
Disorder-Specific Predictive Classification of Adolescents
with Attention Deficit Hyperactivity Disorder (ADHD)
Relative to Autism Using Structural Magnetic Resonance
Imaging
Lena Lim1,2, Andre Marquand3, Ana A. Cubillo1, Anna B. Smith1, Kaylita Chantiluke1,

Andrew Simmons3,4, Mitul Mehta3, Katya Rubia1*

1 Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College London, London, United Kingdom, 2 Department of Psychological Medicine, Yong

Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 3 Department of Neuroimaging, Institute of Psychiatry, King’s College London,

London, United Kingdom, 4 NIHR Biomedical Research Centre at South London and Maudsley Foundation NHS Trust and King’s College London, Institute of Psychiatry,

London, United Kingdom

Abstract

Objective: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, but diagnosed by subjective
clinical and rating measures. The study’s aim was to apply Gaussian process classification (GPC) to grey matter (GM)
volumetric data, to assess whether individual ADHD adolescents can be accurately differentiated from healthy controls
based on objective, brain structure measures and whether this is disorder-specific relative to autism spectrum disorder
(ASD).

Method: Twenty-nine adolescent ADHD boys and 29 age-matched healthy and 19 boys with ASD were scanned. GPC was
applied to make disorder-specific predictions of ADHD diagnostic status based on individual brain structure patterns. In
addition, voxel-based morphometry (VBM) analysis tested for traditional univariate group level differences in GM.

Results: The pattern of GM correctly classified 75.9% of patients and 82.8% of controls, achieving an overall classification
accuracy of 79.3%. Furthermore, classification was disorder-specific relative to ASD. The discriminating GM patterns showed
higher classification weights for ADHD in earlier developing ventrolateral/premotor fronto-temporo-limbic and stronger
classification weights for healthy controls in later developing dorsolateral fronto-striato-parieto-cerebellar networks. Several
regions were also decreased in GM in ADHD relative to healthy controls in the univariate VBM analysis, suggesting they are
GM deficit areas.

Conclusions: The study provides evidence that pattern recognition analysis can provide significant individual diagnostic
classification of ADHD patients and healthy controls based on distributed GM patterns with 79.3% accuracy and that this is
disorder-specific relative to ASD. Findings are a promising first step towards finding an objective differential diagnostic tool
based on brain imaging measures to aid with the subjective clinical diagnosis of ADHD.
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Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is the most

commonly diagnosed childhood disorder, defined by age-inappro-

priate problems with inattention, impulsivity and hyperactivity [1].

ADHD is a multi-systemic neurodevelopmental disorder that has

consistently been associated with abnormalities in structure,

function and functional and structural connectivity in fronto-

striatal, temporo-parietal and fronto-cerebellar networks [2–11].

Despite these neurobiological underpinnings, accurate diagnosis

for ADHD is a challenge and based solely on subjective clinical

and rating measures, which are often unreliable with diagnostic

variability between clinicians, cultures and countries [12]. It is

therefore highly desirable to find objective, neuroimaging based

diagnostic biomarkers to aid traditional diagnostic methods for

ADHD. Attempts to find objective neuroimaging biomarkers for

individual patients with ADHD, however, have been limited by
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the use of univariate group statistics with little success to provide

individual diagnosis.

Recent multivariate pattern classification or regression analysis

(MVPA) methods for imaging data, however, take into account

interactions between regions (i.e. brain structure/function patterns)

and are ideally suited to make predictions for individual subjects

based on brain imaging patterns, as opposed to group-level

inferences. These methods can provide sensitive and specific

diagnostic indicators for individual patients with other psychiatric

disorders such as autism, depression and schizophrenia [13,14].

Gaussian Process Classifiers (GPCs) are kernel classifiers, similar to

support vector machines (SVMs), which have excellent perfor-

mance for MRI [15,16] and provide probabilistic predictions that

quantify predictive uncertainty. Given that MVPA take into

account interrelations between regions, they are particularly

suitable for multisystem disorders of widespread network abnor-

malities, such as ADHD [6,7,9–11].

However, to date, few imaging studies have used multivariate

analysis techniques to classify ADHD patients. An early study

employing discriminative features derived from resting state fMRI

reported promising accuracy of 85%, but the extremely small

sample (9 ADHD patients) makes the generalizability of this result

uncertain [17]. Recently, a competition was launched to apply

multivariate methods on a multicenter resting state functional

imaging dataset of 285 children and adolescents with ADHD and

491 healthy controls, together with anatomical and phenotype

data (ADHD-200 Consortium; http://fcon_1000.projects.nitrc.

org/indi/adhd200/). The published studies applied a range of

classification approaches including random forests, gradient

boosting, multi-kernel learning and support vector machines

[18–21]. Accuracies derived by internal cross-validation ranged

from 55–78%, although the accuracies reported on an external

test dataset for which diagnostic labels were withheld were

substantially lower (61% for the winning team [19]). This

difference was attributed to a lack of standardization between

sites, leading to multiple confounds including missing data, site-

specific differences in behavioral measurements, imaging acquisi-

tion, processing, and protocols, scanner quality and other

unmeasured confounding and mediating variables. Furthermore,

the competition dataset was highly unbalanced, with more control

subjects than ADHD patients (63% and 37% respectively) and

balanced accuracy measures that accommodate this imbalance

[22] are consistently lower than the figures reported (e.g. 57.5%

for the winning team). In addition, the competition scoring

rewarded specificity more than sensitivity so that all teams

reported high specificity, but poor sensitivity (21% for the winning

team). Also, none of the studies used probabilistic classification

models (e.g. GPC), which have important advantages for clinical

studies, including accurate quantification of predictive uncertainty

and the ability to adjust predictions to accommodate unbalanced

diagnostic settings or variations in disease prevalence [23].

Another important issue not addressed to date is the necessity of

evaluating the specificity of a classification model for ADHD

relative to other disorders with overlapping symptoms and

comorbidity (e.g. autism spectrum disorder (ASD)).

The aim of the present study was to address these challenges in

three ways: First, to test the hypothesis that GPCs applied to grey

matter (GM) images from ADHD adolescents and healthy controls

acquired in the same scanner and protocol can identify distributed

structural neuroimaging patterns that will provide sensitive and

specific diagnostic predictors of ADHD. Second, to demonstrate

that these predictors are disorder-specific to ADHD when

compared to another childhood disorder, of ASD. Third, to

provide patterns of predictive weights to characterize the

discriminating brain regions underlying the predictions. Fourth,

to carry out univariate voxel-based morphometry (VBM) case-

control comparisons to investigate whether regions that accurately

classify ADHD patients or controls overlap with regions that can

be identified in conventional group comparisons and to replicate

previous structural imaging deficit findings in frontal, temporo-

parietal, striatal and cerebellar regions in ADHD.

Materials and Methods

Participants
Twenty-nine, mostly medication-naı̈ve, right-handed adolescent

boys with a clinical diagnosis of inattentive/hyperactive-impulsive

combined ADHD between 10–18 years were recruited from

clinics (Table 1). Diagnosis was assessed by an experienced child

psychiatrist using the standardized Maudsley diagnostic interview

[24] which contains items on symptoms of ADHD symptoms and

all other major psychiatric disorders according to the DSM-IV [1].

All patients scored above clinical cut-off for hyperactive-impul-

sive/inattentive symptoms on the parental Strengths and Difficul-

ties Questionnaire (SDQ) [25] and the Conners’ parent rating

scale (CPRS) [26]. The majority of patients (73%) were

medication-naı̈ve, 6 patients (20%) received regular methylpheni-

date medication but had a washout of 48 hrs before scanning and

2 patients had been treated with methylphenidate in the past.

Twenty-nine age-matched right-handed healthy boys were

recruited through advertisements. They scored below clinical

cut-off for the SDQ and CPRS (Table 1).

Nineteen right-handed age-matched medication-naı̈ve adoles-

cent boys with ASD were recruited through clinics. ASD diagnosis

was made using ICD-10 research diagnostic criteria [27]

confirmed by the Autism Diagnostic Interview-Revised (ADI-R)

[28] and the Autism Diagnostic Observation Schedule (ADOS)

[29]. Boys with ASD were excluded if they scored above 7 on the

hyperactive-impulsive/inattentive ratings on the SDQ. ASD boys

had to score above and ADHD boys below the clinical threshold

for the Social Communication Questionnaire (SCQ) [30](Table 1).

Participants were excluded if they had comorbid psychiatric

disorders including learning disability, reading, speech or language

disorder as assessed with the Maudsley diagnostic interview,

neurological abnormalities, epilepsy, drugs or substance abuse and

IQ ,70 on the Wechsler Abbreviated Scale of Intelligence (WASI)

[31]. Participants were paid £50 for taking part in the study.

Written informed consent was obtained from participants over 16

years and from parent/guardians of the participants if they were

under 16 years of age. None of the participants had compromised

capacity to consent. The study was approved by the South London

Research Ethics committee.

MRI Image Acquisition
Images were acquired using a 3 T GE Signa HDx system

(General Electric, Milwaukee, WI, USA) at the Centre for

Neuroimaging Sciences, Institute of Psychiatry, King’s College

London, UK. The body coil was used for RF transmission and an

eight channel head coil for RF reception. High resolution

structural 3D T1-weighted SPGR images were acquired. Full

brain and skull coverage was required for each subject and

detailed quality control carried out on all MR images according to

previously published quality control criteria [32,33].

VBM-DARTEL Image Preprocessing
The images were first visually inspected for artifacts and

structural abnormalities. Next, VBM [34] was conducted to

investigate differences in GM volumes between the ADHD and
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control groups using SPM8 (Statistical Parametric Mapping,

Wellcome Department of Imaging Neuroscience, London, UK,

http://www.fil.ion.ucl.ac.uk/spm). The T1-weighted volumetric

images were preprocessed using the VBM protocol with

modulation [35] where the images were first segmented into

GM, white matter (WM), and cerebrospinal fluid (CSF). The

Diffeomorphic Anatomical Registration using Exponential Lie

algebra (DARTEL) algorithm was applied to the segmented brain

tissues to generate a study-specific template, and to achieve an

accurate inter-subject registration with an improved realignment

of smaller inner structures [36]. The normalized modulated

segmented GM images were next affine transformed into MNI

space and smoothed with an 8-mm isotropic Gaussian kernel,

providing a balance between predicted subcortical and cortical

effects, and to accommodate the assumptions of Gaussian

Random Field Theory and the Matched Filter Theorem, and

subsequently used as input into the MVPA classification

algorithm. The use of an 8 mm smoothing kernel was chosen in

order to provide a balance between predicted subcortical and

cortical effects since effects in small subcortical structures might

not be detected with larger smoothing kernels (.8 mm) optimised

for putative large cortical clusters while effects in larger cortical

clusters might not be detected with smaller smoothing kernels.

Therefore, according to the requirements of both Gaussian

Random Field Theory and Matched Filter Theorem and to be

consistent with most structural MRI studies, we utilise a smoothing

kernel of 8 mm across the whole brain.

Statistical Analysis
Multivariate pattern recognition approach: Gaussian

Process Classification. We used a binary Gaussian Process

Classifier (GPC) [15,16], which is a supervised pattern recognition

approach that assigns a predictive probability of group member-

ship to each individual based on a set of ‘‘training’’ data. GPCs are

kernel classifiers similar to the widely used Support Vector

Machines (SVMs) and have shown high levels of performance for

neuroimaging data [15,16]. Moreover, GPCs have advantages

over SVMs especially for clinical applications where classes are

likely to be heterogeneous. Specifically, the probabilistic predic-

tions they provide encode a measure of predictive confidence that

quantifies diagnostic uncertainty and can capture variability within

clinical groups. More importantly, probabilistic methods furnish

simple and effective methods to compensate for unbalanced

training datasets (as outlined below) and probabilistic predictions

can also be easily adjusted to compensate for the prior frequency

of diagnostic classes in experimental populations. This means that

inference remains coherent in classification scenarios where the

frequency of each class in the test set are different from the

frequencies observed in the training set and is useful to

accommodate variations in disease prevalence [15,16,23].

We used a linear binary GPC to discriminate between ADHD

and control subjects as implemented in the Pattern Recognition

for Neuroimaging Toolbox (PRoNTo) software (http://www.mlnl.

cs.ucl.ac.uk/pronto) (for details see [15,16]). Whole-brain GM

images were used as input patterns and the expectation

propagation approximation was used to estimate the posterior

predictive distribution, which produces excellent performance for

binary classification. We employed a leave-one-subject-out cross-

validation (LOO-CV) approach to assess classifier generalizability,

whereby we excluded a matched pair of subjects to comprise the

test set, and inferred all parameters from the remaining data

(training set), before applying this classifier to predict the labels for

the test samples. For the binary classifiers, performance was

evaluated using receiver operating characteristic (ROC) curves

derived from the probabilistic predictions and classification

accuracy which measures the classifier performance in a

categorical sense. The ROC curve compares the classifier’s true

positive rate (i.e. the percentage of ADHD subjects correctly

classified as ADHD) and false positive rate (i.e. the percentage of

misclassified control subjects) as the decision threshold is varied.

The area under the curve (AUC) is thus a summary measure of the

Table 1. Demographic and Clinical Data for Participants.

Measure Controls (N = 29) ADHD (N = 29) ASD (N = 29) F test P value post-hoc contrasts*

Age (years) 14.4 (2.48) 13.8 (1.84) 14.9 (1.86) 1.73 0.19

Age range 10.7–17.9 10.5–16.5 12.1–17.9

IQ 109 (10.4) 97.2 (6.91) 113 (15.7) 14.8 ,0.001 ADHD,C, ASD

IQ range 81–125 84–109 84–138

CPRS ADHD score 46.6 (6.54) 75.8 (7.29) 58.7 (7.51) 8102 ,0.001 C,ASD,ADHD

SDQ hyperactivity-impulsive/inattention
score

2 (1.77) 8.32 (2.09) 4.74 (1.91) 76.7 ,0.001 C,ASD,ADHD

DSM-IV total score 45.7 (6.56) 80.1 (10.3) 58.9 (8.57) 94.9 ,0.001 C,ASD,ADHD

DSM-IV inattentive score 45.4 (4.67) 71.8 (8.14) 55.6 (7.87) 82.6 ,0.001 C,ASD,ADHD

DSM-IV hyperactive/impulsive score 47.4 (9.12) 83.5 (9.85) 60.4 (12.4) 72.3 ,0.001 C,ASD,ADHD

ADOS Communication scores – – 2.24 (1.48)

ADOS Social scores – – 7.35 (3.92)

ADOS stereotyped behaviour scores – – 1.11 (0.99)

ADI social scores – – 16.3 (4.59)

ADI communication scores – – 13.9 (3.77)

ADI repetitive behaviour scores – – 5.17 (2.85)

Data expressed as mean (SD). Abbreviations: IQ = intelligence quotient as assessed with the Wechsler Abbreviated Scale of Intelligence; ADHD = Attention Deficit
Hyperactivity Disorder; ASD = Autism Spectrum Disorder; CPRS = Conners’ Parent Rating Scale; SDQ = Strengths and Difficulties Questionnaire; ADOS = Autism
Diagnostic Observation Schedule; ADI = Autism Diagnostic Interview. *Post-hoc t-tests were Bonferroni corrected.
doi:10.1371/journal.pone.0063660.t001
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performance of the classifier across all decision thresholds, where a

classifier with perfect classification would achieve an AUC of 1

and a classifier guessing at chance-level would achieve an AUC of

0.5.

To derive categorical predictions from the probabilistic

predictions derived from the GPC, we thresholded the predictions

according to the frequency of classes in the training set (i.e. 0.5 if

the classes are balanced). We computed the sensitivity and

specificity as the proportion of ADHD patients or controls

respectively having the correct label, averaged across all test splits.

Finally we computed the (balanced) accuracy as the mean of

sensitivity and specificity, which quantifies the overall categorical

classification performance of the classifier in a way that

accommodates potential class imbalance in the data.

We also employed an additional metric for the binary classifiers,

known as ‘‘target information’’. This measure quantifies the

information gain obtained by the classifier and is measured in bits.

A simple baseline classifier that always makes probabilistic

predictions based on the proportion of samples from each class

in the training set will obtain a target information of zero and a

classifier that obtains perfect accuracy and perfect confidence will

obtain a target information of one. See [16,37,38] for more details.

For the multi-class classifier, we primarily assessed performance

using the obvious generalizations of sensitivity, positive predictive

value and balanced accuracy, because the other metrics do not

generalize naturally to the multi-class setting.

Permutation testing was used to derive a p-value to determine if

the balanced accuracy exceeded chance levels (50%). This is

preferred to a parametric test, as it does not require distributional

assumptions. To achieve this, we permuted class labels 1000 times,

each time randomly assigning patient and control labels to each

image and repeating the entire cross-validation procedure. We

then counted the number of times the permuted test accuracy was

higher than the one obtained for the true labels. This number was

then divided by 1000 to give a p-value for the classification.

We also correlated the GPC predictive probabilities with age,

IQ, SDQ hyperactivity-impulsive/inattention subscale and the

CPRS ADHD T-scores.

Specificity of the classifier to ADHD: classification of

ADHD vs. non-ADHD individuals. To establish the degree of

clinical specificity of the classification algorithm to ADHD, we

wanted to assess whether the clinical specificity of the classifier

remained high, when we added another disorder-group to the

control group, i.e. we aimed to discriminate ADHD from ‘‘non-

ADHD’’, including another disorder group.

For this purpose, we included another sample of 19 patients

with ASD and trained a linear binary GPC to discriminate ADHD

from a combined group of ASD and healthy controls (i.e. ‘‘not

ADHD’’). In this case, we employed a LOO-CV approach where

we excluded a single subject per cross-validation fold, and assessed

classifier performance by the same metrics noted above. Note,

however, that since this dataset is unbalanced, we employed a

categorical decision threshold defined by the frequency of classes

in the training set.

Specificity of the Classifier to ADHD: Classification of

ADHD vs. ASD Patients. To further establish the degree of

clinical specificity of the classification algorithm to ADHD relative

to ASD specifically, we trained another linear binary GPC to

discriminate ADHD from the group of 19 ASD patients. As above,

we employed a LOO-CV approach where we excluded a single

subject per cross-validation fold, and assessed classifier perfor-

mance by the same metrics noted above. Since this dataset is

unbalanced, we employed a categorical decision threshold defined

by the frequency of classes in the training set.

Multi-class Gaussian Process Classification of GM

tissues. In addition, we also performed a 3-class GPC

classification which aims to simultaneously discriminate each

group (ADHD, healthy controls and ASD) from one another. As

above, we employed a LOO-CV approach where we excluded a

single subject per cross-validation fold, and assessed classifier

performance primarily in terms of balanced classification accura-

cy. In contrast to the binary classifiers described above, we use the

Laplace approximation to the posterior predictive distribution (see

[16,37,38] for details). A direct multi-class classifier of this type

provides a pattern of predictive weights for each of the classes. As

in the binary context, the weight vector coefficients encode the

contribution of each voxel to the decision function for each group

relative to the others. A high positive score in the weight vector for

a given group denotes a strong positive contribution to a

prediction in favor of that group, while a high negative score for

the same group denotes a strong negative contribution.

Mass-univariate Approach: VBM Analysis. Group differ-

ences were evaluated for GM, WM, CSF volumes and total

intracranial volume (TIV) (the sum of GM, WM and CSF

volumes) obtained in the tissue segmentation step of the VBM-

DARTEL preprocessing. The normalized modulated and

smoothed GM images in each group were entered into a voxel-

wise two-sample t-test analysis where conventional VBM-type

analysis was employed using a relatively stringent significance

threshold of p,0.05, family-wise error rate (FWE) corrected at the

cluster level. Cluster sizes were adjusted for smoothness non-

uniformity by means of the VBM5 toolbox [39]. To facilitate the

interpretation of the multivariate pattern findings and to further

compare the results obtained with VBM and GPC, we lowered the

threshold to a more lenient cluster value of p,0.001 uncorrected

for multiple comparisons to identify regions that may have

contributed to the classification but did not survive multiple

comparison correction.

Results

Participant Characteristics
Groups did not significantly differ in age, but in IQ (see Table 1).

ADHD boys had significantly lower IQ scores relative to the other

two groups, which is typical in this population [40].

Gaussian Process Classification of GM Tissues (ADHD
versus Healthy Controls)

GPC based on whole brain analysis differentiated ADHD

patients from healthy controls with 79.3% accuracy (p,0.001).

The sensitivity of classification for the ADHD group was 75.9%,

while the specificity of the classification for controls was 82.8%.

The positive and negative predictive values (PPV/NPV) for the

classifier were 81.5% and 77.4%, respectively (Figure 1). The area

under the ROC curve (i.e. AUC) was 0.83 and the classifier

delivered 0.28 bits of information per test case.

Figure 2A shows the discrimination weight map (w-map)

showing global spatial patterns that best discriminated the groups.

The weights represent spatially distributed patterns showing the

relative contribution of each voxel to the decision function with

positive weights indicating a positive contribution toward predict-

ing ADHD and negative weights indicating a positive contribution

toward predicting controls.

Regions in the discriminating patterns predictive of controls

included predominantly bilateral hemispheres and cerebellar

vermis, middle temporal, inferior and dorsolateral prefrontal

cortices (IFC/DLPFC), caudate and thalamus, precuneus/cuneus

and inferior and superior parietal regions as well as left

MRI Based Classification of ADHD
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ventromedial frontal cortex, including anterior cingulate (ACC)

and supplementary motor area (SMA) (Figure 2A,B).

Regions in the discriminating pattern predictive of ADHD

patients were most predominantly in earlier developing ventral

brain regions relative to the more dorsal counterparts that

classified healthy controls, such as bilateral ventrolateral, premotor

and ventral temporal cortices, limbic regions including hippocam-

pus, amygdala, hypothalamus, ventral striatum/putamen, insula,

posterior cingulate and brain stem. There was also a small cluster

in the inferior vermis that had greater classification weights for

ADHD, as opposed to the rest of the cerebellum that showed

greater weights for classifying controls (see above) (Figure 2A,B).

No correlations were observed between GPC probability

measures and clinical measures within each group.

To test for potential effects of IQ or age on the classification

patterns, we also correlated these within each group. No

significant correlations were observed.

Gaussian Process Classification of GM Tissues (ADHD vs.
non-ADHD)

The binary classifier trained to discriminate ADHD patients

from the group of healthy controls and ASD patients (i.e. non-

ADHD) achieved a balanced accuracy of 77.1% (p,0.001). The

sensitivity of this disorder-specific classification for the ADHD

group was 79.3% and the specificity was 75.0%. The PPV and

NPV were 65.7% and 85.7% respectively, the AUC was 0.83 and

the classifier delivered 0.26 bits of information per test case.

Figure 3B shows the discrimination w-map showing global spatial

patterns that best discriminated the ADHD and non-ADHD

groups.

No significant correlations were observed between GPC and

either age, IQ or clinical measures within either group.

Figure 1. Predictive Probabilities for the Gaussian Process
Classifier discriminating ADHD and Controls. The x-axis describes
the probability with which each subject is predicted to be an ADHD
patient (equal to 1- the probability of being a control).
doi:10.1371/journal.pone.0063660.g001

Figure 2. 2-class Multivariate and Conventional Maps. A. Multivariate discrimination weight map for ADHD vs. Controls (unthresholded).
Gaussian Process Classification classified ADHD patients and healthy controls with 82.8% and 75.9% sensitivity, respectively; leading to an overall
accuracy of 79.3%. Multivariate discrimination weight-map –intensity values illustrate the relative positive weight distributions (ADHD; orange) and
negative weight distributions (controls; light blue). Within each colour code, the lighter colors (i.e., light orange-yellow, light blue) indicate strongest
weights for the GPC analyses and for the conventional mass-univariate case-control comparison lighter colors indicate higher p-values of structural
differences. B. Multivariate discrimination weight map (thresholded). The map only shows voxels with a weight value above 40% of the maximum
weight value C). Conventional mass-univariate t-statistic map. Controls had increased grey matter relative to patients, thresholded at cluster-wise
p,0.001 uncorrected. No areas showed increased grey matter in ADHD relative to controls.
doi:10.1371/journal.pone.0063660.g002

MRI Based Classification of ADHD
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Gaussian Process Classification of GM Tissues (ADHD vs.
ASD)

The binary classifier trained to discriminate ADHD patients

from ASD patients achieved a balanced accuracy of 85.2%

(p,0.001). The sensitivity of this disorder-specific classification for

the ADHD group was 86.2% and the specificity was 84.2%. The

PPV and NPV were 89.3% and 80.0% respectively, the AUC was

0.91 and the classifier delivered 0.33 bits of information per test

case. Figure 3C shows the discrimination w-map that shows the

global spatial patterns that best discriminate the ADHD and ASD

groups. The weights represent spatially distributed patterns

showing the relative contribution of each voxel to the decision

function with positive weights indicating a positive contribution

toward predicting ADHD and negative weights indicating a

positive contribution toward predicting ASD. Regions in the

discriminating patterns predictive of ASD included predominately

the bilateral cerebellar hemispheres and cerebellar vermis,

superior and middle temporal gyri, predominantly right inferior

cortex, anterior cingulate and SMA, caudate, thalamus, and

limbic areas such as parts of the insula, (anterior) nucleus

accumbens, (dorsal) substantia nigra and (dorsal) fornix.

No significant correlations were observed between GPC and

either age, IQ or clinical measures within each group.

Multi-class Gaussian Process Classification of GM Tissues
The 3-class classifier trained to discriminate among ADHD,

healthy controls and ASD adolescents achieved a balanced

accuracy of 68.2% (p,0.001) which easily exceeded the 33.33%

accuracy that would be predicted for a 3-class classifier by chance.

The sensitivity of this classification for the ADHD, healthy controls

and ASD groups were 75.9%, 65.5%, and 63.2%, respectively;

and the PPV were 62.9%, 73.1% and 75%, respectively (see

Figure S1 for the 3-class w-maps).

Therefore, the GPC accurately discriminated all classes from

one another. We emphasize that multi-class classification is a more

difficult problem than binary classification and the accuracies

listed above reflect substantially better predictive performance

than would be the case for the same numerical values derived from

a binary classifier.

VBM-DARTEL Analysis of GM Volume Differences
The ADHD group had significantly smaller GM, CSF and TIV

volumes than controls (Table 2). Using the conventional voxel-wise

two-sample t-test VBM analysis with a stringent FWE correction of

p,0.05 at cluster level, the ADHD group had significantly smaller

GM volume in right cerebellum (anterior and posterior lobe)

(p,0.0001) and in left inferior parietal lobule (p,0.03) (Table 3,

Figure 2C). At an uncorrected cluster threshold of p,0.001, the

ADHD group also had smaller GM volumes in bilateral IFC, right

Figure 3. 2-class multivariate weight maps. A) Multivariate discrimination weight map for ADHD vs. Controls (unthresholded). Gaussian Process
Classification classified ADHD patients and healthy controls with 82.8% and 75.9% sensitivity, respectively; leading to an overall accuracy of 79.3%.
Multivariate discrimination weight-map –intensity values illustrate the relative positive weight distributions (ADHD; orange) and negative weight
distributions (controls; blue). Within each colour code, the lighter colors (i.e., light orange-yellow, light blue) indicate strongest weights for the GPC
analyses. B) Multivariate discrimination weight map for ADHD vs. non-ADHD (unthresholded). Gaussian Process Classification classified ADHD patients
and non-ADHD with 79.3% and 77.1% sensitivity, respectively; leading to an overall accuracy of 78.2%. Multivariate discrimination weight-map–
intensity values illustrate the relative positive weight distributions (ADHD; orange) and negative weight distributions (non-ADHD; violet). Within each
colour code, the lighter colors (i.e., light orange-yellow, light violet) indicate strongest weights for the GPC analyses. C) Multivariate discrimination
weight map for ADHD vs. ASD (unthresholded). Gaussian Process Classification classified ADHD patients and ASD patients with 93.1% and 68.4%
sensitivity, respectively; leading to an overall accuracy of 80.8%. Multivariate discrimination weight-map–intensity values illustrate the relative
positive weight distributions (ADHD; orange) and negative weight distributions (ASD; green). Within each colour code, the lighter colors (i.e., light
orange-yellow, light green) indicate strongest weights for the GPC analyses.
doi:10.1371/journal.pone.0063660.g003
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middle and inferior temporal gyri, and in a more ventral region of

left inferior parietal lobe reaching into postcentral gyrus

(Figure 2C, Table 3). Given that based on previous meta-analyses

of structural MRI studies in ADHD [2,4], we also hypothesized

reduced GM volumes in the basal ganglia, we tested for trend-level

findings in this region and found reduced GM volumes in left

caudate (MNI coordinates (x,y,z): 8; 8,-6) in ADHD relative to

healthy control boys, at a trend level of an uncorrected cluster

threshold of p,0.086.

Discussion

We show that it is possible to correctly classify mostly

medication-naı̈ve ADHD boys from controls based on their GM

patterns with an overall accuracy of 79.3%, providing a sensitivity

of 81.5% and a specificity of 77.4%. Crucially, this classifier also

demonstrated excellent disorder-specificity relative to ASD with a

sensitivity of 86.2% and a specificity of 84.2%, showing that 1) the

patterns of structural abnormality predictive of ADHD are not

attributable to psychopathology in general, such as ASD, which

shares symptoms and is frequent comorbid with ADHD [41] and

2) that all diagnostic groups could be simultaneously and

accurately discriminated from one another.

The regions of the discriminative pattern most predictive of

ADHD were mostly in earlier developing ventral frontal,

premotor, temporal, limbic and brain stem regions. The regions

of the discriminative pattern most predictive of controls included

typically later developing more dorsolateral and inferior prefrontal

regions, ACC/SMA, dorsal striatum, thalamus and inferior

parietal areas that form fronto-striato-parieto-cerebellar networks

mediating the higher level cognitive control, attention and timing

functions that are impaired in ADHD[6,7,9–11]. Furthermore,

several of the IFC, cerebellar and inferior parietal regions that had

higher weights for classifying healthy controls based on the

multivariate analyses, were also reduced in GM in ADHD relative

to healthy boys, suggesting they were GM deficit regions. The

findings of increasing classification weights for ADHD in earlier

developing ventral fronto-temporo-limbic networks by contrast to

more dorsal DLPFC and IFC striato-parieto-cerebellar networks

for controls are in line with evidence from univariate longitudinal

structural imaging studies of a delay in brain maturation for

ADHD [42,43].

The classification accuracy findings of over 79% based on

ADHD brain structure measures and its disorder-specificity

relative to ASD with a 85% of accuracy are promising and, if

replicated, suggest that it may be possible in the future to use

machine learning based pattern recognition analyses to aid in the

differential diagnostic classification of ADHD with a more

objective and reliable measure such as a short structural MRI

scan.

The pattern classification analysis revealed relatively high

prediction accuracy for ADHD, with a classification accuracy of

79.3%. The overall accuracy obtained in this study is thus not only

higher than all studies derived from the ADHD-200 competition

using resting state and structural MRI data (ranging between 67%

and 76%)[18–21], but it also demonstrates high sensitivity and

high specificity relative to healthy controls and ASD patients.

Finally, our approach is readily interpretable in that it provides a

discriminative pattern that quantifies the discriminative value of

different brain regions and can be easily related to VBM findings

that quantify difference between disease groups in a univariate

manner.

Interestingly, the distributed GM patterns that showed the

highest weights for classifying the ADHD boys were in predom-

inantly subcortical areas, including most parts of the limbic system

(amygdala, hippocampus, hypothalamus, insula, ventral striatum

and posterior cingulate) and in brain stem, as well as in more

ventral frontal, premotor and temporal regions, which contrasted

with the distributed network of more dorsal DLPFC and IFC,

dorsal striatum and inferior parietal areas that correctly classified

controls. Furthermore, the predictive probabilities for ADHD

patients were correlated with ADHD severity ratings, reinforcing

their diagnostic classification utility. Subcortical as well as

ventrolateral frontal and striatal regions that classified ADHD

develop earlier than the more dorsal cortical and striatal brain

regions that were characteristic for the classification of controls

[44,45]. The pattern classification findings are hence in line with

the notion of a maturational delay of GM development in ADHD

patients, as demonstrated in univariate analyses that showed a

delay in ADHD in the maturation of cortical thickness and surface

morphology of between 2 and 5 years, most prominently in

dorsolateral prefrontal, superior temporal and inferior parietal

brain regions [42,43,46]. This is further supported by the fact that

the same lateral DLPFC/IFC-caudate-parieto-cerebellar networks

that classified controls in their GM mediate the late developing

higher level functions of cognitive control, timing and attention

[47] that are typically impaired in ADHD patients in cognition

and functional activation[6,9–11,48].

All brain regions that were reduced in ADHD patients in their

GM relative to controls in the univariate analyses overlapped with

brain regions that showed a higher weight for classifying controls,

suggesting that the regions in the multivariate patterns predictive

of controls reflect GM deficit areas in ADHD. The findings of

reduced GM in the lateral parts and vermis of the cerebellum, in

bilateral inferior frontal, left parietal, and right temporal cortices

replicates previous findings of reduced GM in these regions in

whole brain [3,49] as well as region of interest (ROI) analyses

[5,50]. The findings of the largest and most significant reduction in

GM in the cerebellum replicates previous findings [51,52], also

outlined in a meta-analysis of ROI structural MRI studies [5]. The

cerebellum is one of the latest areas to develop [53], together with

the frontal and superior temporal lobes [45] and the finding is

hence in line with the notion that ADHD patients have deficits in

late maturing brain regions, likely due to a maturational delay. We

only observed reduced GM in the caudate at a more lenient

uncorrected threshold of p,0.078, and in the left hemisphere,

which was unexpected, given that a reduction of right basal

ganglia GM was the most consistent finding in two recent meta-

analyses of whole brain structural MRI studies [2,4]. The sample

size of this study is relatively small for univariate structural image

analyses and the basal ganglia GM deficits may only be observable

with larger sample sizes.

Table 2. Global volume group differences in ADHD and
controls.

Controls
(N = 29)

ADHD
(N = 29) t test p value

GM volume (ml) 790 (53.5) 749 (59.9) 2.69 0.009

WM volume (ml) 515 (44.0) 497 (47.3) 1.50 0.138

CSF volume (ml) 341 (42.9) 318 (30.2) 2.30 0.025

TIV volume (ml) 1646 (130) 1565 (129) 2.36 0.022

Data expressed as mean (SD). ADHD: Attention Deficit Hyperactivity Disorder;
GM: grey matter; WM: white matter; CSF: cerebrospinal fluid; TIV: total
intracranial volume ( = GM+WM+CSF volumes).
doi:10.1371/journal.pone.0063660.t002
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Importantly, we demonstrated that the achieved classification is

disorder-specific to ADHD, as similar and even increased accuracy

was achieved when we added a psychiatric control group of ASD

adolescents and when we compared ADHD and ASD alone with

each other, where we achieved a sensitivity of 86.2% and a

specificity of 84.2%. The findings extend the previous literature of

multivariate pattern analyses of ADHD by showing for the first

time that the patterns that classify ADHD patients are disorder-

specific and do not classify ASD patients. The findings extend

previous findings of disorder-specific classification in adults with

ASD, where the classifier was not suitable to classify adult patients

with ADHD [54].

The pattern of brain regions that discriminated the ASD from

the ADHD group is largely in areas that have been found to be

different in ASD patients relative to controls such as in cerebellar

hemispheres and cerebellar vermis, ACC caudate/thalamus,

inferior frontal cortex, middle and superior temporal and right

inferior parietal regions [55–58]. The discriminating brain regions

identified for ASD have also been implicated in the mediation of

three core behaviors that are impaired in ASD; namely social

impairment (ACC, fusiform gyrus, inferior frontal cortex, and

posterior parietal cortex), communication deficits (SMA, basal

ganglia, substantia nigra, and thalamus), and repetitive behaviors

(ACC, basal ganglia and thalamus) [59]. Furthermore, the finding

of inferior parietal patterns classifying ASD versus ADHD echoes

and extends the univariate VBM findings of the only structural

MRI study which compared between ADHD and ASD adoles-

cents and found ASD-specific enhanced GM relative to controls in

right supramarginal gyrus [60]. The positive contribution for

classifying ASD in the cerebellum is interesting in view of the only

fMRI comparison between the two disorders during a vigilance

task, where we showed that ASD patients had a disorder-specific

cerebellar overactivation relative to both healthy controls and

ADHD adolescents [61]. Finally, the disorder-specificity of the

classifier is further confirmed by our 3-class classification that

showed a far higher than chance accuracy of 75.9%, 65.5%, and

63.2%, in classifying ADHD, healthy controls and ADHD, by

clearly distinctive structural GM patterns.

Together, the findings suggest that it is possible to use

multivariate pattern recognition analyses for disorder-specific

classification of ADHD based on structural imaging data. If

replicated this may have future implications as a possible aid in

differential diagnosis, in particular for difficult to diagnose patients.

The strength of the study is the use of probabilistic GPC

methods that confers multiple benefits for clinical studies. Another

strength is the inclusion of mostly (73%) medication-naı̈ve ADHD

patients, since long-term stimulant medication has been associated

with more normal GM and cortical thickness of fronto-cingulate,

parietal, cerebellar and striatal regions[2,52,62–65] and 100%

medication-naı̈ve ASD patients. To increase the homogeneity of

the sample, we included only males with the combined hyperac-

tive-impulsive and inattentive subtype of ADHD. However, this

limits the diagnostic classification patterns to the male ADHD

subtype. Also, future diagnostic utility of pattern classification

analyses will rely on its ability to sub-classify even more refined

ADHD subtypes such as attention deficit alone without hyperac-

tivity or ADHD with emotional dysregulation based on their brain

structure patterns.

A limitation is a relatively modest sample size. While the study

advances neuroimaging towards providing useful diagnostic

markers for ADHD, it does not definitively quantify their

discriminative value. Also, patients differed in IQ, which is typical

for this population [40]. However, no correlation was observed

between IQ and GPC probabilities making it unlikely that IQ

played a crucial factor. Lastly, while the overall classification

accuracy of 79.3% and in particular the specificity of 81.5% was

respectable, this would still leave a relatively large percentage of

incorrectly classified individuals. Future studies in larger samples,

perhaps including other structural measures such as cortical

thickness, may provide better classification accuracy.

In conclusion, this is the first study demonstrating probabilistic

GPC methods for accurately classifying ADHD patients based on

their brain structure patterns. We achieved a considerable overall

classification accuracy of 79.3% based on distributed and clearly

distinct GM brain structure patterns, with later developing

dorsolateral fronto-striato-parieto-cerebellar networks discriminat-

ing controls and earlier developing ventrolateral/premotor fronto-

limbic–brain stem networks discriminating ADHD. Importantly,

the classifier was both sensitive and specific for ADHD and was

also disorder-specific relative to ASD. The findings are a

promising step towards finding an objective differential diagnostic

tool based on brain imaging measures to aid with the subjective

clinical diagnosis of ADHD.

Supporting Information

Figure S1 Non-thresholded three-class multivariate
discrimination weight maps. A. Multivariate discrimination

weight map for ADHD (orange) vs. Controls and ASD (light blue).

B. Multivariate discrimination weight map for Controls (orange)

vs. ADHD and ASD (light blue). C) Multivariate discrimination

weight map for ASD (orange) vs. ADHD and Controls (light blue).

The intensity values of the multivariate discrimination weight-

maps illustrate the relative positive weight distributions (orange)

and negative weight distributions (cyan).

(TIF)

Table 3. Reduced grey matter in ADHD relative to healthy control boys in the traditional VBM analysis.

Brain regions Brodmann area Talairach Coordinates Voxels Cluster p-value

R & L Cerebellum 27;258; 244 17628 ,0.0001

L inferior parietal/pre2/postcentral 40/2/1/3/4 251; 218;45 765 0.007

L inferior frontal 44/45/9 240;20;31 981 0.003

R inferior frontal 44/45 48;15;19 421 0.034

L inferior parietal/postcentral 40/2/1/3 256; 219;22 599 0.014

R middle/inferior temporal 21/37/39 60; 252;0 1255 0.001

Regions that survived a cluster-wise FWE correction at p,0.05 are indicated in bold. All other regions were observed at an uncorrected cluster-wise p,0.001. No
increase in grey matter was observed for ADHD relative to controls.
doi:10.1371/journal.pone.0063660.t003
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