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Abstract

A variety of cardiac arrhythmias are initiated by a focal excitation that disrupts the regular beating of the heart. In some
cases it is known that these excitations are due to calcium (Ca) release from the sarcoplasmic reticulum (SR) via propagating
subcellular Ca waves. However, it is not understood what are the physiological factors that determine the timing of these
excitations at both the subcellular and tissue level. In this paper we apply analytic and numerical approaches to determine
the timing statistics of spontaneous Ca release (SCR) in a simplified model of a cardiac myocyte. In particular, we compute
the mean first passage time (MFPT) to SCR, in the case where SCR is initiated by spontaneous Ca sparks, and demonstrate
that this quantity exhibits either an algebraic or exponential dependence on system parameters. Based on this analysis we
identify the necessary requirements so that SCR occurs on a time scale comparable to the cardiac cycle. Finally, we study
how SCR is synchronized across many cells in cardiac tissue, and identify a quantitative measure that determines the relative
timing of SCR in an ensemble of cells. Using this approach we identify the physiological conditions so that cell-to-cell
variations in the timing of SCR is small compared to the typical duration of an SCR event. We argue further that under these
conditions inward currents due to SCR can summate and generate arrhythmogenic triggered excitations in cardiac tissue.
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Introduction

It is generally believed that sudden cardiac death is induced by a

focal excitation that can propagate and form wave break and

reentry [1–5]. However, the underlying mechanism and the

properties of these focal excitations are not well understood. In

particular, it is not known what are the factors that determine

when a focal excitation will occur in a region of cardiac tissue. This

question is important since the propensity for arrhythmia initiation

is dependent on the timing of these excitations. In general we

expect a focal excitation to be potentially dangerous if it occurs

during the diastolic interval (DI) when cardiac tissue is excitable.

In this period cardiac tissue can sustain electrical wave propaga-

tion which can form wave break by collisions with the wave back

of the previous beat, or at anatomical obstacles in the tissue [6].

Much of the work to identify the mechanism for focal

excitations has focused on the role of subcellular Ca cycling [7–

9]. Ca cycling is the process wherein membrane voltage gated Ca

channels (LCC) induce Ca release due to Ryanodine Receptor

(RyR) channels which control the flow of Ca sequestered in the

sarcoplasmic reticulum (SR). The signaling between LCC and

RyR channels occurs within submicron scale junctions where a

few LCC channels are in close proximity with a cluster of Ca

sensitive RyR channels [10]. In this paper we will refer to these

junctions as Ca release units (CRUs). Now, under normal

conditions RyR channels respond to changes in local Ca

concentration due to openings of the local LCC. This coupling

occurs because RyR channels are Ca sensitive, with an open

probability which increases with the Ca concentration within the

CRU. Hence, an LCC channel opening can induce a few nearby

RyR channels to open which in turn leads to a large autocatalytic

release of Ca from the local cluster. The corresponding large

release of Ca from the RyR cluster is referred to as a Ca spark

[10,11]. However, under abnormal conditions, such as Ca

overload, RyR channel fluctuations can lead to ‘‘spontaneous’’

Ca sparks, which occur independently of LCC channel openings

and consequently the membrane voltage. Since the cell is

composed of roughly 104 CRUs these spontaneous sparks can

induce neighboring CRUs to fire which can lead to a Ca wave

which can propagate across the entire cell [7,12,13]. The release of

Ca due to these subcellular waves is referred to as spontaneous Ca

release (SCR). Finally, the large amount of Ca released into the

cell due to these waves is pumped out of the cell via the

electrogenic sodium-calcium exchanger which induces a net

inward current which can depolarize the cell membrane

[11,14,15]. It is these depolarization events in a population of

cells in tissue which induce Ca-mediated focal activity in cardiac

tissue.

Ca mediated focal excitations in the heart can only occur if a

substantial fraction of cells in tissue exhibit SCR at roughly the

same time. This is because SCR induced inward currents must

summate across many cells in order to overcome the electrotonic

load of quiescent neighboring cells. Thus, to understand how focal

excitations are formed it is crucial to characterize the timing
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statistics of SCR within a cardiac cell, and also across an ensemble

of cells in tissue. To date, several experimental and simulation

studies have explored the timing of SCR. In particular Falcke et al.

[16,17] applied computer simulation studies showing that SCR is

dictated by stochastic wave nucleation events. Also, Ramay et al.

[18] showed that SCR timing is sensitive to a variety of factors

such as the SR load and RyR gating properties. However, several

important questions remain unanswered. Namely, it is not

understood how the timing statistics of SCR at the cell and tissue

level is related to local properties at the scale of RyR clusters. This

question is particularly difficult to answer since it is a multi-scale

problem involving a wide range of space and time scales. In this

paper we will apply numerical and analytic approaches to address

these questions. Our approach builds on the work of several

authors, in particular Hinch [19] and Thul et al. [20] (see also

[17,21–26] for similar approaches), who have applied the theory of

stochastic processes to describe subcellular Ca signaling. As a

starting point we will first determine the timing statistics of

spontaneous Ca sparks within a single isolated CRU at a fixed SR

Ca load. Following this analysis, we will then study the timing

statistics of an ensemble of heterogeneous CRUs, with the aim to

characterize the first passage time (or waiting time) distribution for

spontaneous Ca sparks within a simplified representation of a

cardiac cell. While the model considered here substantially

simplifies the complex spatial arrangement of Ca release units,

our analysis provides a first step to understand the factors that

govern the timing statistics of SCR.

Methods

The model
A cardiac cell is composed of roughly 104 CRUs which are

spatially distributed in the cell. A typical CRU is roughly a

cylindrical pill box of height h*10-20nm and diameter

d*100{300nm which contains a cluster of RyR channels and

a few LCC channels in close proximity (see Fig. (1A)). Experi-

mental studies have shown that the number of RyR channels

within clusters is highly variable and range from 5 to 200 channels,

with a distribution that is roughly exponential [27]. Also, Ca

diffusion within the CRU is in the range D*100{500(mm)2=s
[28,29], so that the diffusion time across a CRU is *0:1{0:4ms,

which is faster than the typical RyR channel transitions times

*1ms. Thus, we can make the rapid diffusion approximation and

assume that Ca is spatially uniform within the CRU with a

concentration c that is c&cozgn where g%Jr=(2pDhhF). Here,

Jr is the Ca flux due to an open RyR channel in units of pA, F is

Faraday’s constant, h~2 is the charge of the Ca ion, n is the

number of open RyR channels, and where co is the diastolic Ca

concentration outside the CRU (the cytosol). Physiological

parameters used in this study are given in Table 1. Note here

that typically covvg since the diastolic Ca concentration is much

smaller than the Ca concentration (g) in the CRU when one RyR

channel is open (n~1). However, the single channel RyR flux Jr

is difficult to measure experimentally and a wide range of values

have been reported in the literature [11]. For example several

experimental groups have reported a single channel RyR flux of

Jr&1:2pA [30], while others have argued that Jr&0:5pA or lower

under physiological conditions [31,32]. Also some studies have

argued that the current may be as low as 0:07pA [33]. Given this

uncertainty we will treat this quantity as a free parameter in our

model, and discuss the properties of the system for a wide range of

current amplitudes.

To model the dynamics of RyR channels in the cluster we will

consider the reaction scheme shown in Fig. (1B), which is used by

Shannon et al. [34]. This scheme has the advantage that it is the

simplest Markov state model which describes many important

features of RyR channels. The key step in the Markov chain which

governs the timing of spark activation is the transition between the

closed (C) and open states (O), which is dictated by a Ca

dependent transition rate. This scheme is used to model Ca-

induced-Ca-release (CICR) and is generic to wide variety of

Markovian models describing RyR. In this study we will fix c~2
in order to simplify our computations, although all computations

presented here can be generalized to an arbitrary power c. Note

here that we have simplified the formulation of Shannon et al. who

had included an SR load dependence to the rate kz. Here, we

take kz to be constant since we will consider the case of fixed SR

load. In the discussion we will relax this assumption and address

the case of variable SR load, where kz is likely to vary with time.

In this study we will follow Restrepo et al. [29] and chose

k{~1ms{1 so that the mean open time of an RyR channel is

1ms. Also, since RyR transition rates are not well established we

will take kz over a broad range 10{4{10{5(mM){2ms{1 which

includes the parameters used in the Restrepo et al. and Shannon et

al. studies. In this study we will not fix the inactivation and

recovery from inactivation rates (ka,kb), since, as we will argue in

the next section, at fixed SR load, these quantities only influence

the timing statistics of SCR via the number of RyR channels in the

closed state. Hence, we will discuss the qualitative role of these

states on spark timing but will not explicitly simulate their

dynamics.

Results

Statistics of a single CRU
In this section we explore in detail the factors that determine the

timing statistics of spontaneous Ca sparks at a single CRU with N

RyR channels. As a starting point we will consider the case where

the Ca concentration in the dyadic cleft c is small so that

kzc2
vvk{ and kbcvvka. If we wait for times longer than

1=k{ and 1=ka then most of the channels will be in the closed

state and spark activation will be dominated by transitions to the

open state. In a later section we will relax this assumption and

discuss the scenario where the time scale of recovery from

inactivation (1=ka) is sufficiently large to influence spark

activation. To proceed, we define a spontaneous Ca spark as a

fluctuation in the number of open channels, which we denote by n,

such that n exceeds a critical value ns. Thus, the instant the

number of open channels crosses ns then a spark is said to have

occurred at that CRU. Given this criterion then the timing

statistics of a spontaneous Ca spark is determined by the

probability Ps(t) that n reaches ns, for the first time, within a

time interval ½t,tzdt�. This probability is referred to as the first

passage time distribution (FPD), or alternatively the waiting time

distribution. To compute the FPD we will make the simplifying

assumption that spark activation is dictated primarily by the C to

O transitions, so that transition rates to the inactivation states are

negligible i.e. ka and kb in the full Markov scheme are small.

Later, we will relax this assumption and discuss the scenario when

this assumption cannot be made. The stochastic dynamics of the

cluster is then governed by P(n,t) which is the probability that n

channels in the cluster are open at time t. This quantity obeys a

Master equation

dP(n,t)

dt
~wz(n{1)P(n{1,t)z

w{(nz1)P(nz1,t){(wz(n)zw{(n))P(n,t)

ð1Þ

Timing of Spontaneous Calcium Sparks
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where

wz(n)~kz(N{n)(cozgn)2, ð2Þ

w{(n)~k{n, ð3Þ

which describes a nonlinear birth-death process (illustrated in

Fig. (1C)) between 0,1,:::,N possible states of the cluster. Using this

Master equation we will explore the cluster properties in detail

with the goal to determine the FPD.

Equilibrium points and the effective potential. In order

to understand the properties of our nonlinear birth-death process

describing the RyR cluster, it is first necessary to determine the

probability flow on our discrete state space. As a starting point let

us first consider the large N limit, where the system can be

conveniently mapped to a continuum. To proceed, we follow

Hinch [19] and first define the fraction of channels in the open

state as x~n=N, and the functions l(x)~wz(Nx)=N and

b(x)~w{(Nx)=N. Applying detailed balance between discrete

sites gives, in the large N limit, an equilibrium distribution

pe(x)~
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l(x)b(x)
p exp({NW(x)) ð4Þ

where W(x) is an effective potential

W(x)~{

ðx

0

ln(r(x0))dx0 ð5Þ

with r(x)~l(x)=b(x), and where A is normalization constant.

The effective potential allows us to identify fixed points, that satisfy

dW=dx~0, which will dictate the stochastic evolution of the

system. In particular, minima of the effective potential serve as

metastable states in the sense that the trajectory of x(t) will tend to

fluctuate around these points. These stationary points are given by

the condition r(x)~1, which reads

g(1{x)(ezNx)2{x~0 ð6Þ

where we have introduced the dimensionless parameters e~co=g

and g~kzg2=k{. In the physiological range (see Table 1)

solutions to this equation can be approximated as follows: (i) There

is a real solution at xo~kzc2
o=k{ valid for all physiological cluster

sizes (Nv200). (ii) Two real solutions x1 and x2 for cluster sizes

larger than Nc~2=
ffiffiffi
g
p

. These solutions are well approximated by

x1,2&
1

2
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4=gN2

q� �
ð7Þ

which for large clusters, where 4=gN2
vv1, can be approximated

more simply as x1&1=gN2 and x2&1. A straightforward analysis

of these fixed points shows that that xo and x2 correspond to local

minima of the effective potential, while x1 is always a local

maximum. We note here that the cluster size Nc will feature

prominently in the subsequent discussion as it determines the onset

of bistability of the RyR cluster. In Fig. (2A) we plot the stationary

points x1 and x2 as a function of system size N, showing the

emergence of two real roots once the cluster size exceeds Nc. For

Figure 1. (A) Schematic illustration of the calcium release unit (CRU) showing a cluster of RyR channels on the SR in the vicinity of a few LCC channels
on the membrane. (B) Four state Markovian scheme describing the RyR channel. (C) Birth-death process describing the closed to open transitions of
N RyR channels in the cluster.
doi:10.1371/journal.pone.0062967.g001

Timing of Spontaneous Calcium Sparks

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62967



the parameters used in this simulation Nc~34 channels. In

Fig. (2B) we plot the effective potential for two cluster sizes

displaying mono and bistability. In the bistable regime the closed

stable state at xo is separated from the fully open cluster at x2 by a

potential maxima at x1.

Discrete channel transitions. The above analysis applies in

the large N limit as long as the location of the stationary points can

be well approximated using the continuum approximation. In

particular, this approximation only applies providing xow1=N,

and if the difference between the first two stationary points satisfies

x1{xow1=N. Applying the parameters from Table 1, we find

that xo*10{7 which is far less than 1=N for cluster sizes in the

physiological range 5vNv200. Hence, to understand the

dynamics of the cluster it is crucial to evaluate the discrete

channel transition rates near the shut state n~0. To analyze the

discrete dynamics we consider the bond between sites n and nz1
and define the ratio

rn,nz1~
wz(n)

w{(nz1)
, ð8Þ

which is simply the discrete counterpart to the function r(x).
Thus, if rn,nz1w1 then there are more transitions from the n to

nz1 state than vice versa. Similarly if rn,nz1v1 then the

probability flux is in the opposite direction. Thus, if there exists a

site k where rk{1,kw1 and rk,kz1v1 then this site defines a local

equilibrium on the discrete lattice of sites. To proceed, we evaluate

r01~Nkzc2
0=k{&Nxo, and find that for the range of physiolog-

ical parameters r01vv1. Thus, on our discrete lattice xo~0 is

always a stable stationary point i.e. the shut state of the cluster is

always stable.

The continuum approximation thus holds providing xo~0 and

with two fixed points x1&1=gN2 and x2&1 with the additional

constraint that x1{xow1=N. However, this requirement breaks

down for cluster sizes NwNd~1=g. Thus, if the RyR cluster

exceeds a critical size Nd then it is necessary to analyze the discrete

channel transition rates. To proceed we evaluate the ratio of rates

for the next two states of the Markov chain which yields

r12~
kz(N{1)(cozg)2

2k{

&
1

2

N

Nd

ð9Þ

r23~
kz(N{2)(coz2g)2

3k{

&
4N

3Nd

ð10Þ

where the approximation is valid when Nww1 and gwwco.

Therefore, if NdvNv2Nd then the n~2 Markov state is

unstable in the sense that the probability flux flows towards

n~0 if the system starts at n~1, and flows towards the fully open

state at n2&Nx2 for any nw2. Similarly, if Nw2Nd then the n~1
state is unstable in the sense that for any nw1 the probability flux

is towards the fully open cluster state. Therefore, for N in this

range we need only one RyR channel to open to induce a full

cluster opening. The structure of fixed points of our RyR cluster is

illustrated in Fig. (2C) showing the four distinct cases that can

occur, as a function of cluster size. In Fig. (2D) we plot the RyR

cluster sizes Nc, Nd and 2Nd as a function of the single channel

RyR current Jr. These lines demarcate the cluster sizes which

display monostability, bistability, and also the discrete bistable

regime dictated by one and two channel openings.

The mean first passage time for a cluster of RyR channels
Once we have characterized the equilibrium points on our

lattice we seek to determine the statistics of spontaneous Ca spark

activation. Let us first compute the MFPT mean-first-passage-time

(MFPT) from the n~0 state to n~ns, where ns is our criterion for

a Ca spark. To choose the spark criterion ns we note that in the

bistable regime (NwNc) the criterion for a spark is clearly that the

number of open channels crosses the effective potential barrier at

Nx1 i.e. our cluster should fully open in order to release a

substantial amount of Ca into the cell. Therefore, in this regime

our spark criterion is simply that nswNx1. A convenient feature of

our system is that in the bistable regime the midpoint of our lattice

(x~1=2) is always larger than the location of our potential barrier

maximum at x1. Therefore, the MFPT to x2 will be essentially the

same as the time to x~1=2 since the MFPT is dominated by the

time to reach the potential maxima at x1, since for xwx1 the

effective potential is downhill. Thus, a convenient criteria for the

timing of a Ca spark is to pick ns~N=2. Now, if the cluster is not

bistable (NvNc) then only the shut state is stable and the system

will have to climb uphill to reach ns. In this case the MFPT will be

sensitive to the chosen spark criteria ns. To compute the MFPT we

follow Pury et al. [35] who have computed an exact expression for

the MFPT to go from an initial state of ni open channels to a final

state nf : This expression is given by

Te(ni,nf )~
Xnf {1

k~ni

1

wz(k)
z
Xnf {2

k~ni

1

wz(k)
:
Xnf {1

i~kz1

P
i

j~kz1

w{(j)

wz(j)
, ð11Þ

which is valid in the case of reflecting boundary conditions

imposed at n~0. In our study we will fix ni~0 and nf ~N=2, for

N~Nc, and nf ~ns for NvNc. However, Eq. (11) does not give

insight into the parameter dependence of Te. To gain further

insight we will follow Doering et al. [36] and proceed to evaluate

the large N behavior of this expression. Our main results are

summarized bellow. All details of the computations are given in

Appendix S1.

Case I. Clusters of size NvNc. In this case there is only one

stable fixed point at xo~0, and a Ca spark occurs when the

fraction of open channels reaches xs~ns=N. In the large N limit

we find that to leading order the MFPT has the form

Te~exp NW(xs)ð Þ, where W(xs)&Axszlog 1{xsð Þ, and where

A~2{log r(xs)ð Þ, with r(xs)v1. Thus, in this regime we have

Table 1. Model Parameters.

Parameter Description Value

h Height of CRU 15nm

D Ca diffusion coefficient 0:3(mm)2=ms

co Background diastolic Ca
concentration

0:1mM

Jr Single RyR channel conductance 0:1pA{1:2pA

c Number of RyR Ca binding sites 2

kz RyR opening rate 10{4{10{5(mM){2ms{1:

k{ RyR closing rate 1ms{1

N Number of channels in cluster 5{200

doi:10.1371/journal.pone.0062967.t001
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that Aw2 and Te increases exponentially with ns the number of

channels necessary for a Ca spark. So that even for a relatively

small criterion for ns, say ns~5 channels, then Te
10ms, which is

orders of magnitude larger than the cardiac cycle (*1s).
Therefore, we do not expect clusters in the monostable regime

NvNcð Þ to contribute to the timing of SCR in a cardiac cell.

Case II. Clusters of size NcvNvNd . In this case our cluster

is bistable and the continuum approximation is valid. Our final

result is that in this regime the MFPT can be well approximated

using

Te&

ffiffiffiffiffiffi
2p
p

Nkzc2
o

 !
exp

1

gN
z

1

N

1

gN

� �2

{1

 !
ð12Þ

Case III & IV. Clusters of size NwNd . In this case the MFPT

is dominated by the transition time from the shut state of the

cluster to two open RyR channels. The MFPT for this discrete

transition can be well approximated as

Te&
1

Nkzc2
o

1z
1

gN

� �
, ð13Þ

which is valid for evv1. For Nww1=g the MFPT is well

approximated by the first term in Eq. (13)

Te&
1

Nkzc2
o

, ð14Þ

which is simply the MFPT for a single RyR channel opening in the

cluster.

These analytic results provide a complete picture of the MFPT

to a spontaneous Ca spark in an RyR cluster. In particular we note

that the parameter g controls the exponential dependence of Te,

and that the ratio of g to 1=N determines the crossover from

exponential to algebraic behavior. Hereafter, we will refer to g as

the ‘‘excitability’’ of the cluster as it will feature prominently in our

subsequent analysis. To evaluate the validity of our results we have

implemented a standard Gillespie algorithm [37] to simulate the

Figure 2. (A) Plot of location of fixed points x1 and x2 as a function of cluster size N . Parameters used are shown in Table 1, where we have fixed

Jr~0:1pA, and kz~10{5(mM){2ms{1 . The system exhibits bistability for cluster sizes that exceed NC~34 channels. (B) The plot for the effective
potential W(x) as a function of x. The black and red lines denote the plot for the cluster size N~20 and N~80, respectively. For the case N~80,
positions xo and x2 denote the location of local minima, and x1 is a maxima. (C) Illustration of fixed points corresponding to the four distinct
scenarios. (D) Plot of demarcation lines, in the N vs Jr plane, separating the four different fixed point scenarios.
doi:10.1371/journal.pone.0062967.g002
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stochastic dynamics of the Markov chain given in Eq. (1). In these

simulations we computed the time for the cluster to transition from

ni~0 to nf ~N=2, and computed the MFPT by averaging over

105 independent stochastic trajectories. In order to speed up our

computations, which can be exceedingly long for low g, we have

used an RyR open rate of kz~10{3(mM){2ms{1 which is larger

than the physiological range shown in Table 1. In Fig. (3A) we

compute Te vs the RyR current flux Jr for a fixed cluster of size

N~100. On the same graph we show results of the stochastic

simulation, the asymptotic expression given by Eq. (12), along with

Eqs. (13) and (14). To further confirm the asymptotic predictions

in Fig. (3B) we plot logTe vs Jr showing excellent agreement across

four orders of magnitude.

First passage time Statistics of an ensemble of junctions
A cardiac cell, under appropriate conditions, can exhibit Ca

waves which can propagate across the cell. When this occurs a

large amount of Ca is released into the cell and this phenomenon

is referred to as spontaneous Ca release (SCR) [38–41]. It is

generally believed that spontaneous Ca waves are nucleated in

regions of the cell where spontaneous Ca sparks occur, which

release enough Ca to stimulate nearest neighbor CRUs via a fire-

diffuse-fire mechanism [16,42]. This result is supported by optical

mapping experiments showing that SCR in cardiac cells are due to

waves that originate in localized regions well bellow the mapping

resolution [14,43]. Based on these observations we will make the

simplifying assumption that the timing of wave nucleation is

determined by spontaneous Ca sparks that occur at a subset of

CRUs in the cell. These nucleation sites are likely to be in regions

of the cell where there is a larger than average number of RyR

clusters, so that a spontaneous Ca spark is likely to nucleate a Ca

wave in that region. Thus, we will assume that there are M
possible nucleation sites in the cell, where M is dependent on the

SR load and also the spatial distribution of RyR clusters in the cell.

We stress here that this is an approximation since wave nucleation

is likely to be a complex process involving cooperativity between

spatially distributed junctions in the cell. Our key assumption here

is that once a spontaneous Ca spark occurs at a nucleation site

then a Ca wave will develop with very high probability i.e. the key

stochastic event is the first Ca spark at that site. This assumption

should apply at sufficiently high SR loads where a spontaneous Ca

spark will release enough Ca to initiate a Ca wave.

To proceed let us assume that we have M CRUs in the cell

where wave nucleation can occur, and that pi(t) is the FPD for a

spontaneous Ca spark at the ith CRU. Then the probability that

one of these M junctions will fire for the first time in the time

interval ½t,tzdt� is given by P(t)dt where

P(t)~
XM
i~1

pi(t) P
j=i

1{gj(t)
� �

ð15Þ

and where

gj(t)~

ðt
0

dt0pj(t
0): ð16Þ

In general an analytic expression for P(t) is difficult to compute

since the single junction FPD pi(t) is itself difficult to determine.

However, we note that there are two important limits in our

problem where the distributions pi(t) can be well approximated as

a single exponential, which allows Eq. (15) to be evaluated directly.

For a general computational approach which accounts for the

detailed structure of the RyR cluster, and which can be applied to

more complex Markovian models, see Ref. [26]. To proceed, we

follow Lindenberg et al. [44] who show that in the high barrier

regime, which corresponds to case I & II here, then the FPD can

be well approximated by an exponential distribution.

pi(t)&ai exp {aitð Þ, ð17Þ

where a~1=Ti is the inverse of the MFPT for the ith CRU. This

approximation rests on the observation that if the MFPT of the ith

CRU Tið Þ is much larger than temporal correlations in the open

probability trajectory xi(t), then the timing of spontaneous sparks

are, to a good approximation, statistically independent. In this

scenario the FPD is exponentially distributed since the escape rate

is then effectively constant. This approximation applies in case I &

II since in this regime barrier hoping is rare, and occurs on a time

scale much larger than the local dynamics near the stable shut

state. Now when the high barrier approximation is no longer valid

then Eq. (17) cannot be derived on the basis of statistical

independence. However, in regime IV, where the timing is

dictated by a discrete channel transition to one open channel, then

the exponential form in Eq. (17) still holds since the closed time of

RyR channels is exponentially distributed. Thus, we can apply the

approximation in Eq. (17) providing the clusters in question are in

regions I,II, and IV. In these cases we have

P(t)~aM exp {aM tð Þ ð18Þ

where TM~1=aM is the MFPT of M junctions and is determined

by

aM~
XM
i~1

ai: ð19Þ

The expression above allows us to compute the MFPT for an

ensemble of M junctions in the cell. Here, we will explore the

behavior of this quantity under various scenarios. In particular, we

will consider separately the case of small M where there are only a

few nucleation sites in the cell, and also the case when wave

nucleation can occur from a large population of CRUs. As a

starting point let us consider the case where there are only a few

nucleation sites with channel numbers Ni and excitability gi, with

i~1,2,:::,M. Now, if all clusters are in the exponential regime,

and Eq. (12) can be applied, then the sum in Eq. (19) will be

dominated by that cluster which minimizes the exponential term.

To leading order this will be that cluster with the maximum giNi,

which is the product of excitability and channel number. Thus, in

this regime the MFPT to SCR will be dictated by a single

nucleation site since that site will have an MFPT which is

exponentially smaller than the other CRUs. Now, for larger SR

load we will consider the case where the timing of spontaneous

release is given by Eq. (14). In this scenario we can easily compute

the MFPT to SCR as TM*1=kzc2
oMSNT where SNT is the

average number of channels in the M clusters. Note here that in

this regime the MFPT is reduced by a factor M since any one of

the M clusters can fire first. Also, since the MFPT of all the M
clusters is comparable then SCR can potentially be nucleated at

each site. This is in contrast to the exponential regime where SCR

is likely to be dictated by a single cluster.
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Now, in the case where M is large then it is necessary to explore

the behavior of the MFPT where the size and properties of each

CRU is determined by a realistic probability distribution. Here,

we will follow Badeley et al. [27] who have measured the

distribution of RyR cluster sizes in a rat ventricular myocyte. The

key finding there is that the number density of clusters with l

channels, which we denote here as r(l), is given by an exponential

distribution

r(l)!exp {blð Þ, ð20Þ

where b~1=lav, where lav~13:6 is the average number of

channels per cluster in the cell. This finding indicates that the

distribution of RyR channels is broad and therefore variations in

channel number are likely to determine the timing statistics. Here,

we will compute analytically the MFPT for an ensemble of

junctions that are exponentially distributed. To proceed, we write

Eq. (19) as

aM~
M

Z

Xlm
l~1

exp {blð Þa(l), ð21Þ

where a(l)~1=T(l) where T(l) is the MFPT for a cluster with l

channels. Here, we have set lm to be the size of the largest cluster

in the cell, and where Z is a normalization factor defined by

Z~
Xlm
l~1

exp {blð Þ: ð22Þ

A direct evaluation of this normalization factor yields Z&1=b,

providing 1vlavvvlm. To compute the MFPT for our system we

first consider the large Jr limit when all clusters are in region IV of

the discrete bistable regime. In this scenario the FPD is

exponential and we can compute aM by directly evaluating Eq.

(21) using a(l)~kzc2
ol. This computation is straight forward and

yields a MFPT of

Figure 3. (A) Plot of Te vs the RyR single channel current Jr . The curves shown are numerical solution using the exact stochastic algorithm (black
circles), exact solution (black line) according to Eq. (11), asymptotic solution valid in regime II Eq. (12) (red line), high excitability limit using Eq. 13

(blue line), and finally the MFPT for a single channel opening given by Eq. (14) (green line). Here, we fix kz~10{3(mM){2ms{1 and N~100. (B) Plot
of log Teð Þ vs Jr for small Jr for the same parameter choice as Fig. (3A). Black circles are numerical simulation results, black line is the exact solution
using Eq. (11) and the red line is the asymptotic solution given by Eq. (12). (C) Plot of log TMð Þ vs Jr using b~1=13:6 and M~100. To speed up

simulations we have used kz~10{2(mM){2ms{1 . Black circles are the numerical simulation results, the red line is computed using the summation
shown in Eq. (24). Black line is the asymptotic approximation evaluated via Eq. (27) and the horizontal blue line is the high excitability limit given by
Eq. (23). The vertical dashed line indicates the current Jr where g~b.
doi:10.1371/journal.pone.0062967.g003
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TM&
b

kzc2
oM

: ð23Þ

Now as Jr is decreased then a significant fraction of clusters will

be in Region II. In this regime we apply Eq. (12) and evaluate sum

aM~
kzc2

oM

Z

Xlm
l~1

l exp {w(l)ð Þ, ð24Þ

where

w(l)~blz
1

gl
z

1

g2l3
{1: ð25Þ

To estimate aM we note that the sums will be dominated by the

minima of w(l) which occurs at cluster sizes

l�~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2bg
(1zs)

s
, ð26Þ

where s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z12b

p
. To proceed, we can approximate the sum in

Eq. (24) using a saddle point approximation which yields a

compact expression

TM&
1

27=4

bg3
� �1

4

kzc2
oM

s exp n
ffiffiffiffiffiffiffiffi
b=g

p
{1

� �
, ð27Þ

where we have applied the condition bvv1, and where

n~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=(1zs)

p
, and s~(1zs)7=4=

ffiffiffi
s
p

. Here, we note that this

result is only valid providing the dominant clusters of size l� is in

the bistable regime (region II) i.e. l�vNd which is approximately

equivalent to the requirement that gvb. Also, it is important to

note that Eq. (27) does not apply when gvvb since the system is

no longer bistable and therefore Eq. (25) cannot be applied.

However, in this case the MFPT is exponentially large and we do

not expect SCR to occur on a time scale comparable to the cardiac

cycle. Therefore, Eq. (27) captures the correct crossover from

algebraic to exponential timing in the case where the cluster

number is exponentially distributed.

In order to confirm the analytic predictions we directly simulate

the exact stochastic evolution of M independent clusters with a

number of channels that are taken from an exponential

distribution. In Fig. (3C) we plot log TM vs Jr using the exact

stochastic simulation, along with the analytic predictions given by

Eqs. (23) and (27). Note here that to speed up our computations we

have used a forward rate that is an order of magnitude larger than

the physiological value. As shown, for large Jr, the MFPT

converges to a constant that is determined exactly by Eq. (23).

Furthermore, as Jr is decreased TM rises substantially and is well

approximated by the asymptotic expression given by Eq. (27).

Also, included is the exact summation of Eq. (21), which matches

almost exactly with the numerical simulations. This result confirms

the validity of the exponential approximation given in Eq. (17). To

summarize, we identify a crossover from exponential to algebraic

dependence of the MFPT as a function of the excitability

parameter g. For high excitability (gwb) the MFPT can be

approximated by Eq. (23), and as the excitability is lowered so that

gvb the MFPT grows exponentially as predicted by Eq. (27). To

predict the condition for this crossover we note that

log(Te)*
ffiffiffiffiffiffiffiffi
b=g

p
so that the exponential rise in the MFPT occurs

roughly when the excitability is g*b. In Fig. (3C) we indicate the

value of Jr such that g~b (vertical dashed line) which correctly

predicts the crossover region. This result gives an qualitative

estimate of the degree of excitability bellow which SCR becomes

exponentially rare.

Statistics of spontaneous Ca sparks under varying SR load
In this paper we have characterized the timing statistics of

spontaneous Ca sparks in an ensemble of heterogeneous junctions.

A key assumption that we have made throughout, is that system

parameters, such as the SR Ca concentration (csr), are constant

and independent in time. Thus, our results can only be applied to

a quiescent cardiac cell in which physiological parameters have

reached their steady state values. However, cardiac cells in the

heart are typically driven by an AP and the SR load changes

substantially as a function of time. In this section, we will analyze

the first passage time distribution of spontaneous Ca sparks after a

cell has been stimulated by an AP. Recall, that following an AP,

Ca is released from the SR due to Ca sparks that are triggered by

voltage gated LCC Ca channel openings. Thus, the SR load is

substantially depleted and then gradually recovers as Ca is

pumped back into the SR via SERCA pumps. In Fig. (4A) we

illustrate a typical response of the SR Ca concentration as a

function of time. Here, the cell is driven by the AP shown (blue

line), and the SR concentration (red line) is depleted from its initial

value denoted as ca. This depletion time is relatively fast

(*10ms)and we expect the SR to remain depleted, at concen-

tration cb, for a duration tap which is determined by the time

course of LCC inactivation. Once the voltage returns to the resting

membrane potential the LCCs are shut and the SR load recovers

back to ca over a time scale tr. Given this setup we will now

characterize the shape of the first passage time distribution (FPD),

which we denote here by P(t), following the AP. For simplicity, we

will consider conditions where the initial SR load is high so that at

fixed ca the system is in the discrete bistable regime (region IV).

We will also assume that at the depleted concentration cb

spontaneous sparks are rare and the MFPT is exponentially large

i.e. the system is in region I & II. To determine the shape of the

FPD under varying SR load we will apply Eq. (27) which describes

the crossover from exponential to algebraic behavior as a function

of the excitability parameter g. We note that g!c2
sr so that for low

SR loads gvvb and TM is exponentially large. Thus, in the time

dependent case we expect that P(t)*0 for small g i.e. the system

will be effectively refractory. Now as the excitability g increases, as

the SR load rises, then TM will decrease rapidly due to the

exponential sensitivity Te*exp n
ffiffiffiffiffiffiffiffi
b=g

p� �
. Therefore, we expect

P(t) (Fig. (4A) green line) to increase substantially once the SR

load has reached a level such that TM is of the order of the cardiac

cycle *1s. Now, as the SR load increases further then gwwb and

TM is well approximated using Eq. (23) and is independent of SR

load. In this regime the FPD is well approximated as an

exponential with decay rate &1=TM Hence, our final result is

that we can approximate the FPD for a cardiac cell, following an

AP, as a shifted exponential of the form

P(t)&H t{tcð Þ 1

TM

� �
exp {

t{tc

TM

� �
, ð28Þ

where H(x) is the Heaviside step function. The MFPT of this
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distribution is then T~tczTM , so that the effect of SR depletion

is simply to increase the waiting time by the refractory period tc.

Interestingly, a phenomenological first passage time distribution of

the form given in Eq. (28) has been used to describe IP3 -evoked

Ca spikes which govern the timing of Ca oscillations in a variety of

cell types [21,25]. Thus, we expect that the key assumptions

underlying Eq. (28), namely the existence of an effective refractory

period followed by Poission statistics, should describe general

features of Ca wave nucleation phenomenon.

In order to check the validity of our heuristic arguments above

we numerically simulate our system of M junctions with time

dependent parameters. To simulate variable SR load we will vary

the model parameter g~Jr= 2pDhhFð Þ, where Jr is the single

RyR current flux which will vary with SR load. Thus, we will

consider a time dependence

g(t)~
gb 0vtvtap

gaz(gb{ga)exp {(t{tap)=tr

� �
t§tap

(
ð29Þ

where tap~200ms, tr~100ms, and g varies from low

(gb~0:1mM) to high (ga~100mM) excitability. In Fig. (4B) we

show the numerically computed FPD under these conditions

showing an effective refractory period, followed by a rapid rise and

an exponential decay. On the same graph we plot TM using Eq.

(27) showing that the effective refractory period is well approx-

imated by the time at which TM drops to the physiological range

i.e. TM*1s. This result confirms our argument that the strong

exponential sensitivity of the MFPT on the excitability g gives the

FPD an effective refractory period. Also, we plot an exponential

with a decay rate TM given by Eq. (23) confirming our prediction

that the long time behavior of the FPD is exponential.

The timing distribution of SCR across an ensemble of
cells

In this section we will apply our previous analysis to determine

how SCR is synchronized across a population of cells in cardiac

tissue. This is an important question since in order for SCR to

induce a focal excitation in tissue a large fraction of cells must

undergo SCR at roughly the same time. Therefore it is crucial to

analyze the nature of cell-to-cell fluctuations in the FPD. Our

previous analysis reveals that the FPD for a cardiac cell is

effectively determined by the refractory time tc and the

Figure 4. (A) Schematic illustration of the voltage time course, SR Ca concentration, and the FPD, following an AP. (B) Plot of P(t) (black line)
computed using the exact stochastic algorithm with time dependent excitability according to Eq. (29). Probability distribution is computed by

binning the first passage time of 105 independent samples. The parameters used are kz~10{2(mM){2ms{1,b~1=20,M~100. Red line
corresponds to a plot of TM using Eq. (27). The units of TM is indicated on the right y-axis. Late time behavior of P(t) is fitted using an exponential
with decay rate TM (green line). (C) Schematic illustration showing cell-to-cell variations of the FPD Pi(t).
doi:10.1371/journal.pone.0062967.g004
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spontaneous spark rate at high SR loads aM~1=TM . Thus, the

relative timing of SCR in cardiac tissue will be crucially dependent

on the cell-to-cell fluctuations of these quantities. To analyze these

fluctuations we will consider a cardiac tissue with K independent

cells, and determine the firing time distribution PR(t) so that

KPR(t)dt gives the number of cells in our tissue in which SCR

occurs for the first time in the interval ½t,tzdt�. This distribution is

given by

PR(t)~
1

K

XK

i~1

Pi(t), ð30Þ

where Pi(t) is the FPD for the ith cell. Using this distribution it is

straight forward to compute the average firing time in a tissue of K
cells which is

TK~

ð?
0

tPR(t)dt~
1

K

XK

i~1

(ti
czTi

M ) ð31Þ

so that TK~StcTzSTMT, where the brackets denote averages

over the ensemble of K cells in the tissue. To determine the

relative timing of SCR in tissue we seek to compute the standard

deviation of PR(t) defined as

s2~

ð?
0

t2PR(t)dt{

ð?
0

tPR(t)d

0
@

1
A

2

, ð32Þ

inserting Eq. (28), and assuming statistical independence of TM

and tc gives

s2~s2
czs2

M , ð33Þ

where s2
c~St2

cT{StcT2 is the variance of the refractory period,

and s2
M~2ST2

MT{STMT2 is the variance due to cell-to-cell

fluctuations of the MFPT (see Appednix S2 for calculation details).

Therefore, the relative timing of SCR in tissue is determined by

cell-to-cell variations in the refractory period tc and the MFPT at

high SR loads TM . The relevance of these results to the formation

of Ca mediated ectopic activity will be addressed in the discussion.

Discussion

In this paper we have studied the timing statistics of

spontaneous Ca sparks at the single CRU, cell, and tissue level.

We find that the MFPT to a spontaneous Ca spark in a single

CRU is dictated by a dimensionless quantity g~kzg2=k{ which

is a measure of the excitability of the cluster. For low excitability

(gv1=N), where N is the number of channels in the cluster, the

MFPT is exponentially sensitive to system parameters as given by

Eq. (12). In this regime the RyR cluster is bistable and a

spontaneous Ca spark occurs when random RyR transitions to the

open state are of sufficient number to cross a potential barrier

separating the closed and fully open state of the cluster. In this

case, RyR clusters display similar statistics to the classic Kramer’s

barrier crossing problem [45], in which the first passage time is

exponentially sensitive to the barrier height. A consequence of this

feature is that the frequency of spontaneous Ca sparks is

exponentially sensitive to the SR Ca load which is the main

dynamical variable which controls the excitability g On the other

hand, in the high excitability scenario (gw1=N) the system is in

the discrete bistable regime where only one, or a few, channels

need to open to induce a spontaneous Ca spark. In this regime the

MFPT is given by Eq. (13), revealing an algebraic rather than

exponential dependence on system parameters. This result is not

surprising since the timing statistics of spontaneous Ca sparks is

now dependent only on the transition rate of a few RyR channels.

Consequently, for very large excitability (gww1=N) the MFPT is

not dependent on the current flux across the RyR channel, and

can only depend on the SR load via the RyR opening rate kz.

In a cell with several thousand CRUs then we expect that SCR

is dictated by wave nucleation from a population of M CRUs.

These CRUs are those which are located in regions of higher than

average RyR channels so that they will serve as wave nucleation

sites. In the limit of high SR load the timing of SCR is then given

by TM*1=kzc2
oMSNT where SNT is the average number of

channels of the M clusters. To estimate this time scale we will use

physiological parameters kz~10{4(mM){2ms{1,co~0:1mM so

that TM~106ms=MSNT. Then TM becomes comparable to the

cardiac cycle (*1s) when MSNT*103. Thus, if the average

channel number is large compared to the typical cluster, say

SNT*100, then SCR will occur on the time scale of the cardiac

cycle only when the number of nucleation sites reaches M*10.

On the other hand, for small clusters to drive wave nucleation

SNT*10, a large number of nucleation sites are necessary

(M*100). Now, for lower SR load the timing of spontaneous Ca

sparks will be exponentially sensitive to system parameters (Eq.

(12)). In this regime we expect that one CRU will have a spark rate

that is exponentially faster than the other M{1 CRUs, and thus,

this CRU will dictate the timing statistics of SCR in the cell.

However, it should be noted that this conclusion assumes that a Ca

spark at the earliest CRU is sufficient to induce SCR. In fact, it is

more likely that in this parameter regime of low excitability

cooperativity of CRUs will be crucial to initiate SCR. However,

these effects are beyond the scope of our analysis which does not

account for the coupling between CRUs. Nevertheless, in the

simplified setting considered here, our prediction is that at high SR

load conditions SCR will originate randomly from many sites in

the cell. As the SR load is decreased then the number of sites will

decrease until only one or a few CRUs will drive the system. Thus,

our findings suggest that the SR load will dictate both the timing

statistics and the location of wave initiation sites.

In the case where M is large and where the number of channels

in each CRU is exponentially distributed, then TM can also be

computed analytically. In the low excitability regime (gvb) the

MFPT is exponentially sensitive to system parameters according to

Eq. (27). On the other hand at high excitability (gwb) the MFPT

displays an algebraic dependence on system parameters according

to Eq. (23). Thus, at the whole cell level, measurements of the

MFPT should display a distinct crossover as a function of the

excitability g. Here, we will evaluate the conditions for this

crossover assuming the physiological parameters given in Table 1.

Recall that g is dependent on the single RyR current flux Jr, which

itself is directly proportional to the SR Ca concentration Csr.

Using these parameters we find a crossover roughly when g*b
which occurs at a single current flux of Jr*0:4pA for

kz~10{5(mM){2ms{1, and Jr*0:15pA for

kz~10{4(mM){2ms{1. Now, Wang et al. [30] have argued

that their experiments indicate a single RyR flux roughly

Jr*1:2pA, which suggests that for kz in the range considered

here, the system is in the high excitability limit and the MFPT is

dictated by a few channel openings. However, if Jr is reduced,

perhaps by a reduction in SR load, we expect to observe a

crossover to the exponential dependence given by Eq. (27).
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The analysis presented in this paper provides a quantitative

approach to determine the relative timing of SCR in cardiac tissue.

This is an important question to address since in order to depolarize

tissue a substantial number of cells must undergo SCR within a time

interval that is comparable to the typical duration of an SCR event.

Thus, cell-to-cell variations of the timing of SCR are an important

factor to determine whether or not SCR can induce a focal

excitation in cardiac tissue. Furthermore, it is crucial to analyze this

relative timing under physiological conditions where the SR load is

depleted following an AP. To address this question we first showed

that the FPD to a spontaneous Ca spark, following SR depletion,

has two distinct features: a refractory time tc, following the AP,

where the SR load is depleted to an extent where spontaneous Ca

sparks are exponentially rare; and an exponential phase for times

twtc where the FPD decays exponentially with time constant TM .

Here, we have assumed that the steady state SR concentration is

large, and TM is well described by the high excitability limit given by

Eq. (23). We argue that this case is the most physiologically relevant

since SCR is typically observed at high SR loads, where the system

is likely to be in the high excitability limit. Under these conditions

the relative timing of SCR in tissue is then governed by the standard

deviation given by Eq. (33). To estimate this quantity it is first

necessary to evaluate the cell-to-cell variations of the two time scales

tc and TM . However, given the lack of direct experimental data we

will first consider the case where cell-to-cell variations are negligible

i.e. we will consider a lower bound to the standard deviation. In this

case the variance is given simply by s~TM , since variations in SCR

timing are due solely to the single cell FPD, which is well

approximated by an exponential. Now, recall that SCR is initiated

by a spontaneous Ca spark that induces a Ca wave in the cell. The

lifetime of these waves is in the range *100{300ms, and can vary

widely depending on the number of initiation sites and the wave

speed. Therefore, if s is bellow this range then we expect that SCR

in an ensemble of cells will occur with small dispersion and overlap

in time. In this case the total inward current generated by SCR in an

ensemble of cells in tissue can be substantial and the tissue can be

depolarized. To estimate s we use our physiological parameters in

Table 1 and evaluate TM using Eq. (23), which gives s in the range

*10{100ms, for kz in the range 10{4{10{5(mM){2ms{1.

Therefore, for physiological parameters, the variance in the timing

of SCR can be much smaller than the duration of SCR itself (see

Fig. (4C) for a schematic illustration of this case). In this scenario

SCR will be effectively synchronized across a large number of cells

in cardiac tissue.

The results in this study, explain to some extent, the

experimental observations of Wasserstrom et al. [40] who applied

confocal line scan imaging to measure the occurrence of SCR

across a group of cells in the intact rat heart. These authors

showed that under Ca overload conditions induced by a large

external Ca concentration (6mM), and rapid pacing (200ms),
SCR in different cells occurred with remarkably low cell-to-cell

variability. An inspection of the line scan images in that paper

shows that the typical duration of SCR was roughly *250ms,

while most SCR events occur within a 100ms time interval. This

data indicates that under these Ca overload conditions the

duration of SCR was substantially longer than the timing

variability of the occurrence of SCR. Therefore, it is likely that

inward currents generated by SCR in a large fraction of cells will

summate to form a substantial depolarizing current, most likely via

the sodium-calcium exchanger. In fact these authors reported that

in one sample the timing of an extra beat coincided precisely with

the average time to SCR for cells observed in the mapping field.

This result demonstrates that the ectopic beat was likely caused by

the near simultaneous occurrence of SCR in a large number of

cells in tissue. Our analysis in this paper suggests that in these

experiments: (i) The MFPT is described by Eq. (23) and is small

relative to the duration of SCR i.e. TMv100ms. (ii) The cell-to-

cell variability of the refractory time tc is also small and is not

sufficient to desynchronize the timing of SCR. In effect, in these

cells SCR occurs nearly simultaneously once the SR concentration

reaches the threshold of excitability at roughly the same time tc.

This experimental study, along with our analysis in this paper,

highlights the crucial importance of cell-to-cell variability of SCR

in order to gauge the propensity for Ca-mediated triggered activity

in cardiac tissue.

Our analysis of SCR timing statistics assumed that spark

activation is dictated primarily by the C to O transition rates of the

RyR channel. Here, we discuss qualitatively the role inactivation

and recovery from inactivation. Firstly, we consider the case where

inactivation is strong so that the parameter kb in our Markov

scheme shown in Fig. (1B) is large. In this case we expect that the

maximum number of open RyR channels during a spark will be

small since RyR channels quickly inactivate once they open. This

scenario is consistent with the experimental data presented by

Wang et al. [30] who claimed that a Ca spark is likely due to the

opening of only 2{8 RyR channels in a cluster. In this study they

also estimated the single RyR current flux to be Jr*1:2pA, so that

only a single channel openning raises the Ca concentration to

*200mM. Here, the single RyR flux is necessarily large since only

a few RyR openings summate to form a Ca spark which is known

to have a peak flux in the range 1{10pA. Now since the single

RyR flux is large then it is likely that spark activation is dictated by

the statistics of the first few channel openings. Therefore, in this

scenario we expect that the MFPT will be well described by our

discrete bistable regime i.e. regions III & IV, and Eq. (23) for an

ensemble of clusters, since inactivation does not play a role in the

statistics of first openings. A second issue to consider is the role of

recovery from inactivation, governed by the parameter ka in our

RyR Markov scheme. If this parameter is small, so that the time

scale ta~1=ka is comparable to tap and tr then recovery from

inactivation will play an important role to determine the effective

refractory time tc. In this case, the number of available RyR

channels in the cluster, which can transition to the open state, will

be time dependent and recover with a time scale governed by ta.

Thus, to determine the timing statistics it will be necessary to

replace the variable N with NC the number of RyR channels in

the closed stated. Therefore, if NCvvN then the MFPT will be

substantially modified, and recovery from inactivation will be the

main process that dictates the timing of SCR. This scenario is

potentially important and is worth further investigation.

An important limitation of our analysis is that we have little

experimental data to assess the magnitude of cell-to-cell variations

in the refractory period tc. In general, we expect tc to vary

between cells due to variations in the time course of the SR Ca

concentration. These variations can be attributed to cell-to-cell

fluctuations in ion channel density, especially of the SERCA pump

which is the main current responsible for SR Ca reuptake. Our

study shows that these fluctuations will have to be measured in

order to fully quantify the relative timing of SCR in tissue. A

further limitation of our study is that we have assumed that the

timing of wave nucleation is determined only by the formation of

spontaneous Ca sparks. A more realistic picture should involve the

cooperative dynamics of several clusters which are in proximity in

regions of the cell with a higher than average number of RyR

channels. However, a detailed analysis of this effect will require a

more complete description of Ca wave nucleation within a

random three dimensional distribution of channels. Nevertheless,

our analysis should lay the ground work for a more complete
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understanding of the timing statistics of wave nucleation in

heterogeneous environments.

Supporting Information

Appendix S1 The large N approximation to the exact
mean first passage time given by Eq. 11. Detailed

derivations of Eqs 12–14 are given.

(TEX)

Appendix S2 Analysis of the variance of the first passage
time distribution. A detailed derivation of Eq. 33 is given.

(TEX)
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