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Abstract

Hemorrhagic shock and resuscitation induces pulmonary inflammation that leads to acute lung injury. Biliverdin, a
metabolite of heme catabolism, has been shown to have potent cytoprotective, anti-inflammatory, and anti-oxidant effects.
This study aimed to examine the effects of intravenous biliverdin administration on lung injury induced by hemorrhagic
shock and resuscitation in rats. Biliverdin or vehicle was administered to the rats 1 h before sham or hemorrhagic shock-
inducing surgery. The sham-operated rats underwent all surgical procedures except bleeding. To induce hemorrhagic
shock, rats were bled to achieve a mean arterial pressure of 30 mmHg that was maintained for 60 min, followed by
resuscitation with shed blood. Histopathological changes in the lungs were evaluated by histopathological scoring analysis.
Inflammatory gene expression was determined by Northern blot analysis, and oxidative DNA damage was assessed by
measuring 8-hydroxy-29 deoxyguanosine levels in the lungs. Hemorrhagic shock and resuscitation resulted in prominent
histopathological damage, including congestion, edema, cellular infiltration, and hemorrhage. Biliverdin administration prior
to hemorrhagic shock and resuscitation significantly ameliorated these lung injuries as judged by histopathological
improvement. After hemorrhagic shock and resuscitation, inflammatory gene expression of tumor necrosis factor-a and
inducible nitric oxide synthase were increased by 18- and 8-fold, respectively. Inflammatory gene expression significantly
decreased when biliverdin was administered prior to hemorrhagic shock and resuscitation. Moreover, after hemorrhagic
shock and resuscitation, lung 8-hydroxy-2’ deoxyguanosine levels in mitochondrial DNA expressed in the pulmonary
interstitium increased by 1.5-fold. Biliverdin administration prior to hemorrhagic shock and resuscitation decreased
mitochondrial 8-hydroxy-2’ deoxyguanosine levels to almost the same level as that in the control animals. We also
confirmed that biliverdin administration after hemorrhagic shock and resuscitation had protective effects on lung injury.
Our findings suggest that biliverdin has a protective role, at least in part, against hemorrhagic shock and resuscitation-
induced lung injury through anti-inflammatory and anti-oxidant mechanisms.
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Introduction

Hemorrhagic shock and resuscitation (HSR) causes a systematic

inflammatory response that ultimately leads to multiple organ

failure.[1,2] Acute lung injury (ALI) after HSR is a major cause of

dysfunction in other organs because of the systemic release of

inflammatory mediators.[3] HSR also causes oxidative damage to

endothelial cells and involves the accumulation of neutrophils and

activation of nuclear factor-kappa B (NF-kB), a transcription

factor related to the production of many proinflammatory

molecules.[4,5] This interaction between inflammation and

oxidative damage is an important mechanism involved in ALI

after HSR.

Bilirubin is considered toxic in high concentrations because it

exerts harmful effects on the central nervous system.[6] The anti-

oxidant activity of bilirubin was shown in for the first time in the

1980s.[7] It is now well known that the potent anti-oxidant action

of bilirubin is amplified by the biliverdin (BV)/bilirubin redox

cycle mediated by biliverdin reductase (BVR).[8] BVR converts

BV to bilirubin, which is converted back into BV through the

actions of reactive oxygen species (ROS). In addition, BV has been

shown to play a cytoprotective role in various experimental models

of oxidative tissue injury without abnormally elevating serum

bilirubin levels.[9–13] In particular, it has been already shown that

biliverdin administration improves acute lung injury induced by

lipopolysaccharide (LPS).[13] However, protective effects of

biliverdin administration should be determined in other settings

to elucidate its mechanistic details.

In the present study, we administered BV prior to HSR and

examined its effects on HSR-induced lung injury in rats. The aim

of our study is to examine whether BV ameliorate HSR-induced

lung injury by suppressing gene expression of inflammatory

mediators and decreasing oxidative DNA damage in the lungs.
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Materials and Methods

1. Animals and treatments
The study reported herein conformed to the National Institutes

of Health Guidelines for Animal Research (Guide for the Care and

Use of Laboratory Animals) and protocol was approved by the

Animal Use and Care Committee of Okayama University Medical

School (OKU-2012151). Male Sprague–Dawley rats weighing 350

to 400 g were purchased from Clea Japan, Inc. (Tokyo, Japan).

The rats were housed in temperature-controlled (25uC) rooms with

12-hr light/ dark cycles and allowed access to water and chow

until the start of experiments. All surgical procedures and painful

treatments were done under anesthesia with ethyl ether. To

decrease stress during hemorrhagic shock and resuscitation,

intraperitoneal sodium pentobarbital injection was used. Ethly

ether was also used for euthanasia.

2. Hemorrhagic shock protocol
Rats were anesthetized with intraperitoneal sodium pentobar-

bital (50 mg/kg) injections and subjected to sham or HS surgery.

In brief, the left femoral artery and vein were dissected using

aseptic procedures and catheterized with heparinized polyethylene

tubing. The left femoral artery catheter was used to measure blood

pressure while the left femoral vein catheter was used to induce

HSR. After measuring the baseline blood pressure, hemorrhage

was initiated by bleeding into a heparinized syringe (10 units/ml)

for a period of 15 min to achieve a mean arterial blood pressure of

30 mmHg. The animals were maintained at this blood pressure

(3065 mmHg) for 60 min by further blood withdrawal or shed

blood infusion. The animals were then resuscitated for 15 min by

administration of all shed blood until pressure was restored to

baseline levels. The sham group was subjected to all procedures

except bleeding. The animals were allowed to breathe spontane-

ously throughout the experiment. All procedures were performed

on a heating pad with continuous monitoring and regulation of

rectal temperature within physiologic range.

3. Doses of BV and serum bilirubin levels
To examine the effects of BV administration on serum bilirubin

levels, the rats were administered various doses of BV (0, 15, 35,

70, 100 mg/kg) via the tail vein under light anesthesia with ethyl

ether. Serum bilirubin levels were measured at 1 h after BV

administration using ABL800FLEX (Radiometer Medical, Co-

penhagen, Denmark).

4. Experimental design
To examine the effects of BV administration on HSR-induced

lung injury, rats were randomly divided into the following four

groups: a vehicle/sham group (n = 11), which was administered

vehicle (saline) before sham surgery, a BV/sham group (n = 11),

which was administered BV before sham surgery, a vehicle/HSR

group (n = 11), which was administered vehicle before HSR, and a

BV/HSR group (n = 11), which was administered BV before

HSR. BV (35 mg/kg) or vehicle was injected via the tail vein 1 h

before the HS-inducing or sham surgery. At specific timepoints (3

or 12 h) after resuscitation, the animals were euthanized by

decapitation under light anesthesia with ethyl ether. The lungs

were excised, rinsed quickly and gently in saline, and stained with

hematoxylin and eosin and naphthol AS-D chloroacetate esterase

for histological analysis and 8-hydroxy-29 deoxyguanosine (8-

OHdG) for immunohistochemical analysis. For the preparation of

RNA and the measurement of myeloperoxidase (MPO) activity

and 8-OHdG levels, tissue samples were frozen immediately in

liquid nitrogen and stored at 280uC until further use.

5. BV treatment
BV hydrochloride (Frontier Scientific, Inc., Logan, UT, USA)

was dissolved in 0.2 N NaOH and adjusted to pH 7.4 with 1 N

HCl. The solution was passed through a 0.45-mm filter

(CORNINGH) and diluted in saline (35 mg/kg in 1 mL saline)

to approximately 20 mM (19.78–22.61) prior to injection. Because

BV is light sensitive, the solutions were prepared and the

experiments were performed under dim lighting conditions.

6. Preparation of cDNA
Template cDNAs for tumor necrosis factor (TNF)-a and

inducible nitric oxide synthase (iNOS) were prepared as described

previously.[14,15] All probes used for Northern blot analysis were

[a-32P] deoxycytidine triphosphate (dCTP) (PerkinElmer Japan

Co. Yokohama, Japan)-labeled cDNA prepared using a random

primer DNA labeling system (GE Healthcare Japan Co. Tokyo,

Japan) according to the manufacturer’s instructions.

7. RNA isolation and Northern blot analysis
Rat lungs were excised 3 h after resuscitation, and total RNA

was isolated from the lung tissues using Tri-ReagentH (Sigma-

Aldrich Japan Co. Tokyo, Japan) according to the manufacturer’s

protocol. Total RNA (20 mg) was subjected to electrophoresis in

1.2% (w/v) agarose gel containing 6.5% (v/v) formaldehyde. After

blotting on a sheet of Bio-Rad Zeta-Probe membrane (Bio-Rad

Laboratories Co. Tokyo, Japan), RNA samples were hybridized

with a [a-32P] dCTP-labeled cDNA probe and washed under

stringent conditions. The membrane was exposed to a sheet of Fuji

Medical radiograph film with an intensifying screen at 270uC.

Autoradiographs and 18S ribosomal RNA were quantified using

an image scanner (GelPrint
TM

2000i, Genomic Solutions, Inc., Ann

Arbor, MI, USA) and computerized image analysis software (Basic

Quantifier
TM

Version 3.0, Genomic Solutions, Inc.).

8. Histological analysis
For histological examinations, tissues were excised 12 h after

resuscitation and fixed in 10% neutral buffered formalin,

embedded in paraffin, and sectioned at a thickness of 4–6 mm.

After deparaffinization and dehydration, the sections were stained

with hematoxylin and eosin and examined by an observer blinded

to the treatment using a light microscope. Histopathological

scoring analysis was performed according to previously described

methods with modifications for five independent experiments.[16–

18] A total of 10 areas of lung parenchyma from each animal were

graded as 0 (no findings or normal), 1 (mild), 2 (moderate), or 3

(severe) for each of the following four parameters: intravascular

congestion, pulmonary edema, inflammatory cellular infiltration,

and intra-alveolar hemorrhage. The result was expressed as a

mean of the sum of individual scores for each of these parameters.

The neutrophils in the lungs were stained with a naphthol AS-D

chloroacetate esterase-staining kit (Sigma Diagnostics, St. Louis,

MO, USA) using sections adjacent to those used for histopatho-

logical analysis.[19] The number of positively stained cells was

counted in five nonconsecutive sections per rat at 4006
magnification by an observer blinded to the treatment.

9. Lung wet-weight to dry-weight (wet/dry) ratio
At 12 h after resuscitation, left lung tissue samples were blotted,

weighed, and dried at 110uC for 24 h. The dry tissue weight was

then determined and the wet/dry ratio calculated as an index of

pulmonary edema.[14,20,21]
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10. Lung MPO assay
Lung MPO activity at 12 h after resuscitation was measured as

described by Bradley et al.[22], albeit with some modification.[14]

Briefly, the tissue was homogenized in 50 mM potassium

phosphate buffer (pH 6.0) containing 0.5% (w/v) hexadecyltri-

methylammonium bromide (Nacalai Tesque, Kyoto, Japan),

followed by centrifugation at 15,000 g. After centrifugation,

0.1 ml of the supernatant was mixed with potassium phosphate

buffer (pH 6.0) containing 0.167 mg/ml o-dianisidine dihydro-

chloride (Sigma-Aldrich Japan Co., Tokyo, Japan). Following the

addition of 0.3% hydrogen peroxide to the mixture, the increase in

color was monitored at 460 nm for 1 min using a spectropho-

tometer (U-3000
TM

HITACHI, Tokyo, Japan). The protein

concentration of the supernatant was determined using a PierceH
BCA

TM

Protein Assay Kit (Thermo Fisher Scientific, Inc., Rock-

ford, IL, USA) according to the manufacturer’s instructions.

Values are reported as change in optical density (DOD) per

milligram of protein.

Figure 1. Lung histopathological changes after hemorrhagic shock and resuscitation (HSR). Lungs from the HSR group rats treated with
or without biliverdin (BV) administration were excised 12 h after resuscitation and subjected to histological analysis. (A) Representative images from
five independent experiments (hematoxylin–eosin staining, original magnification 6200, scale bar = 100 mm). (B) The severity of histopathological
changes in the lungs was graded for congestion, edema, inflammation, and hemorrhage. A total of 10 areas of lung parenchyma from each rat were
graded as 0 (no findings or normal), 1 (mild), 2 (moderate), or 3 (severe) for each of the four parameters. (C) The sum of histopathological scores for
the four parameters were calculated (n = 5 per group). Data are presented as means 6 standard deviation and were statistically evaluated using
analysis of variance followed by Tukey–Kramer honestly significant difference test. *p,0.01 vs. vehicle/sham; {p,0.01 vs. BV/sham; #p,0.01 vs.
vehicle/HSR. Vehicle/sham, vehicle-administered animals subjected to sham surgery; BV/sham, BV-administered animals subjected to sham surgery;
vehicle/HSR, vehicle-administered animals subjected to HSR; BV/HSR, BV-administered animals subjected to HSR.
doi:10.1371/journal.pone.0063606.g001
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11. Measurement of lung 8-OHdG levels
Lung samples 3 h after resuscitation were homogenized using

Cryo-Press (Microtec Co., Chiba, Japan). Mitochondrial DNA was

isolated from the lung homogenates using a DNA extractor kit

(Wako, Osaka, Japan). The 8-OHdG levels in the mitochondrial

DNA were determined using an enzyme-linked immunosorbent

assay kit (High sensitivity; Japan Institute for the Control of Aging,

Shizuoka, Japan) according to the manufacturer’s instructions.[23]

A total of 20 assays were performed in duplicate. Values are

reported as the amount of 8-OHdG (nanogram) per milligram of

mitochondrial DNA.

12. Immunohistochemistry
Immunohistochemical analysis was performed using the indirect

immunofluorescence method. Lung tissues were excised 3 h after

resuscitation and fixed in 10% neutral-buffered formalin, embed-

ded in paraffin, and sectioned at a thickness of 4–6 mm. Following

antigen retrieval in citrate buffer (0.01 M, pH 6.0) with autoclave

heat treatment, nonspecific binding sites were blocked with 5%

normal goat serum for 60 min. Slides were incubated overnight at

4uC with a mouse anti-8-OHdG monoclonal antibody (Japan

Institute for the Control of Aging) and a rabbit anti-aquaporin 5

polyclonal antibody (Alomone Labs, Ltd., Jerusalem, Israel) at a

dilution of 1:100 in 0.01 M phosphate-buffered saline containing

0.3% Triton X-100. For fluorescent visualization of the bound

Figure 2. Neutrophil accumulation and myeloperoxidase (MPO) activity in the lungs after hemorrhagic shock and resuscitation
(HSR). Lungs from the HSR group rats treated with or without biliverdin (BV) were excised 12 h after resuscitation. Neutrophils were stained by the
naphthol AS-D chloroacetate method and MPO activity was measured. (A) Each photograph is representative of five independent experiments. The
arrows indicate positively stained neutrophils (original magnification6400, scale bar = 50 mm). (B) The number of neutrophils in five nonconsecutive
lung sections per rat at a magnification of 6400 (n = 5 per group). (C) Lung MPO activity (n = 6 per group). Data are presented as means 6 standard
deviation and were statistically evaluated using analysis of variance followed by Tukey–Kramer honestly significant difference test. *p,0.05 vs.
vehicle/sham; {p,0.05 vs. BV/sham; #p,0.05 vs. vehicle/HSR. Vehicle/sham, vehicle-administered animals subjected to sham surgery; BV/sham, BV-
administered animals subjected to sham surgery; vehicle/HSR, vehicle-administered animals subjected to HSR; BV/HSR, BV-administered animals
subjected to HSR.
doi:10.1371/journal.pone.0063606.g002
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primary antibody, the slides were further incubated for 90 min

with Alexa FlourH 488 goat anti-mouse IgG antibody (Molecular

Probes, Inc., Eugene, OR, USA) with a green fluorescent label and

Alexa FlourH 555 goat anti-rabbit IgG antibody (Molecular

Probes, Inc.) with a red fluorescent label. Normal mouse and

rabbit serum were used as controls for nonspecific staining. Images

were obtained using a Zeiss confocal laser scanning microscope

model LSM510 (Zeiss, Jena, Germany). All images were visualized

with a 2060.5 objective lens.

13. Effect of BV administration after HSR
To examine the effects of BV administration after HSR, the rats

were randomly divided into two groups: a HSR/Vehicle group

(n = 10), which was administered vehicle after HSR, and a HSR/

BV group (n = 10), which was administered BV after HSR. BV

(35 mg/kg) or vehicle was injected via the femoral vein after

resuscitation. We examined histological analysis and 8-OHdG

expression in the lungs. Each measurement had been done as

described above.

14. Statistical analysis
Data are expressed as mean 6 standard deviation. Statistical

analysis was performed using Student’s t-test or analysis of

variance followed by Tukey–Kramer honestly significant differ-

ence test as appropriate. Comparisons were examined using

JMPH9 software (SAS Institute Inc., Cary, NC, USA). P,0.05 was

considered statistically significant.

Results

1. Effect of BV adminisitration on serum bilirubin levels
It is well known that BV catalyzes to bilirubin by BVR;

therefore, we examined the effects of BV administration at various

doses (0, 15, 35, 70, and 100 mg/kg) on serum bilirubin levels. At

1 h after treatment, serum bilirubin levels increased in a dose-

dependent manner, confirming that BV was converted to bilirubin

promptly after administration as expected. Because the levels of

bilirubin generated after the administration of 35 mg/kg BV were

elevated but within the normal range of ,1 mg/dl, and because

BV has been shown to exert protective effects at this dose in

models of organ transplantation and endotoxin-induced ALI,

[10,13] we decided to use 35 mg/kg of BV in subsequent studies.

2. Effect of BV administration on histological changes in
the lungs after HSR

Next we examined the effects of BV administration prior to HS

induction on HSR-induced lung injury. Histopathological analysis

indicated that the vehicle/HSR group developed interstitial edema

as identified by pronounced alveolar septal thickening with

marked infiltration of inflammatory cells 12 h after HSR.

However, sections from the sham groups appeared normal (Fig.

1, A). In contrast, BV administration prior to HSR obviously

mitigated these pathological changes, including congestion,

edema, inflammation, and hemorrhage (Fig. 1, A and B). The

significant effects of BV were also confirmed by the scoring of

histopathologic changes by an independent researcher blinded to

the treatment. BV administration greatly suppressed lung injury as

evidenced by decreased histopathological damage confirmed by a

decrease in the total histopathologic score (Fig. 1, C).

3. Effect of BV administration on neutrophil accumulation
in the lungs after HSR

On the basis of the central role of neutrophils in the

pathogenesis of lung injury, we evaluated MPO activity accom-

panied by neutrophil sequestration. Pulmonary MPO activity was

markedly elevated in the vehicle/HSR group 12 h after

resuscitation compared with that in the sham groups (Fig. 2, C).

BV treatment before HSR significantly decreased MPO activity in

the lungs compared with vehicle treatment before HSR (Fig. 2, C).

Consistent with changes in MPO activity, the number of

infiltrating neutrophils in the lungs also markedly increased in

the vehicle/HSR group at the same timepoint (Fig. 2, A and B). In

contrast, neutrophil recruitment in the lungs was markedly

decreased in the BV/HSR group, with a marked decrease in

number (Fig. 2, A and B).

4. Effect of BV administration on lung edema after HSR
ALI is characterized by pulmonary edema caused by alveolar

and interstitial fluid accumulation, resulting in a decrease in lung

compliance and hypoxemia.[23] Lung wet/dry ratio, a parameter

of lung edema, significantly increased 12 h in the HSR groups

compared with that in the sham groups (Fig. 3). However, BV

administration significantly attenuated HSR-induced lung edema

(Fig. 3).

5. Effect of BV administration on gene expression of the
HSR-induced inflammatory mediators TNF-a and iNOS

To elucidate the molecular mechanism underlying the anti-

inflammatory effects of BV, we examined the effects of BV

treatment on the gene expression of the inflammatory mediators

such as TNF-a and iNOS using Northern blot analysis. Although

mRNA levels of TNF-a and iNOS were barely detectable in the

sham groups irrespective of the presence or absence of BV, these

genes were significantly upregulated in the vehicle/HSR group 3 h

after resuscitation (Fig. 4). The mRNA levels of TNF-a and iNOS

Figure 3. Lung wet/dry ratio after hemorrhagic shock and
resuscitation (HSR). Lungs from the HSR group rats treated with or
without biliverdin (BV) were excised 12 h after resuscitation and lung
wet/dry ratio was measured. Data are presented as means 6 standard
deviation (n = 5 per group). Statistical analysis was performed using
analysis of variance followed by Tukey-Kramer honestly significant
difference test. * p,0.05 vs. vehicle/sham; ?p,0.05 vs. BV/sham;
#p,0.05 vs. vehicle/HSR. Vehicle/sham, vehicle-administered animals
subjected to sham surgery; BV/sham, BV-administered animals subject-
ed to sham surgery; vehicle/HSR, vehicle-administered animals subject-
ed to sham; BV/HSR, BV-administered animals subjected to sham.
doi:10.1371/journal.pone.0063606.g003
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were significantly decreased in the BV/HSR group compared with

those in the vehicle/HSR group (Fig. 4).

6. Effect of BV administration on lung 8-OHdG expression
To examine oxidative DNA damage, we measured 8-OHdG

levels in lung tissue and performed immunohistochemical analysis.

HSR increased mitochondrial 8-OHdG levels in the lung by 1.5-

fold compared with sham surgery (Fig. 5). BV administration

before HSR significantly decreased mitochondrial 8-OHdG levels

to almost the same level as that in the sham groups (Fig. 5).

According to immunohistochemistry, 8-OHdG-positive cells were

negligibly detected in the sham groups (Fig. 6A and I). However,

strong positive signals (green color) for 8-OHdG were predomi-

nantly observed in the pulmonary interstitium of the HSR groups

(Fig. 6C and K). In contrast, BV administration quenched 8-

OHdG signals in the lungs of animals in the HSR groups (Fig. 6D

and L). These results revealed that BV administration significantly

inhibited HSR-induced oxidative DNA damage.

7. Effect of BV administration after HSR
To enhance clinical significance of our findings, we assessed the

protective effects of BV administration after resuscitation. In

histological examinations, HSR-induced lung injury appeared to

be improved by BV administration (Fig. 7A), although the

difference in the histopathological score did not reach statistical

significance (Fig. 7B). However, mitochondrial 8-OHdG, a marker

DNA oxidative damage, was significantly reduced by the

administration of BV even after HSR (Fig. 7C).

Discussion

This study demonstrated that 35 mg/kg of BV administered

intravenously before HSR significantly ameliorated HSR-induced

lung injury. This fact was confirmed by improvements in

histological changes, neutrophil infiltration, and lung edema. We

also found that BV administration significantly decreased the gene

expression of inflammatory mediators such as TNF-a and iNOS.

Finally, we found that BV administration decreased the degree of

DNA fragmentation due to oxidative stress by assessing lung 8-

Figure 4. Gene expression of inflammatory mediators in the lungs after hemorrhagic shock and resuscitation (HSR). Lungs from the
HSR group rats treated with vehicle or biliverdin (BV) were excised at 3 h after resuscitation and the levels of tumor necrosis factor (TNF)-a and
inducible nitric oxide synthase (iNOS) mRNA were determined by Northern blot analysis. (Left) The autoradiographic signals of RNA blot hybridized
with [a-32P] deoxycytidine triphosphate-labeled TNF-a (A) or iNOS (B) cDNA. (Right) Concentrations of TNF-a and iNOS mRNA were expressed as
arbitrary units. Data are presented as means 6 standard deviation and were statistically evaluated using analysis of variance followed by Tukey–
Kramer honestly significant difference test (n = 3 per group). *p,0.05 vs. vehicle/sham; {p,0.05 vs. BV/sham; #p,0.05 vs. vehicle/HSR. Vehicle/sham,
vehicle-administered animals subjected to sham surgery; BV/Sham, BV-administered animals subjected to sham surgery; vehicle/HSR, vehicle-
administered animals subjected to HSR; BV/HSR, BV-administered animals subjected to HSR.
doi:10.1371/journal.pone.0063606.g004
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OHdG levels using an enzyme-linked immunosorbent assay and

immunohistochemistry. These findings indicated that BV has the

potential to protect lungs from HSR-induced injury through its

anti-inflammatory and anti-oxidative properties.

In this study, we demonstrated that BV administration prior to

HSR improved histopathological changes in the lungs. Previous

studies showed that BV treatment significantly decreased the

infiltration of neutrophils and inflammatory macrophages and

ameliorated tissue injury in models of hepatic[9], cardiac[10], and

small intestine ischemia–reperfusion (I/R) injury.[11] BV admin-

istration also suppressed monocyte and polymorphonuclear

leukocyte accumulation in bronchoalveolar lavage fluid and

ameliorated endotoxin-induced lung injury.[13] Of note, our

study, for the first time, determined that BV administration has a

protective role in ALI after HSR. Considering our results and

those from other reports [9-11], it is very plausible that BV can

protect various organs, particularly the lungs, from I/R injuries.

On exploring the mechanisms underlying the protective effects

of BV administration on ALI after HSR, we found that BV

administration suppressed HSR-induced gene expression of

inflammatory mediators such as TNF-a and iNOS. This finding

is consistent with that of previous reports.?Constantino et al.

showed that BV therapy downregulated the expression of the same

inflammatory mediators in a hepatic I/R model.[9] Nakao et al.

also showed that small intestine transplantation in the rat

significantly increased iNOS and COX-2 mRNA while BV

injections decreased the increased expression of these inflamma-

tory mediators by almost half.[11] Moreover, BV treatment

decreased serum proinflammatory cytokines and increased serum

anti-inflammatory cytokines in a lipopolysaccharide-induced ALI

model.[13] Our study results suggest that BV administration

decreased inflammatory gene expression in an HSR-induced ALI

model. Therefore, BV administration definitely has anti-inflam-

Figure 5. Levels of 8-hydroxy-29 deoxyguanosine (8-OHdG) in
the lungs after hemorrhagic shock and resuscitation (HSR).
Lungs from the HSR group rats treated with or without biliverdin (BV)
were excised 3 h after resuscitation and mitochondrial 8-OHdG levels
were measured. Data are presented as means 6 standard deviation
(n = 5 per group). Statistical analysis was performed using analysis of
variance followed by Tukey–Kramer honestly significant difference test.
*p,0.05 vs. vehicle/sham; {p,0.05 vs. BV/sham; #p,0.05 vs. vehicle/
HSR. Vehicle/sham, vehicle-administered animals subjected to sham
surgery; BV/sham, BV-administered animals subjected to sham surgery;
vehicle/HSR, vehicle-administered animals subjected to HSR; BV/HSR,
BV-administered animals subjected to HSR.
doi:10.1371/journal.pone.0063606.g005

Figure 6. Aquaporin-5 and 8-hydroxy-29 deoxyguanosine (8-OHdG) expression in the lungs after hemorrhagic shock and
resuscitation (HSR). Sections of lungs obtained 3 h after resuscitation were subjected to fluorescent immunohistochemical analysis for 8-OHdG
(green) and aquaporin-5 (red). Above row: 8-OHdG-positive cells in the vehicle/sham (A), BV/sham (B), vehicle/HSR (C) and BV/HSR groups (D). Middle
row: aquaporin-5-positive cells in the vehicle/sham (E), BV/HSR (F), vehicle/HSR (G), and BV/HSR groups (H). Bottom row: merged images of 8-OHdG
and aquaporin-5 in the vehicle/sham (I), BV/sham (J), vehicle/HSR (K), and BV/HSR groups (L). Vehicle/sham, vehicle-administered animals subjected
to sham surgery; BV/Sham, BV-administered animals subjected to sham surgery; vehicle/HSR, vehicle-administered animals subjected to HSR; BV/HSR,
BV-administered animals subjected to HSR. Scale bar = 50 mm. All images shown were visualized with a 2060.5 objective lens.
doi:10.1371/journal.pone.0063606.g006
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matory effects, and as such, this characteristic is an important

mechanism responsible for its protective properties with regard to

lung injury.

This study also demonstrated that BV exerted anti-oxidant

effects on HSR-induced oxidative DNA damage of the lung. 8-

OHdG is produced when the guanine in DNA suffers from

oxidative damage due to ROS and lipid peroxide.[24] Measure-

ment of 8-OHdG is a reliable indicator of oxidative damage in

several tissues.[23,25] Previous studies suggested that BV has

strong anti-oxidant potential in vitro.[7] However, there are few

studies showing the physiological anti-oxidant effects of BV. In an

intestinal I/R model, BV elevated the intestinal reductive capacity

and decreased tissue malondialdehyde concentrations.[11] In an

oxidative brain injury model, BV significantly decreased cerebral

infarct size and prevented lipid oxidation and oxidative DNA

damage.[12] Our study also demonstrated the anti-oxidant

potential of BV on ALI induced by HSR. These results indicate

that BV has a strong protective effect on oxidative damage in

various organs. Although we showed that BV had anti-inflamma-

tory and anti-oxidant effects on HSR-induced lung injury in this

study, the detailed molecular mechanisms underlying these effects

remain elusive.

Our study has several limitations. First, we did not measure NF-

kB, a transcriptional factor for inflammatory mediators; however,

previous studies demonstrated that BV administration suppressed

NF-kB activation and led to cytoprotection.[11,13] We hypoth-

esized that the anti-inflammatory potential of BV may be

mediated by this effect on NF-kB. Second, we also did not

measure the exact levels of ROS induced by HSR. However, ROS

levels are difficult to examine because of instability. Actually, most

studies on the anti-oxidant effects of BV proved that BV treatment

decreased the metabolites induced by ROS.[11,12] Third, we used

shed blood to resuscitate hemorrhagic shock. This blood

transfusion itself could cause lung injury. In a recent report,

however, it has been shown that transfusion of older blood can

lead to organ damage and to lung injury.[26,27] These studies also

confirmed that transfusion of new blood do not induce severe

organ damages. We used their own shed blood within an hour. It

is unlikely that this procedure cause such a severe lung injury as

shown our model. Finally, we did not assess BVR activities in our

study. Previous studies suggested that BVR had an important role

in the redox cycle of oxidative damage.[8,28] The protective role

of BV administration would probably be affected by its interaction

with BVR; however, there is no definite evidence of BV–BVR

interaction in vivo, and we consider that it would be an important

target for future research.

We believe that BV is more suitable for clinical use than

bilirubin because BV is water soluble, readily excreted, and

nontoxic. BV is converted to bilirubin by BVR in mammalian

tissue, and hyperbilirubinemia is associated with a risk of

Figure 7. Effect of BV administration after hemorrhagic shock and resuscitation (HSR) in the lungs. The rats were randomly divided into
two groups: a HSR/Vehicle group, which was administered vehicle after HSR, and a HSR/BV group, which was administered BV after HSR. BV (35 mg/
kg) or vehicle was injected via the femoral vein after resuscitation. (A) Representative images from five independent experiments (hematoxylin–eosin
staining, original magnification 6200, scale bar = 100 mm). (B) lung histopathological score 12 h after HSR. (C) Mitochondrial 8-OHdG levels in the
lungs 3 h after HSR. Data are presented as means 6 standard deviation (n = 5 per group). Statistical analysis was performed using Student’s t-test.
*p,0.05 vs. HSR/Vehicle.
doi:10.1371/journal.pone.0063606.g007
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neurological deficit.[6] The 35-mg/kg dose of BV elevated serum

bilirubin levels 1 h after treatment, although the elevated level was

not outside the high normal range of ,1 mg/dl in this study.

Moreover, BV treatment itself had no influence on histopatho-

logical changes and the gene expression of inflammatory

mediators compared with vehicle treatment.

We also examined the protective effect of BV after HSR on ALI

in an additional study. As a result, BV administration after HSR

had an anti-oxidant effect and tended to improve lung injury in

histological analysis. However, more detailed mechanistic and

clinical examinations would be needed to clarify its role in clinical

settings.

In conclusion, we reported that HSR causes significant tissue

inflammation as evidenced by the increase in gene expression of

inflammatory mediators, neutrophil migration, and pulmonary

edema. BV administered prior to HSR significantly decreased

HSR-induced oxidative DNA damage and subsequently amelio-

rated HSR-induced lung injury. These findings indicate that BV

suppresses HSR-induced lung injury, at least in part, through anti-

inflammatory and anti-oxidant mechanisms.
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