
Modeling Soil Organic Carbon Change across Australian
Wheat Growing Areas, 1960–2010
Guocheng Wang1,3, Yao Huang1,2*, Enli Wang4, Yongqiang Yu1, Wen Zhang1

1 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China,

2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 3 University of the Chinese Academy of

Sciences, Beijing, China, 4 Land and Water, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia

Abstract

Soil organic carbon (SOC) dynamics in Australian wheat-growing areas were simulated from 1960 to 2010 using Agro-C, a
calibrated and validated biogeophysical model. Previously published data from field measurements were used to
parameterize the Agro-C model. Model simulations show a decreasing trend in SOC over the last 50 years, mainly
attributable to relatively low organic carbon (C) inputs. The rate of decrease in SOC tended to slow in the last two decades
due primarily to an increase in wheat yields, which resulted in an increase in C input. Overall, we estimate that Australian
wheat-growing areas, covering an area of 15.09 million hectares (Mha), lost 156 (86–222, 95% confidence interval) Tg C in
the topsoil (to 30 cm depth) from 1960 to 2010. Approximately 80% of the SOC loss occurred in the period between the
1960s and the 1980s. Spatially, the SOC loss in areas with relatively high temperature and low precipitation, such as
Queensland, the northern part of New South Wales and Western Australia, was more significant than that in other areas. We
suggest that the loss of SOC could be halted, or even reversed, with an additional input of organic C into the soil at a
minimum rate of 0.4 Mg ha–1 yr–1.
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Introduction

Cultivation of natural soils generally leads to a reduction of soil

organic carbon (SOC) because cultivation enhances the rates of

carbon (C) mineralization, reduces the amount of biomass C

returned to the soil, and accelerates SOC erosion and leaching

processes [1,2]. SOC loss can be slowed, or even reversed, by

optimizing agricultural management (e.g., stubble retention,

fertilization and conservation tillage), thereby not only mitigating

climate change but also improving soil fertility [2,3].

Australian cropland has experienced tremendous loss of SOC

since the European settlement began, due largely to the loss of

above-ground biomass C after the conversion of native land for

agriculture [4]. Recently, a national meta-analysis showed that

SOC stores in the top meter of Australian agricultural soils have

decreased by 40 to 60% compared with pre-clearing levels [5].

Based on a regional meta-analysis, Dalal and Chan [6] suggested

that, in the Australian wheat belt, soil would sequester a large

amount of atmospheric CO2 20 years after the adoption of

improved management techniques. However, cropland SOC

dynamics depend on a balance between C production and

decomposition and are regulated not only by management but also

by highly variable climate and soil conditions [5,7]. A regional

survey, based on field experiments, reported large uncertainties in

SOC estimates due to the spatiotemporal variability of the study

sites. Accurately assessing regional SOC dynamics is difficult,

particularly in Australian croplands, due to the lack of detailed

climate, soil, and management-related information.

Wheat-farming lands constitute approximately 40% of all

Australian agricultural areas [8] and are distributed across several

natural resource management (NRM) regions, primarily on the

mainland, in a narrow crescent known as the wheat belt (Figure 1).

Due to the adoption of modern cultivars and improved

management practices, Australian wheat yields per unit area have

increased significantly during the past several decades, especially

from 1960 to 2010, during which time yields approximately

doubled [9]. This increased wheat production has resulted in an

enhanced amount of wheat residues [10]. Since the 1960s,

improved management techniques (such as conservation tillage

and stubble retention) have been widely adopted across many

parts of the wheat belt to reduce the risk of soil and water erosion

[11,12,13,14]. Both the improvement of wheat production and the

promotion of stubble retention are likely to cause an increase in

SOC accumulation or a slow-down of SOC loss. Nevertheless, to

the best of our knowledge, no comprehensive study has been

conducted on large-scale cropland SOC change across the

Australian wheat-growing areas.

It is widely recognized that a modeling approach has advantages

when estimating spatiotemporal changes in SOC [1]. Dynamics of

agricultural SOC are generally well captured by process-based

models such as DNDC [15], RothC [16] and CENTURY [17],

which have already been widely used to estimate changes in SOC

at both national and continental scales [18,19,20]. More recently,

Huang et al. [7] developed a biogeophysical model, Agro-C, which

has been used to assess the national long-term agricultural SOC
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change in China [1]. The model consists of two sub-models: Crop-

C for simulating crop net primary production, and Soil-C for

computing SOC change. Previous validation studies indicate that

the Soil-C sub-model properly simulates the observed changes in

SOC in most cases across Chinese croplands [1,7,21,22,23].

Determining the regional cropland SOC dynamics would not

only provide a better understanding of the factors and processes

regulating C cycling and balance in the agro-ecosystems but would

also provide insight into the effectiveness of methods for enhancing

soil quality and plant production, as well as reducing greenhouse

gas emissions. Our objective in this study is to quantitatively

estimate regional-scale spatiotemporal changes in SOC across

Australian wheat-growing areas between 1960 and 2010, so that

policy-makers can make sensible, region-oriented decisions

regarding SOC management.

Materials and Methods

1.1 Model Calibration and Validation
1.1.1 Model calibration. Agro-C is a biogeophysical model

for simulating regional carbon budgets of agro-ecosystems on a

large scale initially developed by Huang et al. [7]. The model

consists of two submodels, Crop-C and Soil-C. Crop-C simulates

processes involved with crop photosynthesis, autotrophic respira-

tion, and net primary production (NPP). Soil-C simulates soil

heterotrophic respiration via the decomposition of both input

organic C (e.g., crop residues, roots and manure) and soil organic

carbon. Changes in SOC are then determined by balancing the

loss of soil carbon with the gain of input organic carbon. A detailed

description of the Agro-C model was shown in Huang et al. [7].

The Soil-C submodel was recently modified by Yu et al. [1], who

split the previous SOC pool into two sub-pools named light-C and

heavy-C, with specific decomposition rates for each sub-pool. The

light-C sub-pool is considered more biologically reactive, with

turnover times ranging from a few months to a few years, while the

heavy-C sub-pool is much more resistant to decomposition and

can remain in the soil for decades or centuries [1]. Meanwhile, the

C flow between different pools was also modified based on the

following assumptions: (i) the decomposition of both the labile-C

and the resistant-C converts a fraction of the C into the light-C

pool, (ii) a fraction of the decomposed light-C is transferred into

the heavy-C pool, and (iii) the decomposition of the heavy-C pool

only produces CO2. Detailed structural modification of the Soil-C

model was shown in Yu et al. [1].

In Soil-C, the parameters that need to be determined include

the first-order reaction rates of light-C (KLC) and heavy-C (KHC),

the fractions of the decomposed labile-C and resistant-C entering

into the light-C pool (FLL and FRL, respectively), and the fraction of

the decomposed light-C entering into the heavy-C pool (FLH).

Other parameters, such as the first-order reaction rates of labile-C

Figure 1. Spatial distribution of wheat-growing areas across the Australian wheat belt and locations of long-term experiments.
Wheat is planted in the grey areas, red open squares show the sites for model calibration and blue solid triangles show the sites for model validation.
NT, QLD, NSW, VIC, SA, WA and TAS refer to Northern Territory, Queensland, New South Wales, Victoria, Southern Australia, Western Australia and
Tasmania, respectively.
doi:10.1371/journal.pone.0063324.g001
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(KL) and resistant-C (KR), are taken from the original version of

Soil-C [7]. The values of the five key parameters were initially set

within a given range of intervals [1]. The final values of these

parameters were determined by minimizing the mean deviation

(see Eq. 5) between the simulated and observed SOC after running

each combination of the five parameters on Soil-C using a

parameter-space search method.

Measurements of SOC from long-term field experiments at four

sites, including Brigalow, Tarlee, Warra and Salmon Gums

(Figure 1 and Table S1), were used to calibrate Soil-C. The field

experiment data used for this study were initially published by the

Queensland Department of Primary Industry, South Australian

Research and Development Institute, Queensland Department of

Natural Resources and Mining, and CSIRO Land and Water.

None of the field studies mentioned in this study involved

endangered or protected species. In the four sites, annual mean

temperature and precipitation ranged from 16.8 to 21.4uC and

from 467 to 685 mm, respectively. At Brigalow, the original land

use type was native forest; however, this site was cleared and

converted to cropland in 1982. Following a 2-year fallow period,

sorghum and wheat were planted in alternating years. Two

cropping treatments, the continuous wheat system (CW) and the

fallow-wheat system (FW), were adopted at the Tarlee site. The

FW treatment was selected to for Soil-C submodel calibration,

whereas the CW treatment was used for model validation. The site

has been used for cereal production since 1935. In 1986, long-term

field experiments were established covering various combinations

of cropping systems and fertilization management. The wheat-

lucerne (1 year, 2 years, respectively) rotation (WL, the first crop

being wheat) was selected for model parameterization, and the

lucerne-wheat (2 years, 1 year, respectively) rotation (LW, the first

crop was lucerne) was selected for model validation. The Salmon

Gums site, established in 1979, was parameterized for the Soil-C

model using a continuous wheat treatment.

Table 1 shows the values of KLC, KHC, FLL, FRL and FLH in the

calibrated Soil-C that resulted in a mean deviation of 0.002 MgC

ha21 between the simulated and the observed SOC at the four

experimental sites (Figure S1). Generally, the above five param-

eters are within reasonable ranges. For example, the value of KLC

is smaller than the reaction rate of BIO (Microbial Biomass), and

the value of KHC is lower than the reaction rate of HUM

(Humified Organic Matter) and higher than that of IOM (Inert

Organic Matter) in the Roth-C model [16].

1.1.2 Model validation. The calibrated Soil-C submodel

was validated against independent datasets from 6 long-term

experimental sites (Figure 1 and Table S1). These experimental

data were derived from the National Carbon Accounting System

Technical Report (Integrated soils modeling for the National Carbon

Accounting System No. 36, available: http://www.pandora.nla.gov.

au/tep/23322). At each site, crop biomass production was

recorded at harvest every year, and SOC at a given profile depth

was measured at both the start of the trials and after the harvest in

some years. Table S1 shows the initial soil information at the start

of each experiment.

For some experimental sites where SOC density was only

reported in the top 10 cm (SOC0–10 cm) or 20 cm (SOC0–20 cm), the

SOC density in the top 30 cm soil layer (SOC0–30 cm) was calculated

using the SOC vertical distribution [24,25,26]:

SOC0{20cm~SOC0{10cmzSOC10{20cm ð1Þ

SOC0{30cm~1:32|SOC0{20cm ð2Þ

SOC0{30cm~2:35|SOC0{10cm ð3Þ

where 1.32 and 2.35 are the conversion coefficients.

Table 1. Parameters in the original and modified Soil-C submodel.

Parameter Original a Modified a Description

KLC (d21) 2.561024 (7.6) 2.561024 (7.6) First-order reaction rate of light-C pool

KHC (d21) 1.861025 (105.4) 2.661025 (73) First-order reaction rate of heavy-C pool

FLL 0.3 0.3 Fraction of decomposed labile-C to light-C

FRL 0.45 0.45 Fraction of decomposed resistant-C to light-C

FLH 0.45 0.3 Fraction of decomposed light-C to heavy-C

aValues in parentheses are the half-life residence time in years.
doi:10.1371/journal.pone.0063324.t001

Table 2. Main input data for running the Agro-C model.

Category Item (Unit) Source (Reference)

Climate Daily maximum and minimum temperature (uC), precipitation (mm), solar
radiation (MJ m22 d21), wind speed (m s21) and relative humidity (%)

SILO Patched Point Dataset (http://www.bom.gov.au/silo/)

Soil properties Concentrations of organic carbon and total nitrogen (g kg21), bulk density
(g cm23), sand and clay fraction (kg kg21) and pH

Australian Soil Resource Information System (ASRIS)
(http://www.asris.csiro.au/)

Farming management
and crop yield

Dates of planting, heading and harvest (dd/mm), timing (dd/mm) and rate
of fertilizer N application (kg ha21) and grain yield (kg ha21)

Year Book of Australia (1960–2010, http://www.abs.gov.
au/) Scott et al. [41]; Llewellyn and D’Emden [33]

Atmosphere Atmospheric CO2 concentration WMO World Data Centre for Greenhouse Gases (http://
gaw.kishou.go.jp/wdcgg/)

doi:10.1371/journal.pone.0063324.t002
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Following Yu et al. [1], three statistical criteria were used to

evaluate the model performance: the root mean squared error

(RMSE, Eq. 4) was calculated to measure the coincidence between

the observed and the simulated SOC, the relative mean deviation

(RMD, Eq. 5) was computed to evaluate the systematic bias of the

model, and the model efficiency (EF, Eq. 6) was calculated to

estimate model performance in relation to the observed mean.

Linear regression analysis between simulated and observed SOC

was also used to evaluate the model performance.

RMSE~
100

O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i~1

(Pi{Oi)
2

n

vuut ð4Þ

RMD~
100

O

Xn

i~1

(Pi{Oi)

n
ð5Þ

EF~1{

Pn
i~1

(Pi{Oi)
2

Pn
i~1

(O{Oi)
2

ð6Þ

where P and O represent the model estimates and the field

measurements, respectively, O is the mean observed SOC, and n is

the total number of observations.

1.2 Simulation of Changes in SOC
The SOC change was simulated using the Agro-C model

because the soil moisture that affects SOC dynamics in the Soil-C

submodel is computed via the Crop-C submodel in Agro-C [1,7].

The changes in SOC were simulated with a daily step from 1960

to 2010. Up-scaling of the Agro-C model was accomplished by

first computing the model inputs within each interested NRM

region across the wheat-belt and then running the model in each

of the NRM regions.

1.2.1 Compilation of model inputs. In this study, the main

input data used for the Agro-C model include climate, soil,

farming management and crop yield (Table 2).

Gridded daily climate data (i.e., maximum and minimum

temperature, precipitation, relative humidity and radiation) from

1960 to 2010 with a spatial resolution of 0.05u 6 0.05u were

obtained from the Queensland Climate Change Centre of

Excellence (http://ehp.qld.gov.au/index.html). These datasets

are constructed by applying spatial interpolation algorithms to

historical climate data from approximately 4,600 observations

across Australia [27]. For each studied NRM region, the daily

climate input data were calculated using the mean of the gridded

climate data located within that specific NRM region.

Input soil properties include the concentrations of organic

carbon and total nitrogen, bulk density, clay and sand fraction,

and pH in the topsoil to 30 cm depth. These soil properties, with a

0.01u 6 0.01u spatial resolution, were obtained from Australian

Soil Resources Information System (ASRIS) [28]. These datasets

represent some 164,030 soil profile measurements made since the

Figure 2. Modeled vs. observed SOC at the validation sites. Dashed line is 1:1. Black solid line (y1) shows the linear regression analysis, blue
solid line (y2) shows the statistical tests on the intercept, and red solid line (y3) shows the statistical tests on the slope.
doi:10.1371/journal.pone.0063324.g002
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1960s across intensively used agricultural zones in Australia and

are currently the best continental-scale soil profile data available to

the public [29].

The spatial distribution of cropland was computed based on a

national-scale land use map of Australia (Version 3 for 2005/

2006), obtained from the Australian Bureau of Rural Sciences

[30]. Due to a lack of yearly cropland data with sufficient spatial

distribution from 1960 to 2010, we assumed that the area of

cropland in the wheat-growing regions did not significantly change

over this time period. The annual wheat yield at the NRM

regional level from 1960 to 2010 was obtained from the Australian

Bureau of Statistics (http://www.abs.gov.au/).

Carbon enters the soil through crop residue retention, root

mass, and organic amendments (e.g., animal manure). Following

Huang et al. [31], annual above-ground residue mass was

calculated via the economic yield of the crop and the ratio of

above-ground residue production to economic yield. The contri-

bution from root mass was estimated as 40% of the crop residue

mass, and all above-ground and root residues were assumed to

have a C content of 45% [32]. The proportion of the above-

ground residue that is retained in the soil across different regions

was estimated based on the work of Llewellyn and D’Emden [33].

The rate of residue retention in different cropping Australian

croplands over the study period has been uneven. In Queensland,

the burning of crop residues has been almost abandoned, with

approximately 95% of stubble being incorporated into soils or

retained in the fields. In WA, approximately 17% of stubble has

traditionally been burned. In NSW, Victoria and SA, however,

burning was more common (24–35% of stubble burned), especially

in NSW and Victoria. Due to a lack of yearly stubble retention

rate data, we assume the stubble retention rate across different

regions did not change significantly over time. Additionally,

because the areas that have adopted animal manure application

constitutes only 0.4% of the whole wheat belt [6] and there is no

detailed information on the spatial distribution of these areas, we

ignore the impacts of animal manure application on the regional

cropland SOC change.

1.2.2 Model initialization. In Agro-C, the half-life residence

time for labile-C, resistant-C, light-C and heavy-C were 0.1 y,

2.3 y, 7.6 y, and 105.4 y [1], respectively. To obtain initial values

for the different C pools and to initialize the Agro-C model, a

‘spin-up’ procedure was performed by running the model for one

hundred years (i.e., 1900–2000). The initial fractions of light-C

and heavy-C were assigned to be 0.25 and 0.75 [1], respectively.

The input values for organic carbon were derived from annual

crop yield. Climatic data from the same time period were used

during the spin-up procedure.

1.2.3 Uncertainty assessment. The two main factors that

can influence SOC change are soil environment and carbon input

[34], both of which can result in major uncertainties in the

estimated SOC change.

For each initial soil-related model input (i.e., initial soil organic

carbon and nitrogen concentrations, clay fraction and pH), the

probability distribution function (PDF) for each NRM region was

calculated based on the grid values within that region. We also

used a Monte Carlo analysis to develop the PDF for carbon input

Figure 3. Simulated SOC levels and annual change in SOC of Australian wheat-growing land from 1960 to 2010. The open circles show
the SOC levels and the solid triangles show the annual SOC change. The grey and shaded areas show the 95% confidence interval of SOC levels and
annual SOC change, respectively.
doi:10.1371/journal.pone.0063324.g003
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within the ranges of mean610% for each NRM region. The

calibrated and validated Agro-C model was then run 300 times in

each NRM region with the initial soil properties and carbon input

randomly assigned from the PDFs of soil-related covariates and

carbon input, respectively. Finally, the model output was analyzed

to produce an empirical distribution of SOC changes on a regional

level [1,20]. A 95% confidence interval of SOC change was also

estimated based on the 500 simulations in each NRM region. All

the above analyses were conducted using the R version 2.15.1

software package [35].

Results

2.1 Model Performance
The calibrated Agro-C model, in general, captured SOC

changes better than the original version of Agro-C at all of the

calibration sites except Tarlee (Figure S1). The simulated trends in

SOC change in the top 30 cm of soil at different validation sites

generally agreed well with the observed data during the selected

study period (Figure 2 and Figure S1), except some exceptional

variations (e.g., observed SOC in 1993 at Warra and in 1986 at

Merredin). In general, Agro-C simulations could explain more

than 90% of the variation in the SOC when data from all

validation sites were pulled together (Figure 2), indicating an

overall good performance of the calibrated Agro-C model.

Statistical tests on both the slope and the intercept indicated that,

in general, Agro-C modeled SOC agreed well with corresponding

observations (Figure 2).

2.2 Estimated Changes in SOC from 1960 to 2010
Our Agro-C simulation results suggest that SOC in Australian

wheat-growing areas has decreased over the last five decades

(Figure 3). On average, the modeled SOC densities of the entire

Australian wheat-growing areas in each decade were 27 (622%,

95% confidence interval) Mg ha21 during the 1960s, 24 (617%)

Mg ha21 during the 1970s, 22 (618%) Mg ha21 during the 1980s,

21 (614%) Mg ha21 during the 1990s, and 20 (615%) Mg ha21

during the 2000s, respectively (Table 3). Although average SOC

densities decreased over the study period, the rate of SOC loss is

declining, with more SOC lost in the first 30 years than in the last

20 years (Table 3 and Figure 3).

Averaging for each decade, the rate of SOC loss was estimated

to be approximately 6.4, 3.7, 2.5, 1.4 and 1.6 Tg yr21 in the

1960s, 1970s, 1980s, 1990s and 2000s, respectively. Summing up

the yearly changes in SOC over the period from 1960 to 2010, the

loss of SOC in Australian wheat-growing areas was estimated to be

156 Tg C, with a range from 86 to 222 Tg C at the 95%

confidence level (Figure 3). It is noteworthy that after the decline in

the first few years, SOC seemed to reach a new, steady state in the

mid-2000s, followed by a decrease in the following several years

(Figure 3).

Figure 4. Estimated changes in SOC density (gSOC, Mg C ha21 yr21) in different regions of Australian wheat-growing areas. The
shaded areas represent the lower and upper bounds of the estimates at 95% confidence level. QLD, NSW, VIC, SA and WA refer to Queensland, New
South Wales, Victoria, Southern Australia and Western Australia, respectively.
doi:10.1371/journal.pone.0063324.g004
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2.3 Spatial Characteristics of Estimated SOC Change
In general, changes in SOC density from 1960 to 2010 within

different states are consistent with that of the entire Australian

wheat-growing area. Nevertheless, there are differences in SOC

density changes across different states. On average, compared with

the initial status, SOC density during the 2000s decreased by

13 Mg ha21 in Queensland, 11 Mg ha21 in New South Wales,

10 Mg ha21 in Western Australia, 8 Mg ha21 in Southern

Australia, and 7 Mg ha21 in Victoria, respectively (Table 3).

Overall, SOC stocks in the topsoil to 30 cm depth were

estimated to have decreased by 12 (650%) Tg in Queensland, 48

(654%) Tg in New South Wales, 53 (634%) Tg in Western

Australia, 26 (638%) Tg in Southern Australia and 17 (635%) Tg

in Victoria (Figure 4 and Table 3).

Discussion

Our simulation results showed that although the Australian

wheat-growing areas have in general experienced SOC loss from

1960 to 2010, the rate of SOC loss has declined over time (Figure 3

and Table3). Simulations indicated that approximately 80% of the

loss of SOC across Australian wheat-growing areas occurred in the

first 30 years, with a lower amount of SOC loss in the later 20

years. SOC loss appeared to reach a new steady-state during the

first few years of the 2000s (Table 3 and Figure 3). The

achievement of steady-state SOC level is attributed to two primary

factors. First, enhanced crop production increased the amount of

residue and root input into the soil (Figure 5), thus leading to a

reduction in SOC loss over time. Second, following the initial

rapid decline, SOC would reach a new steady-state after about 50

years of cultivation, therefore resulting in a slower rate of SOC loss

during the later years [2,36].

Model estimates suggested that SOC loss was slowed during the

1990s and 2000s, particularly between 1998 and 2003 when SOC

loss almost halted (Figure 3). This cessation in SOC loss was likely

due to relatively high C input rates, averaging 1.56 Mg C

ha21 yr21, between 1997 and 2002 (Figure 5). However, SOC

decreased significantly from 2003 to 2010 (Figure 3), when crop

yields were low and C input averaged only 1.20 Mg C ha21 y21

(Figure 5). We suggest that the SOC loss across most of the

Australian wheat-growing areas could be halted or even reversed

with an additional input of organic carbon into the soil at a

minimum rate of 0.4 Mg ha–1 yr–1, relative to the mean rate from

2003 to 2010.

Recently, using Agro-C, Yu et al. [1] modeled the SOC

changes across Chinese agro-ecosystems during the last three

decades and found that Chinese cropland SOC has generally

increased. The differences in cropland SOC patterns in the two

countries during the past several decades are mainly due to, first,

the different initial SOC values. In generally, Chinese croplands

have experienced a long history of intense cultivation, which led to

a very low level of SOC [18], whereas the Australian soils have not

been cultivated as intensively for as long. Second, the annual

amount of organic C input in China [1] is generally higher than

that in Australia, allowing for more carbon to be sequestrated in

the soil. For example, SOC densities increased by 0.35 Mg C

ha21 yr21 in south and central China but decreased by 0.18 Mg

C ha21 yr21 in Victoria during the first 30 years of the

simulations, even though their initial SOC densities were similar

(approximately 28 Mg C ha21 ). In contrast, the annual C input in

Figure 5. Average rates of carbon input from 1960 to 2010.
doi:10.1371/journal.pone.0063324.g005
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Victoria was only 1.29 Mg ha21 yr21 (Table 3), approximately

38% of that in south and central China [1].

On average, the rate of SOC loss across Australian wheat-

growing areas from 1960 to 2010 is 3.12 Tg y21, approximately

4.8% of the total Australian fossil-fuel carbon emissions during the

same period (http://cdiac.ornl.gov/trends/emis/aus.html). These

results imply that although Australian agricultural soil acted as a

net carbon source, its contribution to increasing atmospheric

carbon dioxide is much smaller than that of fossil fuel production

and consumption.

The net change in SOC is determined by the balance of C

inputs by crop production and outputs by decomposition, both of

which are regulated by both management and environmental

factors. In this study, higher rates of SOC decreases were found in

regions with relatively low annual precipitation and high annual

temperature (climatic data not shown), such as Queensland,

northern parts of New South Wales, and Western Australia

(Figure 4 and Table 3). This can be attributed to the following

factors: precipitation provides water to support crop growth and

leads to more C input into soil through stubble retention, whereas

lower temperatures can inhibit soil respiration, thereby reducing

SOC decomposition rates [37]. Furthermore, historical land use

also impacts long-term SOC change. For example, SOC declined

more in Queensland, which has a relatively higher initial SOC

level (Table 3) than other regions. This difference in initial

conditions is due to the relatively short history of cultivation in

Queensland compared to the other regions [38]. Consequently, a

higher C input rate is needed in Queensland to balance SOC loss.

Another implication of our results is that during the last five

decades, C input through retention of crop residues has failed to

compensate for C output across Australian wheat-growing areas.

Thus, soil has acted as a net C source and might therefore be

contributing to global warming. For the purpose of accumulating

SOC and reducing greenhouse gas emissions, future agricultural

management methods need to be improved. For example,

increasing rotation complexity (e.g., increasing crop diversity or

introducing legumes into rotation) has been reported to signifi-

cantly promote SOC accumulation when compared to single

wheat farming systems [39]. Additionally, in many regions,

nitrogen is a dominant limiting factor for crop growth [40].

Adopting nitrogen fertilization would inevitably enhance both

crop production and SOC accumulation. Finally, addition of

animal manure would not only supply nutrients for crop growth

but would also directly add C into the soil [5].

Supporting Information

Figure S1 Comparison of simulated and observed SOC
at different calibration sites. Open circles show the observed

values, dashed lines show the simulated values before model

calibration, and solid lines show the simulated values after

calibration.

(TIF)

Figure S2 Comparison of simulated and observed SOC
at different validation sites. Open circles show the observed

values and solid lines show the simulated values.

(TIF)

Table S1 Locations and initial soil properties of the
calibration and validation sites.

(DOC)
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