings are a
promising step towards finding an objective differential diagnostic
tool based on brain imaging measures to aid with the subjective
clinical diagnosis of ADHD.

Supporting Information

Figure S1 Non-thresholded three-class multivariate
discrimination weight maps. A. Multivariate discrimination
weight map for ADHD (orange) vs. Controls and ASD (light blue).
B. Multivariate discrimination weight map for Controls (orange)
vs. ADHD and ASD (light blue). C) Multivariate discrimination
weight map for ASD (orange) vs. ADHD and Controls (light blue).
The intensity values of the multivariate discrimination weight-
maps illustrate the relative positive weight distributions (orange)
and negative weight distributions (cyan).

(TIF)
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