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Abstract

Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing
factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium
plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis
that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-
induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean
counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein
expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to
anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in
endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a
fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors
protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked
endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased
phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance
arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity
as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to
cannabinoid agonists in obesity.
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Introduction

Obesity is a major public health problem worldwide [1,2]. This

condition is considered one of the main risk factors for the

increased morbidity and mortality from hypertension, dyslipide-

mia, type 2 diabetes, heart failure, stroke, and coronary artery

disease [3]. Impaired vascular function manifested by an altered

ability of the endothelium to release endothelium-derived relaxing

factors and endothelium-derived contracting factors is consistently

demonstrated in obese individuals [4], and is considered the first

step in the progression of cardiovascular diseases [5–7].

Increased circulating levels of endocannabinoid agonists have

been reported in obesity. High levels of the endogenous

cannabinoids anandamide (arachidonylethanolamide) and 2-

arachidonoylglycerol in the plasma of obese subjects is correlated

with visceral adiposity [8–10]. Endocannabinoids are lipid

mediators generated by almost all cell types both in the brain

and peripheral tissues. The endocannabinoid system comprises the

endocannabinoids, the enzymes involved in their biosynthesis and

degradation and the G protein-coupled receptors (CB1 and CB2)

that mediate their effects [11–14]. This system plays an important

role in the central and peripheral regulation of energy homeosta-

sis, lipid metabolism, and fat accumulation [15].

Studies in normal rodents have identified that the endogenous

cannabinoid ligand anandamide lowers blood pressure and heart

rate in anaesthetized animals [16,17]. This compound is also

considered a potent vasodilator in a number of isolated vascular

preparations, including mesenteric arteries, renal arteries, coro-

nary arteries and aorta [18–22]. Some studies have implicated the

endothelium in the relaxant response to anandamide, with the

release of different endothelium-derived relaxant factors, including

prostanoids, endothelium-derived hyperpolarizing factor (EDHF)

and nitric oxide (NO) [18–24]. Nevertheless, the relevance of the

vascular actions of the endocannabinoid system in obesity is still

unknown. In the present study, we investigated the implications of

obesity for the response to anandamide in resistance mesenteric

arteries. Considering that obesity is often associated with vascular
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dysfunction, we hypothesized that vascular relaxation to the

cannabinoid agonist anandamide is decreased in obese Zucker

rats. Whether reduced anandamide-induced vasodilation is due to

reductions in cannabinoid receptors expression or decreased

activation of signaling pathways were also determined. To test

our hypothesis, we used resistance mesenteric arteries from 6–7

weeks-old obese Zucker rats (OZRs) and their lean counterparts

(LZRs). At this age, OZRs are normotensive and normoglycemic,

allowing that vascular responses be determined without the

interference of hypertension or diabetes. Various pharmacological

tools were used to investigate the involvement of cannabinoid

receptors, anandamide degradation as well as the contribution of

the endothelial nitric oxide synthase (eNOS) pathway to the

reduced responses to anandamide in obesity.

Our results showed that relaxation induced by the cannabinoid

agonist anandamide is decreased in endothelium-intact arteries

from young OZRs. Reduced cannabinoid receptors expression,

decreased anandamide-induced activation of AMPK and eNOS,

increased degradation of anandamide as well as impairment of the

response mediated by TRPV1 activation might be involved in the

decreased response to anandamide in OZRs.

Methods

Animals
All animal procedures were performed in accordance with the

Guide for the Care and Use of Laboratory Animals published by

the US National Institutes of Health (NIH Publication No. 85–23,

revised 1996) and approved by the Institutional Animal Care and

Use Committees at the Georgia Health Sciences University. Male,

six to seven weeks-old lean Zucker rats (LZRs) and OZRs were

purchased from Harlan Laboratories and were maintained on a

12-hour light/dark cycle under controlled temperature (2261uC)
with access to food and water ad libitum. On the day of the

experiment, after food deprivation (for 5 h), LZRs and OZRs were

weighted, and tail blood samples were taken. Blood glucose levels

were analyzed using a glucometer (Roche, Mannheim, Germany).

Animals were killed by carbon dioxide exposure, followed by

diaphragm incision and the white adipose tissue (epididymal and

retroperitoneal) was dissected and weighed. Blood pressure (BP)

was measured in conscious rats by an indirect tail-cuff method

(Kent Scientific Corporation, CT) after a training period of three

days. Rats were maintained at 37uC for 10 min, and then three

consecutive stable BP measurements were averaged.

Vascular Function Studies
Force development in response to a specific experimental

protocol was evaluated in mesenteric arteries from both groups as

previously described [25]. The mesenteric vascular bed was

removed and placed in modified Krebs-Henseleit solution of the

following composition (in mM): 130 NaCl, 14.9 NaHCO3,

4.7 KCl, 1.18 KH2PO4, 1.17 MgSO4?7H2O, 5.5 glucose, 1.56

CaCl2?2H2O, and 0.026 EDTA. Segments (2 mm in length) of the

mesenteric arteries were mounted on 40-mm wires in a small vessel

myograph for isometric tension recording. The vessels were

allowed to equilibrate for about 30 min in modified Krebs-

Henseleit solution, which was gassed with 5% CO2 in O2 to

maintain a pH of 7.4. The relationship between resting wall

tension and internal circumference was determined, and the

internal circumference, L100, corresponding to a transmural

pressure of 100 mmHg for a relaxed vessel in situ, was calculated.

The vessels were set to the internal circumference L1, given by

L1= 0.96L100. The effective internal lumen diameter was

determined as L1=L1/p, and was between 200 and 300 mm.

After stabilization, arterial integrity was assessed by stimulation of

vessels with 120 mM KCl. Endothelial function was assessed by

testing the relaxant effect of acetylcholine (ACh, 1 mM) on vessels

precontracted with phenylephrine (1 mM). Mesenteric arteries

exhibiting a vasodilator response to ACh greater than 90% were

considered endothelium-intact vessels. The failure of ACh to elicit

relaxation of mesenteric arteries (which were previously subjected

to rubbing of the intimal surface with a human hair) was taken as

proof of endothelium removal.

Experimental Protocols
Cumulative concentration–response curves to anandamide,

ACEA (a CB1 receptor-selective agonist) JWH-015 (a CB2

receptor-selective agonist) and capsaicin (a vanilloid receptor

agonist) were performed in U46619-precontracted mesenteric

arteries. To determine whether anandamide-induced relaxation

was dependent on the endothelium, responses were also

determined in endothelium-denuded arteries. In order to investi-

gate if the decreased relaxation to cannabinoid agonists was

associated with an overall impairment in vascular function, rather

than a specific endocannabinoid response, cumulative concentra-

tion–response curves to ACh and sodium nitroprusside (SNP) were

performed in U46619-precontracted mesenteric arteries. Each

preparation was tested with a single agent.

To investigate the involvement of cannabinoid receptors in

anandamide responses, mesenteric arteries were preincubated for

30 min with either the CB1 receptor antagonist (AM251, 1 mM)

[26] or the CB2 receptor antagonist (AM630, 1 mM) [27].

To determine whether reduced responses to anandamide were

associated with abnormal enzymatic hydrolysis of the cannabinoid

agonist and/or changes in the AMP-dependent protein kinase

(AMPK) pathway, anandamide responses were determined in the

presence of the fatty acid amide hydrolase (FAAH) inhibitor

URB597 (100 nM) [28] or the AMPK activator aminoimidazole

carboxamide ribonucleotide (AICAR, 1 mM) [29], respectively.

To examine the contribution of NO in the vascular effects of

anandamide, mesenteric arteries were pretreated with the NOS

inhibitor Nv-nitro-L-arginine methyl ester (L-NAME, 100 mM,

for 30 min) [30].

To investigate the involvement of sensory C-fibres in ananda-

mide responses, mesenteric arteries were pretreated with different

blockers. Desensitization of C-fibres in vitro was induced using the

selective neurotoxin capsaicin (1 mM for 20 minutes, followed by a

40-minute washout period) [31]. Acute exposure to capsaicin

promotes activation of sensory C-fibres; however, after prolonged

exposure, as in the current protocol, a desensitization of the nerve

ending occurs. A 40-minute washout period ensures removal of

any residual neuropeptide that may have been released, as

previously described [32]. Considering that transient receptor

potential vanilloid-1 (TRPV-1) channels have been identified as

the major activation site on C-fibre nerve endings [33], we

investigated the effects of the selective TRPV1 blocker capsazepine

(3 mM, 30 min) [34] and the nonselective cation channel blocker

ruthenium red (30 mM, 30 min) [35] on anandamide responses. In

addition, the participation of the products released after activation

of vanilloid receptors was investigated using the calcitonin gene-

related peptide (CGRP) receptor antagonist a-CGRP (8–37)

(10 mM, 30 min) [36] or the P2Y1 receptor antagonist

MRS2179 (1 mM, 30 min) [37].

Considering that we did not observe any differences in the

responses to anandamide between endothelium-intact and endo-

thelium-denuded arteries from LZRs or OZRs, the studies were

carried out on endothelium-intact arteries.

Endocannabinoid System in Obesity
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Western Blotting
To test whether anandamide alters the activity of eNOS,

AMPK and acetyl CoA carboxylase (ACC) in mesenteric arteries

from LZRs and OZRs, vessels from both groups were isolated,

cleaned of fat, dissected and incubated with 1 mM anandamide or

vehicle for 30 min, and the activation these proteins was

examined. In order to investigate the role of AMPK activation

on eNOS phosphorylation, mesenteric arteries from LZRs and

OZRs were incubated with Compound C (1 mM), an AMPK

inhibitor, 30 minutes before the incubation with anandamide.

After the incubation protocols, vessels were frozen in liquid

nitrogen and proteins were extracted (50 mg) and separated by

electrophoresis on 8% polyacrylamide gels and transferred to

nitrocellulose membranes. Nonspecific binding sites were blocked

with 5% skim milk in Tris-buffered saline solution with Tween

(0.1%) for 1 hour at 24uC. Membranes were incubated with

antibodies (at the indicated dilutions) overnight at 4uC. Antibodies
were as follows: anti-CB1 (1:250, Sigma), anti-CB2 (1:1000,

Sigma), anti–TRPV1 (1:2000, Sigma), anti-eNOs (1:500, Cell

Signaling), anti-phospho eNOs (1:1000, Cell Signaling), anti-

AMPK (1:1000, Cell Signaling), anti-phospho AMPK (1:1000,

Cell Signaling), anti-ACC (1:1000, Cell Signaling), anti-phospho

ACC (1:1000, Cell Signaling) and anti-b-actin (1:20000, Sigma).

After incubation with secondary antibodies, signals were revealed

by chemiluminescence, visualized by autoradiography and quan-

tified densitometrically. Results were normalized to b-actin
expression and expressed as units relative to the control.

Immunofluorescence and Confocal Microscopy
After fixation of the endothelium-intact mesenteric artery

segments, samples were frozen in OCT compound (Sakura

Finetek USA, Torrance, CA), and serial cryosections (20 mm)

were prepared and mounted on slides. After washing in

phosphate-buffered saline (PBS), slides containing samples were

blocked with bovine serum albumin (BSA, 0.1%) for 1 hour at

room temperature. The sections were subsequently incubated (at

the indicated dilutions) with rabbit monoclonal anti-CB1 (1:100,

Abcam), rabbit polyclonal anti-CB2 (1:100, Abcam), or mouse

anti-von Willebrand (1:500, Abcam) overnight at 4uC. After

washing in PBS, the fluorescent secondary antibodies (at a 1:1000

dilution) goat anti-mouse IgG Alexa Fluor 488 and goat anti-

rabbit Alexa Fluor 594 (Molecular Probes) were applied and

incubated for 1 h at room temperature. After washing in PBS, the

slides were coverslipped with anti-fading mounting medium (Gel/

Mount medium; Biomeda, Foster City, CA). Fluorescent photo-

micrographs were obtained using a laser scanning confocal

microscope (Leica TCS-DMRE, Germany). The nuclear stain

49,6-diamidino-2-phenylindole (DAPI) was used to label all cells.

No significant fluorescence was observed when the primary

antibodies were omitted.

Data Analysis and Statistical Procedures
Vasodilatation is represented as a percentage of the maximal

response to U46619. The individual relaxation curves were fitted

into a curve by non-linear regression analysis. pEC50 (defined as

the negative logarithm of the EC50 values) and maximal response

were compared by t-tests or ANOVA, when appropriated. The

Prism software, version 5.0 (GraphPad Software Inc., San Diego,

CA, USA) was used to perform the analysis of these parameters as

well as to fit the sigmoidal curves. Data are presented as mean 6

SEM. N represents the number of animals used. P values less than

0.05 were considered significant.

Drugs
Phenylephrine, acetylcholine, sodium nitroprusside, AICAR, L-

NAME and compound C were purchased from Sigma Chemical

Co (St. Louis, MO). Anandamide, ACEA, JWH-015, AM251,

AM630 and MRS2179 were purchased from Tocris (Ellisville,

MO). URB597 was obtained from Cayman Chemical (Ann Arbor,

MI). a-CGRP (8–37) was purchased from Bachem (Torrance,

CA).

Results

General Characteristics of OZRs
Table 1 summarizes metabolic parameters in young LZRs and

OZRs. Although BP and glucose levels were similar between LZRs

and OZRs, OZRs displayed higher body weight and fat mass

compared with age-matched LZRs.

Effect of Obesity on Vascular Relaxation to Cannabinoid
Agonists
Anandamide induced concentration-dependent relaxation in

endothelium-intact mesenteric arteries from both LZRs and

OZRs. However, this response was decreased in arteries from

OZRs (Emax in %, LZR=100.963.8; OZR=78.564.8, p,0.05;

Figure 1A). In endothelium-denuded preparations, relaxation

responses to anandamide were similar in arteries from OZRs and

LZRs (Emax in %, LZR=88.463.9; OZR=94.362.3,

Figure 1A). Endothelium-intact arteries from OZRs also displayed

a marked decrease in the vascular relaxation mediated by CB1

(pEC50, LZR=6.160.03; OZR=5.560.06, p,0.05) and CB2

(Emax in %, LZR=89.362.1; OZR=54.266.9, p,0.05) can-

nabinoid receptor agonists compared with vessels from LZRs

(Figures 1B and 1C). Similarly, the capsaicin-induced relaxation

was markedly decreased in OZRs compared with LZRs (Emax in

%, LZR=85.4612.2; OZR=28.365.1, p,0.05; Figure 1D). A

decreased response to the endothelium-dependent vasodilator

ACh (Emax in %, LZR=85.461.1; OZR=69.261.4, p,0.05,

Figure 1E) as well as to SNP (an endothelium-independent

vasodilator) was observed in vessels from OZRs (Emax in

%=69.261.4, Figure 1F) vs. LZR arteries (Emax in

%=85.461.1).

Blockade of CB1 and CB2 receptors with AM251 and AM630,

respectively, slightly decreased the relaxation responses to

anandamide in arteries from LZRs (pEC50, LZR=6.260.09;

LZR+AM251= 5.660.1; LZR+AM630= 5.360.1, p,0.05). On

the other hand, anandamide responses were considerably reduced

in arteries from OZRs after incubation with CB1 and CB2

antagonists (Emax in %, OZR=77.364.3; OZ-

R+AM251= 52.968.8; OZR+AM630= 25.364.2, p,0.05,

Figures 2A and B).

Table 1. Metabolic parameters in young LZRs and OZRs.

Parameter Lean Zucker Fatty Zucker

Body weight (g) 193.0611.1 283.3618.2*

Retroperitoneal fat mass, (g/100 g) 0.4660.03 2.0560.30*

Perigonadal fat mass, (g/100 g) 0.5460.02 2.360.45*

Glycemia, (mg/dL) 122.060.8 124.062.5

Blood pressure, (mmHg) 110.563.6 116.861.6

Data are mean 6 SEM; *P,0.05 vs. lean Zucker; n = 8/group.

doi:10.1371/journal.pone.0063449.t001

Endocannabinoid System in Obesity
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Incubation of mesenteric arteries from OZRs with either the

FAAH inhibitor (URB597) or the AMPK activator (AICAR)

corrected the reduced relaxation response to anandamide (Emax

in %, OZR=76.0465.4; OZR+URB597= 92.662.8; OZR+AI-

CAR=93.465.2, p,0.05, Figures 3A and B). Inhibition of NOS

with L-NAME significantly decreased the anandamide-induced

relaxation of vessels from LZRs, whereas it did not alter this

response in samples from OZRs (Figure 3C).

Figure 1. Effect of obesity on relaxation of mesenteric arteries to different agonists. Cumulative concentration-response curves to
anandamide (A), ACEA, CB1 receptor-selective agonist (B), JWH-015, CB2 receptor-selective agonist (C), capsaicin, vanilloid receptor agonist (D),
acetylcholine (ACh), endothelium-dependent vasodilator (E) and sodium nitroprusside (SNP), endothelium-independent vasodilator (F) in U46619-
precontracted mesenteric arteries from lean Zucker rats (LZRs) and obese Zucker rats (OZRs). Each point represents the mean 6 SEM. *, P,0.05 vs.
LZR. N = 6/group.
doi:10.1371/journal.pone.0063449.g001

Figure 2. Contribution of cannabinoid receptors activation to the vascular effects of anandamide. In A, the vessels were pretreated with
a CB1 antagonist (AM 251, 1 mM) and in B with a CB2 antagonist (AM 630, 1 mM) for 30 minutes. The relaxation to anandamide was evaluated in
U46619-precontracted mesenteric arteries from lean Zucker rats (LZRs) and obese Zucker rats (OZRs). Each point represents the mean 6 SEM. *,
P,0.05 vs. LZR. #, P,0.05 vs. respective group in the absence of blockade. N= 6/group.
doi:10.1371/journal.pone.0063449.g002

Endocannabinoid System in Obesity
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In vitro C-fiber desensitization with capsaicin markedly reduced

the anandamide-induced relaxation of arteries from both LZRs

(Emax in %, LZR=101.063.9; LZR+capsaicin = 22.663.9,

p,0.05, figure 4A), and OZRs (Emax in %, OZR=77.364.3;

OZR+capsaicin = 27.765.6, p,0.05, figure 4A). Blockade of

TRPV1 with either ruthenium red or capsazepine also decreased

anandamide-induced vessel relaxation in samples from both LZRs

(Emax in %, LZR=101.063.9; LZR+ruthenium red= 42.361.8;

LZR+capsazepine = 82.762.5, p,0.05, figures 4B and C) and

OZRs (Emax in %, OZR=77.364.3; OZR+ruthenium
red= 46.565.6; OZR+capsazepine = 54.765.0, p,0.05,

figures 4B and C). Purinergic receptors antagonism with

MRS2179 did not change anandamide-induced arterial relaxation

in vessels from both experimental groups (data not shown).

However, the blockade of CGRP receptors with a-CGRP (8–37)

almost completely inhibited the anandamide-induced relaxation in

LZRs (Emax in %, LZR=100.864.1; LZR+a-CGRP (8–

37) = 4.660.3, p,0.05, figure 4D), and it decreased this response

to a lesser extent in OZRs (Emax in %, OZR=78.564.7;

OZR+a-CGRP (8–37) = 33.363.2, p,0.05, figure 4D).

Effect of Obesity on Protein Expression of Cannabinoid
Receptors and TRPV1 Receptor
CB1 and CB2 receptors protein expression was decreased in

mesenteric arteries from OZRs as compared with LZRs

(Figures 5A and B). The protein expression of TRPV1 receptors

was similar in mesenteric arteries from LZRs and OZRs

(Figure 5C).

Localization of CB1 and CB2 Receptors in Mesenteric
Arteries
Localization of cannabinoid receptors was determined by

confocal immunofluorescence microscopy in endothelium-intact

mesenteric sections. Immunofluorescence for CB1 (Figure 6A) and

CB2 (Figure 6B) receptors was visualized in mesenteric arteries of

LZRs. To determine whether CB1 and CB2 receptors were

localized in endothelial cells, we used double immunolabeling of

rat mesenteric arteries for CB1, CB2 and von Willebrand factor, a

widely used marker for endothelial cells. As shown in Figure 6,

CB1 and CB2 receptors (green fluorescence) co-localized with Von

Willebrand factor (red fluorescence), as indicated by the yellow

colour of the overlay of CB1 or CB2 and von Willebrand stainings.

Mesenteric arteries from OZRs displayed decreased CB1

(Figure 6C) and CB2 (Figure 6D) immunofluorescence in both

smooth muscle and endothelial cells when compared with the

representative images from LZRs.

Effect of Anandamide on the Phosphorylation of eNOS
and AMPK in Arteries from LZRs and OZRs
Basal phosphorylation of eNOS at Ser-1177 was similar in

vessels from OZRs and LZRs. However, after incubation with

anandamide, eNOS phosphorylation was decreased in mesenteric

arteries from OZRs. In contrast, a robust increase in eNOS

phosphorylation was observed in anandamide-stimulated vessels

from LZRs (Figure 7A). Incubation of mesenteric arteries from

LZRs with Compound C (1 mM), an AMPK inhibitor, 30 minutes

before the incubation with anandamide, abolished anandamide-

induced eNOS phosphorylation (Figure 7A). eNOS phosphoryla-

tion in OZRs was not affected by this inhibitor.

Similarly to the observed with eNOS, anandamide treatment

decreased AMPK Thr-172 phosphorylation in arteries from OZRs

and increased AMPK phosphorylation in vessels from LZRs

(Figure 7B). To confirm that AMPK activation by anandamide

results in typical AMPK-mediated downstream responses, we

determined the phosphorylation of ACC, a primary target of

activated AMPK. We found that anandamide treatment increased

ACC phosphorylation in arteries from LZRs. In contrast,

phosphorylation of ACC was decreased in vessels from OZRs

after incubation with anandamide (Figure 7C).

Discussion

In the present study we demonstrated that the vascular response

to anandamide, an endocannabinoid agonist, is decreased in

obesity. Herein, we also present the novel findings that endothe-

lium-intact resistance mesenteric arteries from young OZRs

exhibit reduced cannabinoid receptors expression, increased

degradation of anandamide, decreased anandamide-induced

activation of AMPK and eNOS as well as impairment of the

response mediated by TRPV1 activation.

Central nervous system and peripheral abnormalities are

observed in obesity contributing to the increased risk for the

development of cardiovascular diseases. Of great interest is the

impaired vascular function. There is good evidence in isolated

vascular preparations that cannabinoids elicit vasodilator effects

not only via cannabinoid receptors but also via vanilloid receptors

[38,39]. However, the importance of these effects for the

Figure 3. Contribution of anandamide degradation, AMP-dependent protein kinase (AMPK) pathway and nitric oxide to
anandamide responses. In A, the vessels were pretreated with the fatty acid amide hydrolase (FAAH) inhibitor (URB597, 1 mM, 30 minutes). In B,
vessels were incubated with AICAR (an AMPK activator, 1 mM, 30 minutes). In C, vessels were pretreated with an NO synthase inhibitor (L-NAME,
100 mM, 30 minutes). The relaxation to anandamide was evaluated in U46619-precontracted mesenteric arteries from lean Zucker rats (LZRs) and
obese Zucker rats (OZRs). Each point represents the mean 6 SEM. *, P,0.05 vs. LZR. #, P,0.05 vs. respective group in the absence of blockade.
N = 6/group.
doi:10.1371/journal.pone.0063449.g003
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regulation of the vascular resistance and whether these effects are

impaired in obesity have not been established so far. Most of the

known cardiovascular effects of the cannabinoid compounds are

dependent on the underlying conditions. These effects were

implicated in the mechanisms underlying hypotension associated

to hemorrhagic shock, both cardiogenic and septic, advanced liver

cirrhosis, cirrhotic cardiomyopathy, heart failure induced by

doxorubicin and shock associated to necrotizing pancreatitis

[40–44]. Recent evidence also indicates that the endocannabinoid

system plays an important role in cardiovascular regulation in

hypertension, limiting the elevation of blood pressure and cardiac

contractile responses through tonic activation of CB1 receptors

[45]. In this regard, it was demonstrated that in vivo treatment

with the CB1 receptor antagonist induced a significant increase in

cardiac contractility and blood pressure in hypertensive rats. On

the other hand, it contributed to decrease blood pressure in

weight-loss clinical trials especially in obese patients with

hypertension [46]. Altogether these findings suggest that the

overactivation of the endocannabinoid system in obesity could be

a deleterious effect, not only for metabolic but also for

cardiovascular parameters.

The OZR model has been widely used to investigate the

cardiovascular effects of obesity and insulin resistance. The cause

of obesity in this model is a mutation of the fa gene, which

determines the synthesis of leptin receptors. Homozygotes (fa/fa)

with this mutation exhibit impaired responsiveness to leptin and

become notably obese at 3 to 4 weeks of age [47]. It is important to

consider that although the cause of obesity in OZRs is not

common among humans, the phenotype parallels human obesity

in many ways. These rats display increased triglycerides,

cholesterol and insulin levels [47], are mildly hypertensive

[48,49] and eventually develop type 2 diabetes [47]. It must be

noted, however, that at the age the OZRs were used in the current

study, they did not display increased BP or blood glucose

concentration. Therefore, the interference of these parameters in

our results can be excluded.

One important finding in the current study was that although

young OZRs displayed an overall impairment in vascular

function, demonstrated by the reduced endothelium-dependent

and endothelium-independent vasodilation (tested with ACh and

SNP, respectively), specific mechanisms associated with cannabi-

noid signalling in the endothelium were also impaired in this

model. This is supported by our findings showing that reduced

Figure 4. Involvement of TRPV1 receptors on sensory C-fibres in anandamide responses. In A, in vitro C-fiber desensitization was
induced using the selective neurotoxin capsaicin (1 mM). In B and C, vessels were pretreated with the TRPV1 blockers, ruthenium red (30 mM, 30
minutes) and capsazepine, respectively (3 mM, 30 minutes). In D, vessels were pretreated with the calcitonin gene-related peptide (CGRP) receptor
antagonist a-CGRP (8–37) (10 mM, 30 minutes). The relaxation to anandamide was evaluated in U46619-precontracted mesenteric arteries from lean
Zucker rats (LZRs) and obese Zucker rats (OZRs). Each point represents the mean 6 SEM. *P,0.05 vs. LZR, #P,0.05 vs. respective group in the
absence of blockade. N= 6/group.
doi:10.1371/journal.pone.0063449.g004
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anandamide-induced relaxation in mesenteric arteries from OZRs

was only observed in endothelium-intact preparations. Consider-

ing that CB1 and CB2 receptors mediate anandamide-induced

responses and the fact that protein expression of these receptors is

decreased in both smooth muscle and endothelial cells of

mesenteric arteries from OZRs (demonstrated by Western blotting

and immunofluorescence analysis), we suggest that the reduction

of anandamide response in OZRs might involve a decreased

activation of CB1 and CB2 receptors by anandamide. In fact,

endothelium-intact arteries from OZRs displayed decreased

vascular relaxation to CB1 and CB2 agonists.

The mechanisms through which obesity directly causes vascular

dysfunction are still an area of research. Human and animal

studies have indicated the role of adipose tissue derived factors

(including adipokines and cytokines), neurohumoral pathways,

abnormalities in metabolic functions and modulation of pressor/

depressor mechanisms, or even the combination or overlap of a

number of these factors [50]. Based on the results from our study

and considering previous studies demonstrating increased activa-

tion of the endocannabinoid system in obesity [8–10], we have

now an important question: ‘‘How does increased adiposity in the

absence of other pathologies affect vascular response to cannabi-

noid agonists?’’ Taking into consideration that increased visceral

adiposity is considered as the ‘link’ between overweight and

cardiometabolic complications and that a dysregulated, overstim-

ulated endocannabinoid system is observed in visceral adipose

tissue and appears to significantly contribute to the cardiometa-

bolic complications of visceral obesity [51,52], our novel data

allow us to suggest that chronically overactive endocannabinoid

system in visceral adipose tissue is related to vascular damage in

OZRs. This leads to decreased vascular relaxation to cannabinoid

receptor agonists as a consequence of down regulation of

cannabinoid receptors and the related signaling pathways.

It is important to include in this discussion the fact that the

effects of increased release of anandamide have been demonstrat-

ed only in tissues that control the metabolic homeostasis [8–10],

where the protein expression of the CB1 receptor is increased,

differently from that found in the present study. Considering this,

the differential effects of obesity in the mesenteric vessels might

constitute an important evidence for the impairment of this system

in mesenteric arteries besides the increased release of anandamide

in obesity. However, further studies are required to elucidate this.

Considering that the endothelium plays a role on the reduced

relaxation to anandamide in mesenteric arteries from OZRs, a

more detailed investigation of the NO-dependent relaxant

pathway was carried out. Although the downstream signalling

cascades regulated by cannabinoid receptor activation have been

reported in neuronal cells, very little is known about the signalling

cascades that are activated by cannabinoid agonists in the

vasculature. There is evidence that anandamide-induced relaxa-

tion in resistance vessels is dependent on NO [21,53]. In fact, our

western blotting analysis demonstrated increased phosphorylation

of eNOS in mesenteric arteries from LZRs after incubation with

anandamide. In contrast, anandamide-induced phosphorylation of

eNOS was decreased in arteries from OZRs. Therefore the

involvement of a dysfunctional eNOS on the reduced response to

anandamide in mesenteric arteries from OZRs is proposed in the

present study.

Phosphorylation of eNOS plays a critical role in the regulation

of NO production [54]. Multiple protein kinases, including AMPK

[55], have been implicated in eNOS phosphorylation at Ser1177.

Recent studies indicate that cannabinoid compounds activate the

AMPK pathway in tissues that control energy homeostasis [56].

We here demonstrated activation of this protein by anandamide in

mesenteric arteries from LZRs. Incubation of mesenteric arteries

with anandamide resulted in a robust increase in phosphorylation

of AMPK and ACC (the primary target of activated AMPK) in

LZRs. The involvement of AMPK on the decreased relaxation

response of mesenteric arteries to anandamide in obesity was also

demonstrated in the present study. This is supported by the finding

that activation of AMPK by AICAR corrected the decreased

relaxation to anandamide in OZRs. The decreased anandamide-

induced phosphorylation of both AMPK and ACC in mesenteric

Figure 5. Effect of obesity on cannabinoid receptors protein expression in mesenteric arteries. Panels show densitometric analysis of the
Western blots for CB1 and CB2 protein expression in vessels from lean Zucker rats (LZRs) and obese Zucker rats (OZRs). In A and B, Western blots for
CB1 and CB2 receptors, respectively. In C, Western blots for TRPV1 receptors. Results were normalized to b-actin expression and expressed as units of
change from the control. Data are expressed as mean 6 SEM. *, P,0.05 vs. LZR. N = 5/group.
doi:10.1371/journal.pone.0063449.g005
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arteries from OZRs also indicates a potential dependence of

AMPK on the decreased activation of eNOS in OZRs.

The link between AMPK and eNOS activation has been

extensively studied. Kemp and colleagues first showed that AMPK

phosphorylates eNOS at serine-1177, leading to activation of this

enzyme [57]. The role of AMPK phosphorylation mediating

eNOS activation by anandamide was confirmed by the observa-

tion that inhibition of AMPK with compound C abolished the

anandamide-induced eNOS phosphorylation in mesenteric arter-

ies from LZRs, indicating that anandamide-induced relaxation in

LZRs depends, at least partially, on the activation of AMPK. In

contrast, AMPK inhibition with compound C did not change the

degree of eNOS phosphorylation in OZRs, which further supports

our hypothesis that an impairment of AMPK activation is involved

in the reduced anandamide-induced phosphorylation of eNOS in

vessels from these animals. To date, no study has assessed the

involvement of AMPK on the vascular responses to anandamide

or the role of these pathways in alterations of cannabinoid

responses in obesity.

Although the effects of AMPK activation was linked to NO

production in the present study, it is important to mention the fact

that anandamide-induced relaxation was barely reduced by NOS

inhibition in LZRs and it was not affected in OZRs. There is clear

evidence that the endothelium-derived relaxating factors work co-

operatively in an integrated manner to maintain the health of the

vasculature. In conditions where EDRFs production/bioavailabil-

Figure 6. Localization of CB1 and CB2 receptors in mesenteric arteries. Panels show confocal microscopic images of von Willebrand factor
(vWF, red), DAPI (blue), CB1 and CB2 receptors (green) in mesenteric arteries from lean Zucker rats (LZRs, A and B) and obese Zucker rats (OZRs, C and
D). Endothelium-intact mesenteric sections were immunolabeled with antibodies against CB1, CB2 and von Willebrand factor. The nuclei were
counterstained with DAPI. An overlay of the vWF, DAPI and CB1 or CB2 images is presented (merge). Endothelial localization of CB1 and CB2 receptors
is shown in the merged images (yellow). The images are representative of three separated experiments. N = 5/group. Scale bar = 40 mm.
doi:10.1371/journal.pone.0063449.g006

Endocannabinoid System in Obesity

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63449



ity is impaired, a compensatory hypersensitivity of smooth muscle

to relaxating factors occurs [58]. Considering this, it is possible

that compensatory mechanisms are activated in LZRs when NOS

is inhibited, contributing to the relatively small, overall reduction

in anandamide relaxation in the presence of L-NAME.

The actions of cannabinoid compounds are terminated through

intracellular enzymatic hydrolysis [28]. In particular; anandamide

is rapidly metabolized by the FAAH to yield arachidonic acid and

ethanolamine [11]. Since pretreatment of mesenteric arteries from

OZRs with the selective FAAH inhibitor (URB597) corrected the

deficit in anandamide-induced vascular relaxation, an increased

degradation of anandamide in mesenteric arteries from OZRs

might contribute to the decreased response to this agonist in

obesity.

Besides interacting with its cognate receptors CB1 and CB2,

anandamide can also activate vanilloid receptors on capsaicin-

sensitive perivascular sensory nerves, and this interaction was

shown to result in the release of the potent vasodilator peptide

CGRP, evoking vasorelaxation [59]. Accordingly, in vitro treat-

ment with capsaicin, which induces desensitization of C-fibers,

profoundly suppressed anandamide responses of vessels from both

LZRs and OZRs. Thus, it appears that effective silencing of

vascular sensory C-fibers prevents blood vessels from responding

normally to anandamide. Additionally, because the inhibition of

anandamide responses of mesenteric arteries from OZRs was

lower than that observed in samples from LZRs, we suggest that

the impaired vascular response to anandamide in arteries from

OZRs also involves decreased activation of C-fibre nerve endings.

Figure 7. Effect of anandamide on eNOS, AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase (ACC)
phosphorylation. Panels show densitometric analysis of the Western blots for eNOS AMPK and ACC protein expression in mesenteric arteries
from lean Zucker rats (LZRs) and obese Zucker rats (OZRs). In A, mesenteric arteries were incubated with anandamide (1 mM, 30 minutes) and the
phosphorylation of eNOS at Ser-1177 was examined. Some vessels were incubated with Compound C (Comp C, 1 mM), 30 minutes before the
incubation with anandamide. In B and C, vessels were incubated with anandamide (1 mM, 30 minutes) and the phosphorylation of AMPK Thr-172 and
ACC were examined, respectively. Total protein levels are shown as loading controls. Data are expressed as mean 6 SEM. *, P,0.05 vs. LZR, #,
P,0.05 vs. OZR. N= 5 or 6/group.
doi:10.1371/journal.pone.0063449.g007
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The functional implications of vascular C-fibre activation were

previously demonstrated by Kawasaki in 1988 [60]. In addition,

many other groups have demonstrated the vascular effects of C-

fibre activation in different vascular preparations, including the rat

mesenteric vascular bed [31]. However, the role of these nerves in

the physiological regulation of vascular tone has remained

uncertain. Recently, TRPV1 has emerged as a major site for

activation of C-fibres in the periphery [61], and the presence of

these receptors was previously demonstrated in nerves penetrating

the walls of resistance mesenteric arteries. Although the protein

expression of TRPV-1 was not altered in vessels from OZRs

compared with samples from LZRs, we demonstrated the

dependence of TRPV1 activation on anandamide-induced vessel

relaxation using agents that interfere with vanilloid receptor

activity, namely capsazepine [34] and ruthenium red [35]. This

finding was confirmed using a CGRP receptor antagonist, which

promoted a considerable decrease in anandamide responses of

mesenteric arteriess from both LZRs and OZRs. However, the

inhibition observed with all of these blockers was lower in OZRs.

These findings, coupled with the observation of the decreased

relaxation to capsaicin in OZRs, indicate that impairment of the

anandamide responses mediated by vanilloid receptors activation

is also present in OZRs and might contribute to the vascular

dysfunction present in this model.

In conclusion, the present study demonstrates that relaxation

induced by the cannabinoid agonist anandamide is decreased in

endothelium-intact arteries from young OZRs. Reduced canna-

binoid receptors expression, decreased anandamide-induced

activation of AMPK and eNOS, increased degradation of

anandamide as well as impairment of the response mediated by

TRPV1 activation might be involved in the decreased response to

anandamide in OZRs.

Our findings further underscore the relationship between

obesity and vascular dysfunction and may provide new evidence

for a role of the endocannabinoid system as one of the mechanisms

accounting for the overall impairment of the vascular function in

obesity.
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