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Abstract

Aims: Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases
including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P
lyase (Sgpl12/2) deficiency on leukocyte subsets relevant to atherosclerosis.

Methods and Results: LDL receptor deficient mice that were transplanted with Sgpl12/2 bone marrow showed disrupted
S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to
controls. Remarkably however, Sgpl12/2 chimeras displayed mild monocytosis, due to impeded stromal retention and
myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical
macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished
atherogenic response.

Conclusions: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell
trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage
differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that
intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.
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Introduction

The lysosphingolipid sphingosine 1-phosphate (S1P) is an

important lipid mediator generated from sphingosine upon cell

activation and present in plasma and extracellular fluid at high

nanomolar concentration [1,2]. Almost all cells of hematopoietic

origin, including platelets, mast cells, neutrophils, erythrocytes and

mononuclear cells are able to store and release S1P, presumably

via ATP binding cassette transporter C1 (ABCC1) [3–5].

A large body of evidence supports a major regulatory role of

S1P in lymphocyte proliferation, migration and cytokine secretion

[6,7]. Moreover, S1P and its receptors are critically involved in

maintaining proper lymphocyte egress from lymphoid organs [8–

10]. In fact, S1P gradients between lymphoid organs with low S1P

concentration and the circulation, which contains high S1P levels,

are a driving force for lymphocyte fluxes [7,11]. However, the

actual regulation of S1P gradients remains elusive, as most cell

types are able to generate S1P through ubiquitously expressed

sphingosine kinases 1 and 2 [12,13], and degrade it through S1P

lyase or S1P phosphatases 1 and 2 [1]. In addition to its

contribution to lymphocyte trafficking, S1P also plays a major role

in endothelial integrity and confers protection against tumor
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necrosis factor (TNF)-a-induced monocyte-endothelial interac-

tions [14,15]. Furthermore, S1P or analogues thereof are known to

inhibit apoptosis in monocytes and bone marrow-derived macro-

phages [16] and to polarize macrophages towards less inflamma-

tory alternatively activated phenotype [17].

The S1P-induced impairment of T cell trafficking and T cell

and macrophage activation may at least in part account for the

beneficial effects exerted by this lysosphingolipid in animal models

of inflammatory diseases [17–20]. Atherosclerosis, the underlying

cause of acute cardiovascular syndromes such as myocardial

infarction and stroke, is considered as a lipid-driven inflammatory

disease. As lymphocyte and macrophage activation within the

arterial wall are essential processes in atherosclerotic plaque

initiation and progression [21], an involvement of S1P in this

inflammatory disorder has been postulated as well. Indeed recent

studies by us and others have shown that FTY720, a synthetic S1P

analogue, reduced atherogenesis by causing lymphocyte seques-

tration in lymph nodes, by impairing monocyte penetration into

the arterial wall, and by exerting anti-inflammatory effects on

macrophages and endothelium [17,22]. Recently, the sphingosine

kinase inhibitor ABC294640 was demonstrated to reduce plasma

S1P levels, but did not affect atherosclerosis due to counterbal-

ancing pro- (enhanced activation of dendritic cells and T-cells) and

anti-atherogenic effects (endothelial cells activation) [23]. Also, a

number of S1P receptors have been implicated in atherosclerosis,

such as S1P2 and S1P3 [24,25]. Both receptors were demonstrated

to be involved in the monocyte/macrophage recruitment and

retention, thereby enhancing atherosclerotic lesion development.

Taken together, these studies suggest a dual role for S1P and S1P

signaling in the development of atherosclerosis, which may result

from differences in experimental setup and animal models used. As

S1P degradation is an important process in S1P regulation and

homeostasis and concomitant fluxes of inflammatory cells,

disruption of this process may give more insight on the role of

S1P and S1P signaling in atherosclerosis. As mentioned above,

S1P lyase (Sgpl1) is a key enzyme in intracellular S1P degradation

and is mainly involved in cleavage of S1P into fatty aldehydes and

phosphoethanolamine. Sgpl1 is tightly involved in S1P gradient

maintenance in lymphoid organs and is expressed on cells of

hematopoietic origin [26,27]. Therefore, we here sought to

investigate the impact of impaired S1P degradation and signaling

on atherosclerosis in LDLr2/2 mice with hematopoietic deficiency

of S1P lyase (Sgpl12/2).

Materials and Methods

Animals
All animal work was approved by the Ethics Committee for

Animal Experiments of Leiden University (Permit Number:

09135) and performed in compliance with the Dutch government

guidelines. All experiments were conducted in compliance with the

Directive 2010/63/EU of the European Parliament. LDL

receptor deficient mice (LDLr2/2, Jackson Laboratories) on a

C57Bl/6 background were bred in the local animal breeding

facility. S1P lyase deficient (Sgpl12/2) and wild type littermates

were obtained by crossing Sgpl1+/2 mice, inbred in a C57Bl/6

background, in the animal housing facilities of the University of

Leuven [26,27]. Sgpl1+/2 non-inbred mice were generated from

gene trapped ES cells (OST 58278) by Lexicon Inc. (Texas). Total

body Sgpl12/2 mice display early lethality [26,27], and therefore

these mice do not survive long enough to develop atherosclerosis.

As hematopoietic cells express Sgpl1, we applied a model of bone

marrow transplantation as described below to investigate the

impact of hematopoietic Sgpl1 deficiency on atherosclerosis in

LDLr2/2 mice.

Irradiation and Bone Marrow Transplantation
The female LDLr2/2 recipients were 12–19 weeks of age

(n = 21 for atherosclerotic lesion analysis, n = 25 for recruitment

studies and n = 16 for in vivo proliferation and macrophage

characterization studies, see Figure 1 for a detailed outline of the

experiments). One week before bone marrow transplantation and

throughout the study female LDLr2/2 recipients (12–19 weeks of

age) were given ad libitum drinking water supplemented with

antibiotics (83 mg/L ciprofloxacin and 67 mg/L Polymixin B

sulphate) and 6,5 g/L sugar. To induce bone marrow aplasia,

female LDLr2/2 mice were exposed to a single dose of 9 Gy

(0.19 Gy/min, 200 kV, 4 mA) total body irradiation, using an

Andrex Smart 225 Röntgen source (YXLON International,

Copenhagen, Denmark) with a 6-mm aluminum filter, one day

before transplantation. Bone marrow cell suspensions were

isolated from 10–14 day old Sgpl12/2 and +/+ littermates

(anaesthetized using a single subcutaneous injection of ketamine

(60 mg/kg, Eurovet Animal Health, Bladel, The Netherlands),

fentanyl citrate and fluanisone (1.26 mg/kg and 2 mg/kg respec-

tively, VetaPharma Ltd, Leeds, UK) by flushing the femurs, tibias,

humeri, radii and ulnas with phosphate buffered saline (PBS,

150 mM NaCl, 1.5 mM NaH2PO4, 8.6 mM Na2HPO4, pH 7.4).

Single-cell suspensions were prepared by passing the cells through

a 70 mm cells strainer (BD, Breda, The Netherlands) and 56106

cells were injected into the tail vein of the irradiated recipients.

After bone marrow transplantation mice were housed in sterile

filter-top cages and fed a sterile regular chow diet (RM3; Special

Diet Services, Witham, United Kingdom) for 6 weeks and a

Western type diet containing 0.25% cholesterol and 15%

cacaobutter for another 4 weeks (Western diet; Special Diet

Services). Throughout the experiment animal weight was moni-

tored.

Tissue Harvesting
For recruitment studies, mice received intraperitoneal injections

of CCL19 (500 ng/mL; Peprotech, Rocky Hill, NJ), MCP-1

(1 mg/mL; Peprotech, Rocky Hill, NJ) or phosphate buffered

saline (PBS) 16–24 hours before sacrifice. For in vivo proliferation

measurement mice received an intraperitoneal injection of EdU

(100 mg, Invitrogen, Breda, the Netherlands) or PBS as a control

96 and 24 hours before sacrifice. At sacrifice mice were

anaesthetized by subcutaneous injection of ketamine (60 mg/kg,

Eurovet Animal Health, Bladel, The Netherlands), fentanyl citrate

and fluanisone (1.26 mg/kg and 2 mg/kg respectively, Veta-

Pharma Ltd, Leeds, UK) and bled by orbital exsanguination.

Peritoneal leukocytes were isolated by peritoneal lavage with

10 mL of ice-cold PBS, after which the composition of the

peritoneal leukocyte populations were analyzed by FACS analysis.

Mice were perfused with PBS via the left cardiac ventricle.

Organs were excised and stored on ice for direct use (flow

cytometry), fixed in 4% Zinc Formalfixx (Shandon Inc, Thermo

Fisher Scientific BV, Breda, The Netherlands) for histological

analysis, or snap-frozen in liquid nitrogen for optimal RNA and

DNA preservation. Single-cell suspensions were prepared of part

of the spleen, mesenteric lymph nodes and thymus. Erythrocytes in

blood and spleen suspensions were lysed by hypo-osmotic shock in

erythrocyte lysis buffer (0.01 M Tris, 0.83% NH4Cl, pH7.2) for 5

minutes on ice.

S1P levels in plasma, thymus, lymph nodes and spleen were

quantified as follows: acidic methanolic extracts of plasma or

tissues were fortified with the internal standard C17-S1P, prepared
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from C17-sphingosine with recombinant human Sphk1, diluted

with water and applied to a hydrophobic SPE cartridge.

Compounds eluted with methanol, were derivatized with 6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate and subjected

to normal phase SPE to separate the derivatized sphingoid bases

and their phosphate esters. After two selective hydrolysis steps,

samples were separated by reversed phase HPLC (Symmetry C18-

column 4.66150; 5 mm; 100 Å; Waters) with an increasing

gradient of buffered methanol/acetonitrile coupled to fluorimetric

analysis.

Differential Blood Cell Analysis
Differential blood cell analysis was performed with by

automated differential cell count analysis (Sysmex, Goffin Meyvis

BV, Etten Leur, The Netherlands) or by flow cytometry

(FACSCalibur, FACSCANTO II or LSRII, BD) on whole blood,

white blood cells, and single-cell suspensions of spleen, lymph

nodes and bone marrow. For each FACS staining 2*105 cells were

incubated with antibody dilutions (0.25 mg for each antibody) in

PBS plus 1% mouse serum at 4uC. Monoclonal antibodies for flow

cytometry were from BD, Breda, The Netherlands (CD4,

CXCR4, CD8 and streptavidin-PE), eBioscience, Zoersel-Halle,

Belgium (CCR7, CD8, CD19, CD44, CD62L, CD11b, GR1,

CD71, CD11c, F4/80, MHCII and CD86), Abcam, Cambridge,

UK (CCR2, S1P1 [28], goat-anti-rabbit-FITC and donkey-anti-

rabbit-PE) or Invitrogen (EdU Alexa FluorH 488).

Plasma Cytokine Determination
Mouse plasma cytokines (i.e. IL-6, IL-10, MCP-1, IFN-c, TNF-

a and IL-12p70) were determined by a cytometric bead array

Figure 1. Detailed outline of the experimental setup.
doi:10.1371/journal.pone.0063360.g001
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(CBA, BD) on a FACSCalibur (BD). Calibration curves were

established from standard solutions provided by BD. Analysis of

calibration curves and samples was done using BDTM CBA

software.

Splenic T Cell Proliferation and Cytokine Production
T cells were purified from freshly isolated splenocytes by a T

lymphocyte enrichment set (BD) or lympholyte-M (CEDARLANE

Laboratories Ltd., Burlington, NC, USA). T cell suspensions were

washed, resuspended in RPMI1640 (PAA Laboratories, Cölbe,

Germany) containing 10% fetal calf serum (FCS, v/v), 2 mM L-

glutamine, 100 U/mL penicillin, and 100 mg/mL streptomycin,

and 50 mM b-mercaptoethanol (RPMI complete) and seeded at a

density of 26105 cells/well in 96-well plates. Cells were incubated

for 40 hours in RPMI or RPMI supplemented with S1P (100 nM;

Bio Connect BV, Huissen, The Netherlands), aCD3/aCD28

(2 mg/mL, eBioscience) or concanavalin A (ConA; 2 mg/mL;

Sigma, Zwijndrecht, The Netherlands). After 24 hours [3H]thy-

midin (5.0 mCi/well; GE Healthcare, Eindhoven, The Nether-

lands) was added and after 16 hours cell-associated radioactivity

was determined by scintillation spectrometry. IL-2, IL-4, IL-10,

IL-12 and INF-c contents in the supernatant were determined by

commercially available ELISA (eBioscience).

Functional Characterization of Peritoneal and Bone
Marrow-derived Macrophages

Peritoneal macrophages (p-mQ) were harvested as described

above. Bone marrow-derived macrophages (BM-mQ) were

cultured for 7 days in RPMI1640 supplemented with 20% FCS

(v/v), 2 mM L-glutamine, 100 U/mL penicillin, and 100 mg/mL

streptomycin, 1% non essential amino acids (v/v), 1% pyruvate (v/

v), and macrophage colony-stimulating factor (M-CSF). After

detachment with 4 mM EDTA, macrophages were resuspended

in DMEM (PAA Laboratories) containing 10% FCS (v/v) and

2 mM L-glutamine, 100 U/mL penicillin, and 100 mg/mL

streptomycin, and seeded in a 24-well plate at a density of

0.56106 cells/mL. For experiments macrophages were cultured at

a density of 0.56106 cells/mL and were incubated for 24 hours in

the absence or presence of lipopolysaccharide (LPS; 50 ng/mL;

Salmonella Minnesota R595 (Re); List Biological Laboratories Inc.

Campbell, CA) or IL-4 (100 ng/mL [p-mQ] and 10 ng/mL [BM-

mQ], Peprotech). IL-6, IL-10, IL-12, MCP-1 and TNF-a contents

in medium were determined by commercially available ELISA

(eBioscience and BD). Gene expression was quantitatively

analyzed on an ABI7500 Fast Real-Time PCR system (Applied

Biosystems, Foster City, CA) as described previously [29], with

murine hypoxanthine phosphoribosyltransferase (HPRT) as

housekeeping gene (Table 1).

Functional Characterization of Bone Marrow
Bone marrow cells of the recipient LDLr2/2 mice were flushed

from tibias and femurs with PBS and filtered through a cell-

strainer. Red blood cells were lysed with lysis buffer (0.15 M

NH4Cl, 1 mM KHCO3, 0.1 mM Na2-EDTA, pH 7.3). Bone

marrow cells were incubated with the appropriate antibodies in

PBS containing 5% calf serum for 30 min on ice in a total volume

of 50 mL after which cells were washed with PBS containing calf

serum. For functional characterization, bone marrow cells were

incubated with anti-murine B220 (Caltag, San Francisco, CA) or

anti-murine CD34, CD41, Ter119, Gr1, CD14, Sca1, CD117

(BD Pharmingen) and analyzed with flow cytometry (FACSCali-

bur, BD). Data were analyzed by CellQuest software. For colony

assays, primary mouse bone marrow cells (104/ml methylcellulose)

(Stem cell technologies, M3434) were seeded in 3 cm dishes and

cultivated for 8–11 days. Colonies were counted and categorized

according to their morphology.

In vivo Splenocyte Homing
Part of the spleen and the mesenteric lymph nodes of the

recipient LDLr2/2 mice were isolated and for homing/

migration experiments of lymphocytes, single cell suspensions of

spleen lymphocytes from Sgpl12/2 chimeras (labeled for 30 min

with 20 mM orange-fluorescent tetramethyl-rhodamine

[CMTMR], Invitrogen) and wild type controls (labeled for

15 min with 2 mM carboxyfluorescein diacetate succinimidyl ester

[CFSE], Invitrogen) were intravenously injected in the tail vein of

a separate set of LDLr2/2 mice at a 1:1 ratio (46106 labeled

splenocytes in total) [30]. After 48 hours presence of CFSE and

CMTMR labeled spleen lymphocytes in spleen and lymph nodes

was examined by flow cytometry and histological analysis.

Histological and Morphometric Analysis
The aortic root of mice receiving either Sgpl12/2 or wild type

control bone marrow was excised for analysis of spontaneous

atherosclerosis, embedded in Tissue-Tek and transverse 10 mm

cryosections throughout the aortic valve area were prepared.

Sections were stained with Oil-Red-O and hematoxylin (Sigma).

Cross-sections with maximal stenosis were used for morphometric

analysis on a DM-RE microscope with Leica Qwin image analysis

software (Leica Microsystems B.V., Rijswijk, the Netherlands).

Corresponding sections were stained with antibodies directed

against mouse macrophages (monoclonal mouse IgG2a, clone

MOMA-2, dilution 1:50; Sigma Diagnostics, St. Louis, MO) and

lymphocytes (CD3 clone SP7, dilution 1:150, Immunologic,

Duiven, The Netherlands). For macrophage phenotype staining,

endogenous peroxidase activity was first inhibited by incubating

cryosections with 0.3% (v/v) hydrogen peroxide in methanol.

After blocking with 1% (w/v) bovine serum albumin (BSA) in PBS,

sections were incubated with either purified rat monoclonal

antibody against mouse macrophages (F4/80) (Abcam) at 20 mg/

mL, goat anti-CD163 (Santa Cruz, UK) at 2 mg/mL, rabbit anti-

CCR2 (Abcam) at 10 mg/mL, rabbit anti-iNOS (Abcam) at

10 mg/mL, rabbit anti-MMP-14 (Abcam) at 10 mg/mL or rabbit

anti-TIMP-3 (Abcam) at 2.5 mg/mL in 1% (w/v) BSA in PBS.

Sections were then incubated with AlexaFlour-488 conjugated

secondary antibodies (Invitrogen, UK) diluted 1:200 in 1% (w/v)

BSA in PBS. Sections were mounted with Vectashield containing

DAPI (Vector Laboratories, UK) to reveal the nuclei. The relative

area stained positive for each of the antibodies was quantified by

computerized image analysis (Image Pro Plus, Media Cybernetics,

Carlsbad, USA), and was expressed as a percentage of the total

atherosclerotic plaque area. A negative control, where the primary

antibody was replaced with the relevant IgG at the same dilution,

was always included. Transverse 5-mm cryosections were prepared

from spleen and stained for CD3.

Genotyping
Genomic DNA was isolated from bone marrow and bone

marrow-derived macrophages by chromatography over DNA

extraction columns (Qiagen, Venlo, the Netherlands) and used for

verification of the efficacy of bone marrow repopulation after

transplantation. Repopulation rate was determined by use of a

PCR calibration curve using DNA isolated from wild type and

Sgpl12/2 bone marrow in ratios from 100%:0%, 90%:10%,

80%:20% etc. Primer sets used for the wild type S1P lyase alleles

(forward 59- TGATAGGGCTGAAAACCACTG and reverse 59-

TCAGAAGCAAAACTGCCTTG) and the mutated alleles,
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containing a b-geo insertion, (forward 59-CGAA-

TACCTGTTCCGTCATAGC and reverse 59-ACCACTAC-

CATCAATCCGGTAG).

Statistical Analysis
Values are expressed as mean 6 SEM. A 2-tailed Student’s t-

test was used to compare individual groups of animals. To

determine significance of the relative mRNA expression levels,

statistical analysis was performed on DCt values.

Results

Assessment of Chimerism and S1P Levels in
Hematopoietic Sgpl12/2 Chimeras

To induce hematopoietic deficiency of S1P lyase, lethally

irradiated LDLr2/2 mice were reconstituted with either Sgpl12/2

bone marrow or bone marrow isolated from wild type littermates.

Bone marrow from Sgpl12/2 transplanted animals showed .90%

repopulation of Sgpl12/2 bone marrow (Figure 2A). Sgpl12/2

chimerism did not affect body weight. Hematopoietic Sgpl12/2 led

to a profound increase in S1P content in spleen (90-fold, P,0.001)

and lymph nodes (47-fold, P,0.01), while total S1P levels in

thymus (2.2-fold, P,0.05) and plasma (1.25-fold, P,0.01) were

only modestly elevated (Figure 2B).

Hematopoietic Sgpl12/2 Chimeras Promotes
Lymphopenia

In agreement with previous findings after pharmacological (2-

acetyl-4-tetrahydroxybutylimidazole (THI)) [11] or genetic (Sgpl1-

deficient mice) [27,31] interruption of Sgpl1 function, blood

lymphocyte counts were decreased from 3.2 to 1.1*106 cells/mL

(263%, P,0.001) in mice with hematopoietic Sgpl1-deficiency.

Sgpl12/2 chimeras had sharply reduced CD4+ T cell levels in

blood, lymph nodes, spleen (.260%, P,0.001, Figure 3A). CD8+

T cells showed a similar pattern with 50–60% reductions in blood,

lymph nodes and spleen (Figure 3B, P,0.005). In agreement,

immunohistochemistry revealed equally diminished spleen CD3+

T cell contents and aberrant germinal center morphology

(Figure 3C). Surprisingly, and in contrast to previous observations

after systemic S1P lyase inhibition by THI treatment or by using

the S1P analogue FTY720, no accumulation of T cells was evident

in lymph nodes. Regulatory T cell (CD4+/foxp3+/CD25+)

numbers in spleen and lymph node were increased in Sgpl12/2

chimeras (7.4% versus 4.8% for control chimeras in spleen and

6.0% versus 3.7% for control chimeras in lymph nodes,

respectively; both P,0.02) (Figure 3D). Hematopoietic Sgpl1

deficiency did not noticeably influence total B cell (CD19)

numbers in blood and lymph nodes.

Perturbed T Lymphocyte Proliferation and Trafficking in
Sgpl12/2 Chimeras

The observed effects on T cells led us to investigate

consequences of Sgpl1 deficiency for the proliferative and

mitogenic capacity of lymphocytes. Stimulation of spleen lympho-

cytes with either aCD3/aCD28 (2 mg/mL) or ConA (2.0 mg/mL)

led to a potent mitogenic response in cells from wild type but not

Sgpl12/2 transplanted animals (control: WT = 1015461344 versus

KO = 96716969 dpm, P = NS; aCD3/aCD28:

WT = 7473769671 versus KO = 3886063911 dpm, P,0.01

and ConA: WT = 8792865200 versus KO = 3496363627 dpm,

P,0.001, Figure 4A). In keeping, splenic CD4+ T cell proliferation

in vivo as measured by EdU+ cell content was significantly reduced

(P,0.05, Figure 4B).

Second, we investigated effects on S1P dependent lymphocyte

trafficking, which is thought to be mediated via S1P1 receptor.

Previously, S1P analogues were shown to quench S1P1 expression

[9]. Contrary to our expectation, however, S1P1
+ T-cells were

overrepresented within the CD4+ and CD8+ population in blood,

lymph nodes and spleen, while S1P1 mean fluorescence on a per

cell basis did not change. Interestingly, CD4+ and CD8+ T cell

populations in Sgpl12/2 bone marrow transplanted animals both

displayed a striking enrichment in migration markers CCR7 and

CXCR4 (Figure 4C, 4D). However, despite the enrichment in

CCR7+ CD4 and CD8 T cells, the CCR7 migratory response in

Sgpl12/2 chimeras was blunted as illustrated by the complete

failure of splenocytes from CCL19 treated mice to secrete IL-2

and IL-4 (Figure 4E and data not shown). Moreover, while T-cells

of CCL19-challenged Sgpl1+/+ transplanted mice showed an

Table 1. RT-PCR primer sequences for gene expression analysis of peritoneal macrophages and bone marrow-derived
macrophages.

Gene Source forward primer (59-39) reverse primer (59-39)

Arginase 1 NM_007482 GGTTCTGGGAGGCCTATCTTACA TCTTCACCTCCTCTGCTGTCTTC

CCL3 NM_011337 GCCACATCGAGGGACTCTTCA GATGGGGGTTGAGGAACGTG

CCR2 NM_009915 AACTGTGTGATTGACAAGCACTTAGAC TGACAGGATTAATGCAGCAGTGT

CCR5 NM_009917 GACTGTCAGCAGGAAGTGAGCAT CTTGACGCCAGCTGAGCAA

IL-1a NM_010554 GCGCTCAAGGAGAAGACCAG TGATACTTTTCCAGAAGAAAATGAGG

IL-1RA NM_031167 TTCATAGTGTGTTCTTGGGCATC CGCTTGTCTTCTTCTTTGTTCTTG

IL-6 M20572 GAAGAATTTCTAAAAGTCACTTTGAGATCTAC CACAGTGAGGAATGTCCACAAAC

IL-10 NM_010548 TCCCCTGTGAAAATAAGAGCA ATGCAGTTGATGAAGATGTCAAA

IL-12 p35 NM_008351 AGTGAAAATGAAGCTCTGCATCC GATAGCCCATCACCCTGTTGA

IL-12 p40 NM_008352 GATTCAGACTCCAGGGGACA GGAGACACCAGCAAAACGAT

iNOS NM_010927 CCTGGTACGGGCATTGCT GCTCATGCGGCCTCCTTT

MCP-1 M19681 GCATCTGCCCTAAGGTCTTCA TTCACTGTCACACTGGTCACTCCTA

TNF-a X02611 GCCAGCCGATGGGTTGTA AGGTTGACTTTCTCCTGGTATGAGA

HPRT NM_013556 TTGCTCGAGATGTCATGAAGGA AGCAGGTCAGCAAAGAACTTATAG

doi:10.1371/journal.pone.0063360.t001
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increased proliferative capacity, this increased response was

completely absent in Sgpl12/2 chimeras (control:

WT = 62845613983 versus KO = 3142162719 dpm, CCL19:

WT = 110329614903 versus KO = 3546465634 dpm, Figure 4F).

The most direct proof for intrinsic (thus S1P gradient

independent) migratory defects of T cells was provided by a T

cell trafficking study in Sgpl12/2 chimeras. T cell fluxes across

secondary lymphoid organs are dependent on S1P gradients, as

well as by homeostatic chemokine receptors such as CCR7. Flow

cytometric analysis of lymphoid organs and blood at 48 hours after

adoptive transfer of an 1:1 mixture of CMTMR labeled Sgpl12/2

versus CFSE labeled wild type splenocytes into LDLr2/2,

indicated a reduced presence of Sgpl12/2 cells in spleen

(242%), lymph nodes (225%) and blood (257%, P,0.05,

Figure 4G). The reduced homing capacity of Sgpl12/2 T cells

was confirmed by fluorescence microscopy analysis of lymph node

and spleen (Figure 4H, 4I). In summary, these data indicate that T

cell proliferation and migration are perturbed in Sgpl12/2

chimeras, which may impact the development of atherosclerosis.

Increased Monocyte and Neutrophil Numbers in Sgpl12/

2 Chimeras
In the second part of this study we focused on effects of

hematopoietic S1P lyase deficiency on the myeloid lineage. Much

to our surprise both total blood monocyte and neutrophil counts

were markedly elevated in Sgpl12/2 chimeras as assessed by

differential cell count analysis (0.2 to 0.6*106 cells/mL and 0.5 to

1.8*106 cells/mL respectively, P,0.005) and by flow cytometry

(CD11b+ monocytes: +2.7-fold, P,0.001; CD11b+/GR1+/

CD712 neutrophils: +2.2-fold, P,0.001) (Figure 5A). CD11b+/

GR1+ granulocyte precursors in bone marrow were elevated

(+27%, P,0.001), while no effects were seen in CD14+/GR1+

macrophage precursors (Figure 5B). The combined monocytosis/

neutrophilia can at least in part be attributed to increased in vivo

monocyte proliferation (P,0.001, Figure 5C) and augmented

granulocyte macrophage-colony stimulating factor (GM-CSF) and

granulocyte-colony stimulating factor (G-CSF) dependent myelo-

poiesis of bone marrow cells in Sgpl12/2 chimeras (P,0.005,

Figure 5D).

To evaluate the responsiveness of these macrophages to

different stimuli, we have assessed intracellular Ca+-fluxes as a

direct measure of S1P and chemokine receptor activation, as

chemokines receptors and its ligands such as MCP-1 are important

pathways for monocyte and macrophage recruitment in athero-

sclerosis. Macrophages from Sgpl12/2 chimeras were unable to

respond to S1P, whereas activation by MCP-1 and the Ca

ionophore ionomycin remained unaltered (Figure 5E). However,

plasma MCP-1 levels, which drive stromal monocyte egress [32],

were decreased in Sgpl12/2 chimeras, as was MCP-1 production

at protein and mRNA level in basal as well as LPS stimulated

bone-marrow-derived macrophages from Sgpl12/2 chimeras

(Figure 5F, 5G). Conversely, bone marrow-derived macrophages

had increased CCR2 expression in Sgpl12/2 macrophages at

baseline and after LPS stimulation (Figure 5H), which may either

result from hampered differentiation or from altered polarization.

A study of peritoneal leukocyte influx in a model of MCP-1

induced peritonitis, in which macrophages are recruited to the

peritoneal cavity upon MCP-1 injection which mimics macro-

phage recruitment to the atherosclerotic plaque, revealed as

expected an increased presence of F4/80+/CCR2+ macrophages

(P,0.05) in the peritoneal cavity of the control mice. MCP-1

elicited influx was at least partially blunted in Sgpl12/2 chimeras

(Figure 5I) despite upregulated monocyte CCR2 expression and

monocytosis in Sgpl12/2 chimeras. Thus while Spgl1 deficient

chimeras showed increased circulating monocyte numbers, this

subset was desensitized to MCP1 dependent chemotaxis.

Figure 2. Recipient bone marrow genotyping and S1P concentrations. Genotyping of the bone marrow (A) showed .90% repopulation of
the bone marrow for Sgpl1. (B) Effect of hematopoietic Sgpl12/2 on plasma S1P concentration and S1P content of thymus, lymph node, and spleen.
White bars: wild-type (WT), black bars: Sgpl12/2 (KO) chimeras. Data are represented as mean +/2 SEM2/2, data from n = 10–11 per group in total.
*P,0.05, **P,0.01, ***P,0.001 (WT versus KO).
doi:10.1371/journal.pone.0063360.g002
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Sgpl12/2 Deficient Macrophages are Polarized Towards
a Classically Activated Phenotype

S1P1 agonists were previously shown by us and others to favor

an anti-inflammatory macrophage phenotype [17,33]. On the

other hand, increased GM-CSF response, as observed in our

study, has been shown to favour polarisation of macrophages to a

pro-inflammatory phenotype [34,35]. Therefore, we investigated

whether Sgpl1 deficiency has impacted macrophage activation.

Expression analysis on Sgpl12/2 versus Sgpl1+/+ BM-derived

macrophages showed a pro-inflammatory phenotype as illustrated

by increased expression of pro-inflammatory cytokines IL-6, TNF-

a and IL-1a (P,0.001, Figure 6A–D). Paradoxically, expression of

another pro-inflammatory macrophage marker, inducible nitric

oxide synthase (iNOS) was significantly reduced (P,0.001,

Figure 6E). The increase in M1-phenotype marker expression

was paralleled by a downregulation of ‘‘alternative activation’’

markers, such as arginase 1 and IL-10 (Figure 6F, 6G), while IL-1

receptor antagonist (IL-1RA) showed a dual response with reduced

expression upon LPS stimulation and increased expression in

control macrophages (Figure 6H). Further support for a pro-

inflammatory macrophage phenotype of Sgpl12/2 macrophages

was provided by increased LPS-induced TNF-a secretion of

Sgpl12/2 BM-derived macrophages and augmented IL-12 secre-

tion by Sgpl12/2 peritoneal macrophages (Figure 6I, 6J).

Concluding, hematopoietic Sgpl12/2deficiency results in a more

pro-inflammatory macrophage phenotype as compared to control

macrophages.

Hematopoietic Sgpl12/2 Chimeras Show Reduced
Atherosclerosis

To determine the effects of hematopoietic Sgpl12/2deficiency

on atherosclerotic lesion development, Oil Red O-stained aortic

root lesions of Western diet fed LDLr2/2 chimeras were analyzed.

Morphometric quantification revealed that plaque size of the

Sgpl12/2 transplanted mice was significantly decreased as

compared to wild type transplanted mice (1.05*105 mm2 versus

1.62*105 mm2; P = 0.02) (Figure 7A). In concordance with the

reduced T-cell migration, hematopoietic Sgpl12/2 chimeras had

borderline significantly reduced CD3+ T cell content in lesions

(P,0.09) (Figure 7B), however this may be representative for

Figure 3. Effect of hematopoietic Sgpl12/2 on T cell numbers. (A,B) Sgpl12/2 chimeras show reduced CD4+ and CD8+ T cell numbers in blood,
spleen and lymph nodes. (C) CD3 staining shows absence of normal germinal centre morphology in spleens of Sgpl12/2 chimeras (scale bar: 100 mm,
arrows indicate germinal centers in spleens of WT transplanted mice). (D). Sgpl12/2 chimeras show a relative increase in regulatory T cells in spleen
and lymph nodes. White bars: wild-type (WT), black bars: Sgpl12/2 (KO) chimeras. Data are represented as mean 6 SEM, n = 10–11. *P,0.05,
**P,0.01, ***P,0.001 (WT versus KO).
doi:10.1371/journal.pone.0063360.g003
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Figure 4. Effect of hematopoietic S1P lyase deficiency on T-cell proliferation and migration. (A) The mitotic response of T cells isolated
from Sgpl12/2 chimeras to aCD3/aCD28 (2 mg/mL) or ConA (2 mg/mL) challenge is markedly decreased compared to Sgpl1+/+ transplanted mice
(n = 8 per group). (B) In vivo proliferation of CD4+ T cells as measured by EdU incorporation is also significantly decreased in the Sgpl12/2 chimeras
(n = 8 per group). (C, D) CCR7, CXCR4 and S1P1 positive cells were overrepresented in spleen CD4+ and CD8+ T-cell subsets of Sgpl12/2 (n = 10–11 per
group). (E) Splenocytes of CCL19-challenged Sgpl1+/+ transplanted mice but not Sgpl2/2 chimeras show ConA induced IL-2 release, which
corresponds to reduced proliferation (n = 4 per group) (F). (G) Flow cytometry analysis of lymphoid organs and circulation at 48 hours after injection
of a 1:1 mixture of CMTMR labeled Sgpl12/2 versus CFSE labeled wild type lymphocytes into LDLr2/2 revealed a reduced presence of Sgpl12/2

lymphocytes in spleen, lymph nodes and blood (WBC, white blood cells) (n = 9). This reduced homing was confirmed by fluorescence microscopic
analysis of lymph node (H) and spleen (I), (scale bar: 100 mm, Sgpl12/2 lymphocytes in red, wild type lymphocytes in green). White bars: wild-type
(WT), black bars: Sgpl12/2 (KO) chimeras. Data are represented as mean 6 SEM. *P,0.05, **P,0.01, ***P,0.001 (WT versus KO), ###P,0.001 (PBS
versus CCL19).
doi:10.1371/journal.pone.0063360.g004
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Figure 5. Altered myelopoiesis in Sgpl12/2chimeras. (A) Sgpl12/2chimeras show increased CD11b+ (monocytes) and CD11b+Gr1+CD712

neutrophil counts in the circulation (n = 10–11 per group). (B) In bone marrow the increase in neutrophils is already noticeable at the level of the
CD11b+/Gr1+ precursors, while this is not the case for the CD14+/GR1+ monocytes (n = 10–11 per group). (C) In vivo proliferation of CD11b+ cells as
measured by EdU incorporation is 3-fold increased in Sgpl12/2 chimeras (n = 8 per group). (D) Growth-stimulation of bone marrow cells indicated an
increased colonigenic capacity of Sgpl12/2 cells in response to G-CSF and GM-CSF, while no effect for M-CSF was seen (n = 3 per group). (E) Bone
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marrow-derived macrophages of Sgpl12/2chimeras are unresponsive to S1P stimulus as assessed by Ca2+-flux measurement, while the Ca2+ response
to ionomycin and MCP-1 remained unaltered (n = 3 per group). (F). Analysis of plasma and bone marrow-derived macrophage (BM-mQ) supernatants
pointed to reduced MCP-1 generation in Sgpl12/2chimeras (plasma: n = 10–11 per group, BM-mQ: n = 5 per group). Reduced MCP1 expression by BM
derived macrophages of Sgpl12/2 chimeras was corroborated at an mRNA levels (G), while conversely expression of CCR2 was increased (H) in bone
marrow-derived macrophages (n = 10 per group). However, in a model of mild peritonitis, MCP-1 triggered migration of CCR2+ inflammatory
macrophages (F4/80, P,0.05) in Sgpl1+/+ transplanted mice but not Sgpl12/2 chimeras (n = 4–5 per group) (I). White bars: wild-type (WT), black bars:
Sgpl12/2 (KO) chimeras. Data are represented as mean 6 SEM. *P,0.05, **P,0.01, ***P,0.001 (WT versus KO).
doi:10.1371/journal.pone.0063360.g005

Figure 6. Characterization of macrophage phenotype in Sgpl1+/+ transplanted mice versus Sgpl12/2 chimeras. Gene expression analysis
of bone marrow derived macrophages indicated a generally pro-inflammatory phenotype of Sgpl12/2 macrophages as judged by the increased
expression of the markers IL-6 (A), TNF-a (B), IL-1a (C) and IL-12 (D), while in contrast iNOS expression, another marker of a pro-inflammatory
‘‘classically activated’’ macrophage was sharply decreased (E). Two markers of the anti-inflammatory macrophage phenotype, notably arginase 1
(Arg1) (F) and IL-10 (G) were almost blunted in LPS primed macrophages. Expression of the established M2 marker IL-1RA (H) was increased in control
macrophages, while LPS stimulation caused a shift towards downregulated expression in Sgpl12/2 macrophages. (I) In addition, LPS-induced TNF-a
secretion was increased in BM-mQ of Sgpl12/2 chimera mice. (J) Furthermore, LPS slightly induced the release of the pro-inflammatory IL-12 in control
macrophages. The endogenous levels of IL-12 were already higher in Sgpl12/2 macrophages; however in contrast to control macrophages, LPS did
not enhance IL-12 production of these macrophages. White bars: wild-type (WT), black bars: Sgpl12/2 (KO) chimeras. Data are represented as mean 6
SEM, gene expression: n = 10 per group, cytokine analysis: n = 5 per group. *P,0.05, **P,0.01, ***P,0.001 (WT versus KO).
doi:10.1371/journal.pone.0063360.g006
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plaque stage and it remains to be established whether this is a

causal effect. MOMA positive macrophage presence in plaques

from Sgpl12/2 chimeras did not differ significantly from plaques of

Sgpl1+/+ transplanted controls, a surprising finding in view of the

Figure 7. Effect of Sgpl12/2 chimerism on aortic root lesion size and morphology. (A) Lesion analysis of aortic root lesions shows that
absence of hematopoietic S1P lyase decreases atherosclerotic lesion progression compared to control animals by 35% (scale bar: 250 mm). (B) A trend
was observed towards a decreased T-cell content in the aortic root (P = 0.09) (scale bar: 10 mm). (C) Despite the observed systemic monocytosis,
immunohistochemical analysis did not demonstrate any changes in macrophage content as demonstrated by a MOMA-2 staining and the general
macrophage marker CD163. A trend was observed towards decreased plaque expression of the M1 macrophage marker iNOS in Sgpl12/2 chimeras
(P = 0.055) (scale bar: 250 mm, nuclear DAPI staining in blue, macrophage marker staining in red). (D) Macrophage polarization markers such as CCR2
(freshly invaded monocytes) and TIMP3 and MMP14 (foam cells) were unchanged (scale bar: 250 mm, nuclear DAPI staining in blue, macrophage
marker staining in red). White bars: wild-type (WT), black bars: Sgpl12/2 (KO) chimeras, n = 10–11 per group. Data are represented as mean 6 SEM.
*P,0.05 (WT versus KO).
doi:10.1371/journal.pone.0063360.g007
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monocytosis in the former mice (Figure 7C). In line with the

aforementioned reduction in iNOS expression by Sgpl12/2

macrophages in vitro, a strong trend was observed towards

decreased iNOS content in lesions of Sgpl12/2 chimeras

(Figure 7C). Analysis of other macrophage markers such as

CD163, CCR2 (freshly invaded macrophages), TIMP-3 and

MMP-14 (foam cells) [32] did not reveal major differences in

plaque expression (Figure 7D). Also, the ratio between TIMP-3

and MMP-14, which is low in highly proteolytic macrophages that

can affect plaque stability [36], was also not significantly affected

(WT: 0.860.3 versus Sgpl12/2: 2.260.8, P = NS).

Discussion

S1P signaling is instrumental in the pathogenesis of several

inflammatory diseases and recent studies established the ather-

oprotective activity of a synthetic sphingosine mimetic, FTY720,

in a number of mouse models [17,22]. S1P receptors have also

been investigated in disease models of atherosclerosis suggesting a

generally protective effect of receptor deficiency [24,25,37]. Based

on these data, the effects of S1P on cardiovascular diseases are

controversial, and may depend on cellular source of S1P, S1P

receptor expression and animal model used [38]. The relevance of

endogenous S1P to atherosclerosis has not yet been investigated.

Here, we confirm the critical role for hematopoietic S1P lyase, a

key enzyme in intracellular S1P degradation and maintenance of

S1P gradients in lymphoid organs, for lymphocyte trafficking.

Moreover, we are the first to establish that hematopoietic S1P

lyase deficiency leads to moderate monocytosis, possibly a

resultant of G/GM-CSF dependent expansion of the myeloid

lineage, to impaired chemokine-induced monocyte trafficking and

activation, and to skewing of macrophage differentiation towards a

more pro-inflammatory phenotype in vitro and in vivo. Collectively,

these profound effects result in a reduced atherogenic response

seen in LDL receptor knockout mice with hematopoietic Sgpl1

deficiency.

Two mutually non-exclusive mechanisms may account for the

diminished plaque development: a decreased lymphocyte avail-

ability and migratory activity on the one hand, and altered

monocyte/macrophage migration and function on the other hand.

The profound lymphopenia was a likely consequence of disruption

of S1P gradients, which are crucial to normal lymphocyte egress

from lymphoid organs. In this regard our observations largely

recapitulate previous findings in S1P1 deficient mice [27] and after

pharmacological S1P lyase inhibition by THI [11]. In the latter

study, desensitization and subsequent downregulation of S1P1 was

suggested to underlie the impaired T cell egress on exposure to

high S1P concentrations. Our study failed to demonstrate a

reduction in thymocyte S1P1 expression suggesting that S1P1

desensitization independent mechanisms may apply. Furthermore,

reduced T cell mitogenic and migratory responses and decreased

secretion of several T cell specific cytokines were reported in vitro

in S1P-exposed lymphocytes and in LDLr2/2 mice treated with

FTY720 [1]. The present study extends these findings to show

impaired proliferation in Sgpl12/2 spleen lymphocytes and

impaired homing capacity of spleen lymphocytes to spleen and

lymph nodes, while Sgpl1 deficient chimeras had aberrant spleen

architecture, almost devoid of germinal centers. Additionally, the

cytokine profiles of S1P lyase-deficient animals suggested attenu-

ated T helper responses, as evidenced by decreased IL-2 (Th1)

release upon CCL19 stimulation and by a CD4+/CD8+

dysbalance. Finally, the atheroprotective activity of hematopoietic

S1P lyase deficiency might in part be ascribed to the expansion of

CD4+CD25+ regulatory T (Treg) cells, known to exert potent anti-

atherogenic effects [39,40].

A second feature of S1P lyase-deficient chimeras was the mild

monocytosis. In view of the increased responsiveness of Sgpl12/2

bone marrow cells to G/GM-CSF, this is likely caused by

increased stromal production. In spite of elevated circulating

monocyte numbers, plaque macrophage content remained

unchanged in hematopoietic S1P lyase deficiency possibly due to

an attenuated CCR2/MCP-1 chemotaxis. MCP-1 is not only

required for stromal release but also for monocyte migration to

inflammatory sites such as the plaque [32,41]. MCP-1 levels in

plasma and macrophage secretions of Sgpl12/2 chimeras were

considerably reduced, while these chimeras also showed dimin-

ished peritoneal influx of CCR2-positive F4/80 macrophages in a

model of MCP-1-dependent peritonitis, which points to aberrant

macrophage migratory response. In this context, it is worth noting

that reduced plasma MCP-1 levels were also observed in ApoE2/

2 mice treated with FTY720 [22].

A few limitations of these studies should be mentioned: first, we

applied a bone marrow setup to establish the effects of

hematopoietic Sgpl12/2deficiency instead of using a total body

knockout mouse. However, Sgpl12/2 mice do not survive after 4

weeks, rendering long-term atherosclerosis studies impossible. In

this study, we demonstrate that hematopoietic Sgpl1 tightly

regulates S1P gradients, illustrating the validity of the model used.

Second, plaque T cell numbers were reduced, however when

corrected for lesion size, the relative amount of plaque T cells is

similar between the groups. It thus remains to be established

whether the plaques are reduced caused by the reduction in T cell

numbers or whether this is a secondary effect. The massive effects

on T cell migration and proliferation suggest the former, but this

has to be confirmed in the future. Furthermore, the exact

mechanism and the contribution of each specific cell type, e.g.

the role of regulatory T cells, to the observed reduction in

atherosclerosis remains to be assessed.

In summary, hematopoietic S1P lyase appears to be essential for

maintenance of S1P gradients and its absence not only has

profound impact on lymphoid surveillance and lymphocyte

activity, but also on stromal monocyte release and macrophage

differentiation. Collectively, these pro- and anti-atherogenic effects

of hematopoietic S1P lyase deficiency culminate in a dampened

atherogenic response. Its broad activity profile on various key

processes in adaptive and innate immunity suggests that any efforts

to intervene with S1P lyase functioning as part of an anti-

inflammatory or anti-atherosclerotic therapy should be considered

with caution.
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