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Abstract

Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets.
Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the
signal change relative to a baseline signal. We have developed DETECT, a MATLAB toolbox for detecting event time intervals
in long, multi-channel time series. Our primary goal is to produce a toolbox that is simple for researchers to use, allowing
them to quickly train a model on multiple classes of events, assess the accuracy of the model, and determine how closely
the results agree with their own manual identification of events without requiring extensive programming knowledge or
machine learning experience. As an illustration, we discuss application of the DETECT toolbox for detecting signal artifacts
found in continuous multi-channel EEG recordings and show the functionality of the tools found in the toolbox. We also
discuss the application of DETECT for identifying irregular heartbeat waveforms found in electrocardiogram (ECG) data as an
additional illustration.
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Introduction

The widespread use of portable, high-throughput sensors has

dramatically increased the challenges of analyzing time series data,

making automated methods for time series analysis not only

beneficial but necessary for practical data analysis. One area of

particular interest in automated time series analysis is event detection.

In this context, we define an event as an interval of time where the

properties of the signal have changed relative to a baseline signal.

In this paper we describe DETECT (DETection of Events in

Continuous Time), a MATLABTM toolbox for detecting and

identifying events that occur in long, multi-channel time-series.

Our motivating example in developing DETECT is the problem

of artifact detection in long-term EEG (electroencephalogram)

recordings of brain activity. Artifacts in EEG recordings can be

generated from external sources, such as power lines or electrical

transformers, or from internal sources such as muscle movements

like eye blinks, jaw movements or muscle twitches [1,2]. EEG

artifacts often (but not always) have signal strengths several times

greater than the underlying EEG and have time scales ranging

from a few milliseconds to several seconds, necessitating their

removal prior to many types of analyses. Although they are most

commonly considered a nuisance, some types of EEG ‘‘artifacts’’

such as saccades and other eye movements are intrinsic to specific

types of subject behavior and may, in fact, be a variable of interest

to a researcher [3]. Other applications of event-monitoring in long

EEG recordings include the monitoring of epilepsy patients for

epileptic seizures [4], monitoring the brain activity of newborn

infants [5] as well as the monitoring of fatigue in prolonged driving

simulations [6]. In many of these settings, the experiments may last

several hours or days, making manual identification of events time-

consuming and impractical.

Many approaches to event detection rely on using training data

known to have no events. For example, [7] uses training datasets

known to contain only baseline signal and calculates a metric

called the importance, which is the ratio of training set to testing

set densities. They estimate the importance using unconstrained

Least Squares Importance Fitting (uLSIF). Methods such as a

One-class Support Vector Machine (OSVM) [8] also rely on the

availability of baseline training data to classify unlabeled data into

two regions, baseline and events. For more dynamic data streams,

DBOD-DS (Distance Based Outlier Detection in Data Streams)

continuously re-estimates probability density, weighting recent

points more heavily [9]. This method evaluates whether particular

points are events based on this continuously evolving probability

density function. Similarly, ChangeFinder [10] uses autoregressive

(AR) learning together with probability densities to find events.

Other approaches for event detection assume the availability of

baseline training data and apply machine learning techniques to

detect events [11].
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Note that all of the methods described above assume the

existence of training data that clearly describes the baseline, and

do not provide machinery to distinguish among different types of

events. This is due in part to the fact that the use of machine

learning approaches for classifying different event types requires

training data for each event type; however, obtaining accurate,

labeled training data for real signals can be difficult and

cumbersome, preventing many researchers from applying these

techniques routinely in a laboratory setting. The goal of this paper

is to introduce a toolbox that is simple for scientists to use, allowing

them to quickly train a model on multiple classes of events, assess

the accuracy of the model, and determine how closely the results

agree with their own manual identification of events. The toolbox

supports an iterative workflow, allowing the user to provide

additional training examples or try a different feature set for

creating the model in order to improve classification performance

if deemed necessary. DETECT reports time indices where events

occur as well as the type of event detected, and can be used to label

continuous EEG data and other time series data with any event

type of interest.

Here, we illustrate the use of DETECT by classifying multiple

types of artifacts present in EEG recordings. Our previous work

has shown that a variety of subject-generated artifacts, such as eye

blinks and muscle movements, can be accurately identified within

EEG by using coefficients from an autoregressive (AR) model as

features for input to a support vector machine (SVM) classifier

[12]. MATLAB code for the DETECT Toolbox can be found at

http://github.com/VisLab/DETECT as well as on the UTSA

Visualization and Modeling Laboratory (VML) website at http://

visual.cs.utsa.edu/detect. Sample datasets can also be found at

VML.

Materials and Methods

DETECT Processing Pipeline
The DETECT processing pipeline consists of the following

steps: Training set creation, model building and validation, event

labeling, event visualization and assessment. Figure 1 shows an

example of the DETECT function calls for each of these steps,

which are explained in more detail below. These function calls

describe a typical workflow using all the DETECT default

parameter settings. A complete description of the function

parameters and an extensive set of examples illustrating various

use cases are available in the DETECT user manual distributed

with the source code.

Step 1: Create a Training Set
We assume that the data is provided as a continuous time series

of multichannel data in a channels 6 frames array, where the

columns of this matrix correspond to the time points at which the

data is recorded. That is, at each time point (frame), simultaneous

measurements are made from the channels and recorded. The

input to DETECT model building is a three-dimensional matrix of

size channels 6windowSize 6windows that contains the training

data. The channels dimension denotes the number of simulta-

neous time series that are observed, windowSize denotes the length

in frames of a time interval containing an event, and windows is

the total number of windows (events). This array can be created

manually by the user, or with the GUI described below.

DETECT provides the getLabels function to assist users in

creating labeled features from continuous data. The getLabels

function, based on EEGLAB plotting functions (Delorme and

Makeig, 2004), displays a graphical user interface (GUI) that

allows users to highlight and color code segments of data

representing labeled events. The example GUI shown in Figure 2

uses getLabels to label artifacts in EEG. In this case, three buttons

on the menu bar (see arrow) specify the allowed event labels: Blink

(dark blue), Muscle (aqua), and None (yellow). The arguments of

getLabels include allowed events (and colors – not shown), the

desired duration of the events in seconds, and the sampling rate. In

the figure, two events have been labeled: a region of no artifact,

highlighted in yellow, and a region of eye blink, highlighted in

blue.

Figure 1. An example of the processing pipeline for the DETECT toolbox using the default settings. Step 1 creates a set of trials from
training data using a window size of 0.5 s at data sampling frequency of 256 Hz. Step 2 builds and validates the model using the default settings.
Step 3 labels test data using a slide width of 0.25 s. Step 4 applies an optional certainty policy based on a specified certainty threshold to relabel. Step
5 visualizes the results and produces an event log. Step 6 calculates the amount of agreement between the current labeling (events1) and another
labeling (events2). Additional resources for optional parameters can be found in the DETECT Users Guide bundled together with the toolbox. HTML
documentation for each function can be found at http://visual.cs.utsa.edu/detect/documentation/help/.
doi:10.1371/journal.pone.0062944.g001

DETECT Toolbox for Event Detection in Time Series
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To create a labeled segment, the user presses the button of the

desired event type and then highlights a region of the signal by

holding down the mouse button while dragging the mouse.

Although DETECT downstream processing makes no assump-

tions about whether the training features overlap, the getLabels

function does not allow overlap in labeled segments. To label a

different type of event, the user simply clicks the appropriate

button before highlighting. Once the user has highlighted the

training data, DETECT adjusts the highlighted windows to be the

same length as required by DETECT downstream processing.

The window length for this example is 0.5 s, so DETECT

automatically sets each data segment to be 0.5 s when the user

finishes. For accurate model estimation, the number of observa-

tions in each event class should be roughly the same; DETECT

issues a warning if the event classes are not balanced. There are

two outputs of the getLabels function: a structure with data of size

channels 6windowSize 6windows, and a string vector labels of

length windows that contains the category for each data window.

These outputs are used for model training in the next step.

Step 2: Build and Validate a Classification Model
After producing training data, the user calls the getModel

function to build the classification model for the labeled raw

features. DETECT model building transforms raw features using a

feature extraction function and then trains a support vector

machine (SVM) classifier [13]. The feature extraction function

takes an array of data (channels 6 windowSize 6 windows) and

produces an array of (windows6featureSize) extracted features. A

simple example of feature extraction is the standard deviation for

each channel:

function features = getSTDfeatures(data)

features = squeeze(std(data, 0, 2)9);

end

The user can easily supply a feature function that is appropriate

for a particular application. By default DETECT uses the

getARfeatures function, which computes the coefficients of an

autoregressive (AR) model of order p on each channel individually.

The AR model of order p for a zero-mean time series y tð Þ can be

written as:

y tð Þ~
Xp

i~1

aiy t{ið Þz 1

where p denotes the number of previous time points used to

model the current time point, and ?t denotes a zero-mean process

with variance s2. We compute the AR coefficients ai, i = 1, …, p

for each channel separately and concatenate the results to form a

feature vector for a window. Because each channel is treated

individually, spatio-temporal information that exists in the time

series cannot be directly estimated. However, the user has the

option of using a different feature extraction function to extract

spatio-temporal information, such as a multivariate autoregressive

(MVAR) function. In fact, any feature extraction function can be

used with DETECT as long as the output of this function is a

matrix of size (windows 6 featureSize).

The getModel function uses a support vector machine (SVM)

classifier for discriminating among the events based on the given

features. The software library LibSVM [13] is used for fitting the

Figure 2. The getLabels function displays a graphical user interface (GUI) that allows users to label different events in a continuous
dataset. The toolbar buttons at the top (arrow) allow the user to choose the event label. In this figure two events have been identified – a ‘‘None’’
event shown in yellow and a ‘‘Blink’’ event shown in blue.
doi:10.1371/journal.pone.0062944.g002

DETECT Toolbox for Event Detection in Time Series
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SVM classifier. The getModel function uses the radial basis

function (RBF) kernel by default, as this kernel has been

successfully used in other classification problems [12]. The RBF

kernel has two parameters: C, a cost penalty parameter and c the

variance parameter of the RBF [12]. The getModel function uses a

grid search over (C,c) to find the pair that maximizes the cross-

validation accuracy. The default grid search space is set to be large

(2[-5,10] 6 2[-5,10] in steps of .5) to account for the majority of

parameter values that could arise depending on the features used.

The user can modify the getModel function to increase or decrease

this range if needed. The getModel function uses 10-fold cross

validation by default, although this parameter can be changed by

the user at the command line. The getModel function produces

the estimated parameters of the SVM classifier as well as the cross-

validation (CV) accuracy for the given feature extraction function.

The CV accuracy can be used as a basis of comparison for

validating different feature sets with two or more feature extraction

functions.

Step 3: Label the Test Data
After building a classification model, the user can use the model

to classify either continuous data or windowed data. The

labelData function classifies continuous data using a sliding

window approach and also reports the classification accuracy

when the true labels are provided. Figure 3 shows the details of the

sliding window.

The first region W1 of Figure 3 starts at time 0, and the length of

the window is the width of the training windows used to build the

model (0.5 s). The labelData function calculates the features in this

window and uses the SVM classifier to make a prediction of the

class label. The data is labeled in time using the following formula:

Ri~ Mi{0:5S,Miz0:5S½ Þ

where Ri is the ith region of the data, Mi is the midpoint of the ith

window, and S is the slide width, all in seconds. The prediction

region, R1, for this label is depicted as a blue box in Figure 3. The

window is then shifted in time by a user-definable slide width (in

this case 0.25 s) and the process is repeated. The prediction label

for the second slide is depicted by the green box in Figure 3. Data

at the end of the dataset is discarded if the full time slide cannot be

performed For example, if only 0.1 s of data remains at the end of

the record but the slide width is 0.2 s, the remaining 0.1 s of data

is not analyzed. Notice also that a time period at the beginning of

the data set corresponding to J of the slide width is not labeled.

For data that is already pre-windowed (‘‘epoched’’), the labelWin-

dows function classifies and reports the predicted label for each

window.

Step 4: Apply a Certainty Policy (Optional)
Both labelData and labelWindows return an additional measure

of accuracy, which we call the certainty score. The certainty score is

defined as:

Certainty~
P 1ð Þ{P 2ð Þ

P 1ð Þ

where P 1ð Þ, P 2ð Þ, :::P Mð Þ are the sorted (descending) probabilities

for the M categories in that window as returned by LIBSVM. That

is, P(1) is the probability of the most likely class label for this

window. If the probability distribution is mostly concentrated in

one category (indicating a strong likelihood for that category), the

certainty measure will be close to 1, while if the probability

distribution is more evenly distributed across all the categories, the

certainty measure will be close to 0. Thus this measure can be used

to reveal predictions that have a high certainty of being accurate,

or alternatively predictions for which the output decision is

acknowledged to be potentially incorrect due to low certainty,

through use of a certainty policy.

The DETECT toolbox provides two functions for implementing

different certainty post-processing policies, but users can easily

Figure 3. An example of the continuous detection for a window size of 0.5 s and slide width of 0.25 s. In Step 1, the analysis window W1

is [0, 0.5) seconds, and the prediction for this data is made at [M1 2 0.5 S, M1+0.5 S) where M1 = the midpoint of W1 and S = the slide width. The blue
color denotes the time interval of applicability of the prediction based on the first window, W1. In Step 2, the window is shifted by 0.25 s, so the
analysis window W2 is [0.25, 0.75) seconds, and the prediction for the data is made at [M2 2 0.5 S, M2+0.5 S). The green color denotes the time
interval of applicability of the prediction based on the first window, W2.
doi:10.1371/journal.pone.0062944.g003

DETECT Toolbox for Event Detection in Time Series
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write additional ones to fit their criteria. These policies are

implemented as functions that take either the output of labelData

or labelWindows as an argument and produce a new labeling.

Note that by default, the model ignores the certainty and produces

a label, regardless of certainty. The example thresholdPolicy

function relabels frames based on whether the certainty is greater

than a user-defined threshold. If a prediction is made with a

certainty that is less than the threshold, the thresholdPolicy

determines whether either of the two most probable classes is the

‘‘baseline’’ class. If one of the classes is the baseline class, the

prediction is set to be the baseline class. The prediction is not

changed if either the certainty value is low but neither of the two

most probable classes is the baseline class or if the certainty is

above the specified threshold. The optimum certainty threshold

can be found by performing a grid search along the possible values

of the certainty in [0, 1].

Another sample DETECT certainty post-processing policy

function, unknownPolicy, also uses a threshold, but looks at the

type of the most probable event when the certainty is below the

threshold. If the most probable event is the ‘‘baseline’’, then the

frame is labeled as the baseline. If the most probable event is a

non-baseline event, then the frame is labeled as ‘‘Unknown’’.

Additional certainty policies can be written that use the estimated

probability distribution of the classes directly, as that is one of the

additional outputs from either labelData or labelWindows. Users

can also write certainty post-processing policies that take into

account neighboring labels in the continuous case. For example,

suppose a particular event label appears as the second most likely

event during one window, but neighboring windows identify the

same event with high certainty. A certainty post-processing policy

could relabel the window in question to account for the behavior

of neighboring slides. This type of relabeling is particularly

relevant for events with known physical limits on their time

duration. However, it should be noted that policies will be very

problem-specific, and thus certainty post-processing policies must

be considered as a separate, optional step in the workflow.

Step 5: Visualize and/or Create an Event List
DETECT has visualization tools that can be used after applying

the classification model to testing data. The plotLabeledData

(continuous data) or the plotWindowData (windowed data) overlay

the labeling on the original signal, allowing users to evaluate the

quality of the labeling or to visually compare two labelings side by

side. Both functions are built on EEGLAB [14] and show a display

similar to that of getLabels, illustrated in Figure 2.

Step 6: Assess Agreement (Optional)
The compareLabels function computes the agreement between

two different labelings of the same set of continuous data. Multiple

labelings may occur from applying different feature extraction

approaches, when using different slide parameters, or when

comparing the results of the algorithm to that of manual labeling

or ‘‘ground truth’’. The compareLabels function uses a ‘‘fuzzy

window’’ approach to evaluate the agreement of two labelings in

time. The user sets a threshold of how many seconds of temporal

tolerance are allowed when determining the amount of agreement

to compensate for small differences in the exact onset and offset

times that are likely to occur when applying different labeling

approaches. The compareLabels treats the first labeling as

‘‘ground truth’’ when calculating the agreement.

A fuzzy threshold of 0 s designates no timing tolerance. In this

case if both labelings designate a region as the same type of event,

compareLabels assigns the region to be an Agreement. If both

labelings detect a region as ‘‘baseline’’, compareLabels assigns the

region to be a NullAgreement. If the first (ground truth) labeling

designates a region as ‘‘baseline’’, but the second labeling

designates the region as an event, compareLabels assigns the

region to be FalsePositive. Similarly, if the first (ground truth)

labeling designates a region as event, but the second labeling

designates the region as ‘‘baseline’’, compareLabels assigns the

region to be FalseNegative. Finally, a TypeError occurs when both

labelings find the region contains an event, but designate different

types.

Figure 4A shows an example of two different labelings of a set of

frames using a fuzzy threshold of 0 s. The set has two event types,

colored blue and orange. Baseline events are the periods where no

events are present (in this figure, where no colors are present). In

the very first period [0, 0.5]s, both labeling agree that there is no

event present. This generates a NullAgreement decision (NA). In

the next period [0.5, 1]s we see that Label Set 1 indicates a blue

event, while Label Set 2 does not. Since compareLabels compares

Label Set 2 to Label Set 1 (setting Label Set 1 to be the ground

truth), this generates a FalseNegative decision (FN). In the period

from [1,2]s both labeled sets agree on the type and duration,

generating an Agreement decision (Agree) for this time period. In

the time region [2.5, 3]s a region is labeled in Label Set 2 and not

in Label Set 1. This generates a FalsePositive decision (FP). Lastly,

the region from [4.5, 5]s denotes a TypeError (TE) where the

types in the two sets are not the same. After the comparison is

complete, compareLabels summarizes the comparison by report-

ing the total time in each of the five categories.

Figure 4B shows the results of the same comparison using a

‘‘fuzzy window’’ of size 100 ms, which is shown in green. As

before, intervals of agreement are computed by intersection. Each

interval of agreement is extended on each end by the time

designated by the fuzzy window parameter (in seconds). The fuzzy

window parameter only applies to regions where there was an

agreement between the two labelings (regions of TypeError are

unaffected by this procedure). For example, the first blue region in

Label Set 2 is extended on both ends by the fuzzy window, and the

agreement is calculated based on this new extended time range.

Similarly, the orange region in Label Set 1 is extended by the fuzzy

window and the agreement is calculated based on the new range of

values. The remaining conditions are then recalculated after this

adjustment (FalseNegative, FalsePositive and NullAgreement).

The fuzzy window parameter can be interpreted as the

allowable timing difference between two identified time regions

that have the same type. It is possible that two different labelings of

a dataset, while both accurate in detecting the event, are offset by a

small amount in time due to the resolution of the labeling method.

For example, a labeled set using one type of feature might be the

result of very liberal manual labeling, while another labeled used

more stringent requirements for the onset of events, resulting in

slightly smaller windows in time. The fuzzy window parameter can

allow the user to adjust for minor differences in the timing among

two periods for determining similarity and accuracy, without being

confounded by small periods of false positives or misses. Note that

this approach is utilized when there is an interval of type

agreement between the two labelings; no fuzzy windowing is

performed otherwise. The comparison is also symmetric for

regions of NullAgreement, Agreement and TypeError, but not for

FalsePositive and FalseNegative decisions. In those cases, the

labeling will be reversed depending on which dataset is used as the

reference. In other words, FalsePositive decisions will be labeled as

FalseNegative decisions when the order of comparison is reversed.

The start and end time of the decisions, however, remain

symmetric across all evaluation decision types.

DETECT Toolbox for Event Detection in Time Series
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Toolbox Function Summary
Table 1 lists the functions found in DETECT with a brief

summary of the usage. Functions are divided into two groups:

functions that can be applied to any time series directly, and

functions that have EEGLAB [14] dependencies. DETECT uses

EEGLAB for data processing functions (such as windowing the

data) as well as visualization. All functions that have plot elements

have EEGLAB dependencies, which the user is required to install

before using DETECT. Details about the parameters needed for

each function can be found at our HTML help page at http://

visual.cs.utsa.edu/detect/documentation/help/.

Experimental Setup
Here we highlight the utility of DETECT using the problem of

artifact detection in EEG. Data was acquired from three

participants who performed a standard visual-evoked-potential

(VEP) task, in which they reported whether each presentation of

an image was a depiction of a U.S. Soldier (common) or an enemy

insurgent (infrequent). All participants provided written consent

prior to participating, and methods were approved as required by

U.S. Army human use regulations [15,16]. The EEG data was

recorded at 512 Hz using a 64-channel Biosemi ActiveTwo system

(Biosemi, Amsterdam, Netherlands) and referenced to the average

of the two mastoids. Four external channels were used to record

eye movements by electrooculography (EOG). EOG activity was

recorded to verify the instances of eye blinks and saccades in EEG,

but this information was not used in subsequent analyses. The data

were down-sampled to 256 Hz using a discrete wavelet transform

from the Meyer wavelet family. The approximation coefficients of

the down-sampled signal were then high-pass filtered at 1 Hz

using an order 8 IIR Butterworth filter. We used EEGLAB [14]

for processing and ERPLAB [17] for filtering the data. A total of

three datasets, labeled D1, D2 and D3, were used for this study.

The three data sets differed significantly in their event content: the

first dataset (D1) was fairly clean with few artifacts, while the

remaining two datasets (D2 and D3) had significantly more artifact

contamination as well as more complex combinations of events.

Figure 4. A comparison of two labeled datasets using the fuzzy window approach for allowable timing errors for two slightly
different window sizes using the compareLabels function. There are two events, colored blue and orange. Blank spaces denote the absence
of an event in the time window. The Decision row indicates the decision made by compareLabels. (B) The comparison with using a fuzzy window size
of 100 ms. The fuzzy window extends regions of agreement by 100 ms on each end. The extension is shown in Green. The decision codes are:
NullAgreement (NA), False Negative (FN), Agreement (Agree), False Positive (FP) and TypeError (TE).
doi:10.1371/journal.pone.0062944.g004

DETECT Toolbox for Event Detection in Time Series
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Three users, each with more than 10 years of EEG experience,

were asked to label the three datasets using the markEvents

function in DETECT (see Table 1). This function generates an

interactive GUI that can be used to label continuous data

efficiently with different classes of events. The users categorized

events into three classes: Blink, Eye and Muscle. ‘Blink’ denotes

eye blinks in the EEG signals, ‘Eye’ denotes eye movements such

as vertical or horizontal saccades, and ‘Muscle’ denotes periods of

extensive high-frequency muscle activity. The users were not given

any specific instructions about labeling, and were asked to apply

their individual working criteria for identifying artifacts. They did

not discuss their criteria with each other prior to the labeling. Due

to the fairly low frequency of muscle and eye-movement artifacts

(and a high frequency of blink artifacts) present in each of the

subjects data, we used data acquired from the same subjects that

was previously labeled for artifacts as the training data for building

an artifact discrimination model [12]. In this dataset, subjects were

instructed to make specific artifact-inducing movements that

commonly contaminate EEG signals, such as eye blinks and jaw

movements. Using this artifact battery, an artifact discrimination

model was built uniquely for each subject. Our previous research

[12] showed that an order 2 AR model maximized the cross-

validation accuracy for distinguishing among the artifact condi-

tions. Therefore, we used an order 2 AR model as the feature

extraction function for all analyses presented throughout the

paper.

Results

Comparison with Manual Labeling by Users
Agreement between the user evaluation and the results of

DETECT were determined by using the fuzzy window method for

comparing labeled regions. We designated the user labeling as the

reference data set in comparisons with the compareLabels

function, with a slide width of 125 ms for labeling the data, as it

gave good timing localization of artifacts while still being

computationally efficient. When comparing the user-labeled data

with the automated labeling by DETECT, we used a fuzzy

window parameter of 100 ms, allowing for 100 ms of tolerance on

either side of the window. These comparisons demonstrate the

software use, while illustrating some of the issues that arise in

labeling such data. The datasets from the three participants are

labeled D1, D2 and D3 in the following discussion. Although these

sets were acquired under the same experimental conditions, their

artifact content differed significantly. D1 has relatively few, well-

defined artifact events, while D2 and D3 have more complex

events where different types are sometimes intermixed.

Table 2 shows the results when comparing the labeling for

dataset D1 to the automated labeling by DETECT. We see that

there is significant agreement across all three users, with over 97%

agreement in all cases. This accuracy percentage was obtained by

combining the decisions Agreement and NullAgreement, as the

absence of artifacts in both datasets constitutes an agreement.

We used the thresholdPolicy post-processing policy function to

remove false positives in the data. The optimal threshold

parameter was estimated by maximizing the summed values of

Agreement and NullAgreement over a grid search of possible

Table 1. DETECT Function List and Summary.

GENERAL FUNCTIONS (can be used to label any type of time series data)

Name Description

getARfeatures Estimate autoregressive model coefficients of specified order for a 3D array of input data (channels 6windowSize 6
windows) and return a (windows 6 featureSize) array of features to be used for classification.

getModel Create a model or classifier based on data (channels 6 windowSize 6windows) array of training data and a (windows
length) vector of class labels.

labelData Label data (channels 6 frames) as a function of time based on a classification model and report certainty of each label.

labelWindows Label windows (channels 6windowSize 6windows) based on a classification model and also return classification accuracy
if ground truth labels are passed in for comparison.

compareLabels Compares two sets of labeled data, either from an automated labeling (by DETECT) or from manual labeling (using
markEvents) or both (one set from a manual labeling and the other from an automated labeling).

thresholdPolicy Applies the threshold post-processing certainty policy used in this paper. If the certainty is below a given threshold and
one of the top two classes is the baseline, the prediction type is set to the baseline. No change is made if neither of the top
two classes is the baseline.

unknownPolicy A post-processing certainty policy that incorporates a new decision class of ‘‘Unknown’’. If the certainty is below a given
threshold and one of the top two classes is the baseline, the prediction type is set to the baseline. Otherwise, the
prediction type is set to ‘‘Unknown.’’

EEG RELATED FUNCTIONS (depend on EEGLAB)

getLabels Convert a continuous dataset into an epoched or windowed dataset, epoching by user-highlighted regions.

plotLabeledData Display results of continuous labeled data using a modified EEGLAB plot window.

plotMarkedData Plot a manually labeled dataset using a modified EEGLAB plot window.

plotWindowData Display results of labeling windowed dataset using a modified EEGLAB plot window.

markEvents Manually label data based on given categories. Can update a previously labeled dataset to add/remove events and
categories. Uses a modified EEGLAB plot window.

Additional information about the optional parameters and their default settings can be found by viewing the HTML function help pages located at http://visual.cs.utsa.
edu/detect/documentation/help/. Additional information can also be found in the DETECT Users Guide, provided with the toolbox.
doi:10.1371/journal.pone.0062944.t001
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threshold parameters. Our grid is from [0, 1] in increments of 0.1.

For Dataset D1, this value was estimated to be 0.5. An example of

this procedure is shown in Figure 5 for Dataset D2. A threshold

value of 0 means there is no certainty policy applied to the

predictions, and any predictions made with low confidence are

included in the analysis. The Agreement score increases (and the

corresponding FalsePositive rate decreases) as the threshold

increases from 0 to a plateau of approximately 0.7, after which

threshold increases have little effect. TypeError and FalseNegative

rates do not have a significant dependence on the threshold for this

dataset.

Figure 6 compares an example of a labeling disagreement

between a series of labels by User 1 and automated DETECT

labeling (bottom) for dataset D1. Both labelings recognized two

distinct eye blinks, but DETECT classified regions at the

beginning and end of these blinks as eye movements (aqua

regions). This discrepancy can be explained by noting that

DETECT makes a local decision on the basis of each window.

Specifically, blinks have similar characteristics to upward eye

movements at the beginning of the movement, resulting in

misclassification until a sufficient amount of the signal falls within

the window of analysis, after which point DETECT makes the

correct labeling. In contrast, a human user is more likely to

observe the entire time course simultaneously, leading to an

immediate identification of the movement type based on more

global information.

Table 3 shows the labeling agreement results for dataset D2.

The estimated certainty threshold was found to be 1.0 when using

a grid-search. The labeling agreement for D2 was not as high as

for the less complex D1. For example, the results for User 1 had a

higher FalseNegative rate than those for the other users, which was

due to User 1 identifying wider intervals for the individual

artifacts. In contrast, DETECT labeled smaller regions in time

overall, even when using the fuzzy window parameter.

The higher FalsePositive rate for D2 was due in part to

additional activities found in the EEG signal that were not labeled

by the users. This dataset in particular contained periods of

increased alpha activity, an example of which is illustrated in

Figure 7. In this case, DETECT often recognized that this alpha

activity was significantly different than the baseline signal, resulting

in a FalsePositive error.

Dataset D2 also shows a higher TypeError rate than dataset D1,

due to the difficulty of distinguishing types in complex events (such

as the situation shown in Figure 8). Here, User 2 (top) labeled the

entire region from about 172.5 s to 175 s as blink activity (blue),

while DETECT labeled a small region in the middle (from 173.5 s

to about 174.3 s) as muscle activity (yellow). The yellow region

clearly has a mixture of artifact types (blinking activity and muscle

activity), and the policy used for this figure selects the most likely

artifact type. An alternative certainty post-processing policy could

be used to report additional artifact type candidates, such as the

two most likely types when there is not a clear winner as

determined by the certainty measure. Table 4 shows the

disagreement rates for dataset D3.

Computational Complexity Analysis
DETECT, due to its simple framework and construction, may

have an application in identifying events in near real-time,

allowing for the potential extension to Brain- Computer Interface

(BCI) applications, such as monitoring during prolonged experi-

ments.

We evaluated performance with respect to three factors: the

order of the AR model used for our features, the slide width, and

the number of channels used to fit the model. We used a

WindowsTM laptop computer with a 2.5 GHz IntelTM processor

and 8 GB of memory for calculating the computational times. No

hyper-threading or other parallel processing was utilized. Total

computational time scales inversely with the slide width (taking

half of the slide width means twice as many slides needed to

analyze the same amount of data). The computational time is

dominated by the cost of feature selection. We found that the

computation time scales linearly with the number of channels; this

is because we fit each channel separately and concatenate the AR

coefficients to form the feature vector. The performance also scales

linearly with the order of the AR model. The remainder of the

calculation is relatively independent of the size of the features.

When using approximately 9 minutes of data, having 8 channels

Table 2. Summary of the comparison between different user labelings and automated labelings by DETECT for Dataset D1.

Total Agreement Agreement Null Agreement Type Error False Positive False Negative

User 1 469.488 s (97.81%) 14.109 s (2.94%) 455.339 s (94.7%) 2.559 s (0.53%) 1.680 s (0.35%) 5.902 s (1.23%)

User 2 472.805 s (98.5%) 14.523 s (3.03%) 458.282 s (95.53%) 2.141 s (0.45%) 1.559 s (0.32%) 3.227 s (0.67%)

User 3 474.422 s (98.84%) 14.176 s (2.95%) 460.246 s (95.95%) 1.684 s (0.35%) 1.551 s (0.32%) 2.055 s (0.43%)

Agreement between user and DETECT labeling is measured in total seconds of the data for dataset D1. The percentages denote the percent of the data that was in each
of the five comparison categories. The Total Agreement column is the sum of the Agreement and Null Agreement columns. A certainty threshold value of 0.5 was used
with the thresholdPolicy post-processing function.
doi:10.1371/journal.pone.0062944.t002

Figure 5. Fraction of the data in different groups when using
different threshold values in the thresholdPolicy certainty
policy (Agreement and NullAgreement are combined).
doi:10.1371/journal.pone.0062944.g005
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and being sampled at 256 Hz, the total computational time is

reduced to about 6 seconds. Note that this time could be

somewhat reduced by multi-thread computing with each channel

analyzed in parallel or by optimizing the linear regression

algorithms for the AR model computation.

Heartbeat Abnormality Detection using DETECT
To show the applicability of the DETECT toolbox to other time

series data, we conducted an analysis of electrocardiogram (ECG)

data, which was obtained freely from the online PhysioNet

database [18]. For our analysis, we downloaded the data in EDF

format from subject 14046 from the MIT-BIH Long Term

Database [18] and imported the data directly into EEGLAB. We

also downloaded a list of previously marked event times for this

dataset. These event times were taken as the ground truth and

used for classification model building. This dataset contains two

types of ECG waveform information: the normal heart waveforms

and premature ventricular contraction (PVC) waveforms. The

ECG data, which was approximately 24 hours in length, was

sampled at 128 Hz. The goal of our analysis was to distinguish

between a normal heart waveform, a PVC waveform and the

absence of a heart waveform (this is treated as the baseline

condition) using both ECG channels in the analysis.

We extracted two non-overlapping sections of 10 minutes in

length from the original 24 hour recording. One section was used

for training the classification model, while the other section was

used for testing and display purposes. The getLabels function was

used on the training dataset to manually extract 20 windows for

each of the three conditions (normal heart waveform, a PVC

waveform, and the baseline condition containing no heartbeat).

We set the window size to be 400 ms as this encapsulated the time

course of the heart waveforms. For building the classification

model, we used the function getModel using an order 4

autoregressive model. An order 4 model was chosen as this value

maximized the cross-validation accuracy (,98.3%). For continu-

ous labeling, we called the labelData function with a sliding

Figure 6. Example of disagreement between the labeling from User 1 (top graph) and DETECT (bottom graph) for dataset D2.
doi:10.1371/journal.pone.0062944.g006

Table 3. Summary of the comparison between user labelings and automated labelings by DETECT for Dataset D2.

Total Agreement Agreement Null Agreement Type Error False Positive False Negative

User 1 430.973 s (82.25%) 54.172 s (10.34%) 376.801 s (71.91%) 23.621 s (4.5%) 39.270 s (7.49%) 27.648 s (5.28%)

User 2 447.809 s (85.46%) 50.879 s (9.7%) 396.930 s (75.75%) 21.891 s (4.18%) 44.109 s (8.42%) 7.934 s (1.51%)

User 3 446.492 s (85.21%) 52.371 s (9.9%) 394.121 s (75.21%) 19.867 s (3.79%) 44.238 s (8.4%) 11.000 s (2.1%)

Agreement between user and DETECT labeling is measured in total seconds of the data for dataset D2. The percentages denote the percent of the data that was in each
of the five comparison categories. The Total Agreement column is the sum of the Agreement and Null Agreement columns. A certainty threshold of 1 was used.
doi:10.1371/journal.pone.0062944.t003
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window value of 100 ms. The results of our analysis are shown in

Figure 9. Here we see that DETECT was able to identify both the

normal heart waveform (N) and the PVC waveform (V), and was

able to accurately distinguish between the two conditions. Regions

between the heart beats are correctly identified as the baseline

condition (the absence of a heartbeat).

Discussion

DETECT (DETection of Events in Continuous Time) is a

MATLAB toolbox for detecting and identifying events that occur

in time series data using a sliding window approach. A goal of

DETECT was to provide the tools needed for scientists to easily

train and test models for identifying artifacts or other events

without extensive programming or machine learning experience.

DETECT can handle ordinary data matrices as well as EEGLAB

EEG datasets, making it a tool that can be used outside of the

neuroscience community for time series applications.

A typical DETECT workflow begins with a user manually

identifying a small set of regions containing events of interest,

building a model, and assessing agreement. If the model does not

perform sufficiently, the user continues to build the training set,

often by relabeling regions of disagreement, and iterates the model

training process. For example, we showed that DETECT was

capable of identifying additional activities in the EEG that were

sufficiently different from the baseline condition (the alpha

spindling activity in Figure 7). If the user thinks this activity is a

Figure 7. An example of a FalseNegative error in dataset D2 when using DETECT. Increased periods of alpha spindling are found in the
highlighted regions of the data. These regions are being misclassified as Eye and Blink activity.
doi:10.1371/journal.pone.0062944.g007

Figure 8. A segment of dataset D2 with regions labeled from a user (A) and the automated labeling from DETECT (B).
doi:10.1371/journal.pone.0062944.g008
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false positive, the model could be re-trained to include these

activities as part of the baseline category. The user could also

define a new category for this activity, re-train the model and

extract other periods in the data that have the same characteristics.

The process continues until the user is satisfied with the accuracy

of the model. Users should always run a consistency check using

compareLabels to make sure that classification accuracy on the

training data is close to 100% with their own manual labeling. If

this is not the case, then users should consider other feature sets.

By default DETECT uses AR features, but allows feature

functions to be passed as an argument to the model builder. We

showed in previous work [12] that AR coefficients formed reliable

feature sets that can be used to detect artifacts in EEG recordings.

AR coefficients are scale and location invariant, making these

features suitable for classifying artifacts across multiple subjects.

Since we omit the intercept of the AR model as a feature for

classification, the AR coefficients are location invariant. Similarly,

the AR coefficients are scale invariant because the signal variance

is not used. Because the AR model relates the signal at the current

time to its previous time points, the AR coefficients are invariant to

scaling factors since the scaling factor cancels out in the estimation

procedure [12]. One limitation of our approach is that, by fitting

an AR model to each channel individually, some spatio-temporal

information from the original data is lost. While this approach

works well for identifying EEG artifacts, as shown in our previous

work [12], this approach may not work well for other types of

events where the events are associated with spatio-temporal

characteristics. Alternative feature functions, such as multivariate

autoregressive (MVAR) models which can estimate relationships

both within and across channels, will be needed in these scenarios.

Other features such as the mean and standard deviation of each

channel can be calculated; however, these features are inherently

dependent on the scale of the data and may be too sensitive to

outliers to be robust measures of events, at least in EEG time

series.

The DETECT framework has several other parameters that

allow users to customize behavior for particular applications, such

as the window size, slide length, and certainty policy. Window

Table 4. Summary of the comparison between user labelings and automated labelings by DETECT for Dataset D3.

Total Agreement Agreement Null Agreement Type Error False Positive False Negative

User 1 478.004 s
(84.6%)

106.219 s
(18.8%)

371.785 s
(66.13%)

17.621 s
(3.12%)

38.980 s
(6.9%)

27.965 s
(4.95%)

User 2 478.031 s
(84.6%)

106.531 s
(18.86%)

371.500 s
(65.75%)

17.621 s
(3.12%)

38.859 s
(6.88%)

28.059 s
(4.97%)

User 3 474.770 s
(84.03%)

107.012 s
(18.94%)

367.758 s
(65.47%)

23.531 s
(4.16%)

30.367 s
(5.37%)

33.891 s
(6%)

Agreement between user and DETECT labeling is measured in total seconds of the data for dataset D3. The percentages denote the percent of the data that was in each
of the five comparison categories. The Total Agreement column is the sum of the Agreement and Null Agreement columns. A certainty threshold of 0.8 was used.
doi:10.1371/journal.pone.0062944.t004

Figure 9. DETECT labeling of ECG data obtained from the PhysioNet online database. Aqua regions denote predictions of normal heart
waveforms while yellow regions denote predictions of PVC waveforms. Periods of no color shading denote the absence of a heart waveform. The
event codes N and V denote a Normal and PVC waveform based on expert labeling, respectively.
doi:10.1371/journal.pone.0062944.g009
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sizes should be set large enough to encompass entire events. If the

window size is too small, then the window may not contain

sufficient information to model the feature. On the other hand, if

the window is too large, DETECT will not be able to distinguish

closely-spaced events, and temporal precision regarding the exact

onset of an event is diminished. DETECT produces a probability

distribution for all class labels. Users could implement a post-

processing certainty policy that outputs multiple labels if the

probabilities for multiple events are comparable. A user can also

apply the GUI independently for each type of artifact and then

combine the resulting labels into a larger feature set. In this case

there is no restriction on the fact that these epochs overlap since

the model doesn’t care what time these different epochs occurred

at.

DETECT uses a sliding window approach for labeling events in

time and makes each prediction independently of the previous

prediction. With small slide widths, the analysis windows have

significant overlap; thus, the predictions may not be independent.

One can implement certainty policies that take into account the

time history, such as Hidden Markov Model (HMM) approaches,

where the current prediction would have a high probability of

being in the same class as the previous prediction if the certainty of

prediction falls below a threshold level. Another possible certainty

policy uses a minimum run length rule for the predictions. For

example, eye blinks last on average 300–500 ms, so if the slide

width is much smaller than this value (say, 50 ms) the number of

consecutive predictions of the same class can be used to determine

the validity of the prediction. Because certainty policies are applied

after the initial model building, users can compare the accuracy

and/or agreement among several certainty policies and thresholds

by separately applying the policies to the output of labelData and

using compareLabels for assessment.

Computationally speaking, DETECT is very efficient in

labeling and identifying artifacts in EEG signals when using AR

coefficients as features. In fact, we found that DETECT takes

about 6 seconds to analyze 9 minutes of data at 256 Hz when

using eight (8) EEG channels, suggesting that this approach can be

used for near real-time detection of artifacts in EEG signals. This

computational efficiency can be improved by using distributed

computing to fit the AR coefficients, as each channels’ coefficients

are estimated independently of the other channels. In the case of

artifact detection at least, the AR features are highly redundant,

and a channel subset that includes a few frontal channels for

detecting eye and forehead muscle movements, and a few

posterior channels to detect neck muscle activity can likely achieve

comparable accuracies to the 64-channel recordings used in this

paper. This observation is particularly relevant for newer wireless

EEG headsets, which are bandwidth-limited and tend to have only

a few channels when compared to wired systems.

The motivating example of DETECT was continuous artifact

detection in EEG data, which allows the removal or preprocessing

of artifact-contaminated regions. Because DETECT can label data

according to different artifact types, it is possible to develop specific

routines that can be used whenever certain artifacts are detected.

For example, a regression-based technique for removing eye blink

artifacts in EEG has been proposed in the literature [19,20,21].

Maximum Signal Fraction Analysis (MSFA), which is based on an

eigen-decomposition of the multi-channel EEG that uses covari-

ances and lagged autocorrelations, has been used to remove

artifacts in EEG signals and is computationally efficient in short

time windows [22]. However, this technique requires prior

knowledge of where the artifact period is. Thus, one could use

DETECT to locate target artifact time periods in the data, then

use MSFA to remove them locally from the data without the need

to process the entire dataset. Alternatively, DETECT can be

applied in conjunction with more global artifact removal

techniques such as ICA [23,24,25,26] to assess the amount of

signal loss in regions where no artifact was detected.

There are several approaches specifically for detecting and

removing artifacts from EEG time series. SCADS [27], or

Statistical Control of Artifacts in Dense Array Studies, is a

method for removing artifacts in EEG before the analysis of event-

related potentials (ERPs). SCADS uses a multi-pass method, where

in the first pass channels and trials containing artifacts are rejected

from the recording reference to prevent artifact propagation when

transforming to an average reference. In the second pass, SCADS

identifies and rejects trials and channels using a combination of

visual inspection and summary statistics such as the standard

deviation. Data from removed channels are interpolated from

neighboring channels to preserve the original number of channels

in the data. Note that the first pass of SCADS is fully automated,

while the second pass is not. FASTER [25], or Fully Automated

Statistical Thresholding for EEG Artifact Rejection, is a

MATLAB Toolbox that uses a multi-stage pipeline for automated

EEG artifact removal. In the initial pipeline stages, FASTER uses

summary statistics, such as the variance, mean correlation and

spatial kurtosis to detect bad channels in the data. FASTER then

applies independent component analysis (ICA) [23,28] to remove

eye artifacts. At each stage, z-scores provide the removal criteria

and removed channels are interpolated to preserve the original

number of channels. Both SCADS and FASTER methods were

designed primarily for the analysis of event related potentials

(ERPs). These methods were also designed for detecting artifact

characteristics in channels/trials, and not necessarily the identi-

fication of artifacts in the time domain, where it may be useful to

know the frequency and duration of specific types of artifacts in the

EEG dataset.

Some software packages that have been developed for EEG

data analysis have routines aimed specifically for detecting

artifacts. For example, EEGLAB [14] contains functions for

detecting artifacts in EEG time series by first windowing the data

into non-overlapping windows and calculating statistical summa-

ries of the data (such as the kurtosis and standard deviation). Users

then define threshold values for detecting artifacts in the now-

windowed data; however, this requires prior knowledge of the

appropriate threshold values, which can be challenging to resolve.

Another software analysis tool, FieldTrip [29], includes functions

that can identify several types of artifacts including high frequency

muscle, eye activity and heart rate artifacts. These functions

generally band-pass filter the data to a specific frequency range for

artifact identification; for example, the eye artifact detection

routine suggests using a band-pass filter range of [1,15] Hz and a

[110, 140] Hz band-pass filter range for muscle activity. Several

parameters, including z-score thresholds and filter properties, are

used to detect artifact regions in the data. Similar to EEGLAB, the

difficulty with these routines is that the user has to manually define

the parameters for detecting each artifact category. While

FieldTrip provides general recommendations for parameter values

for specific artifacts, scientists may need to tune the parameters for

specific experiments or subject characteristics. Furthermore, it is

not always clear how the parameters should be chosen for a

particular dataset and how robust these parameter values are for

different datasets. One key feature of DETECT is that it does not

require the user to manually define threshold values for detecting

events, as the thresholds are estimated by the SVM. This helps

reduce some of the subjectivity in the artifact detection routine.

As a fast-detection tool, the labeled data from DETECT can

also be used as an additional channel of information useful for
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analysis. In EEG experiments, for example, eye blink frequency

and duration could be used to monitor subject performance during

the task, as these features have been linked to drowsiness and

fatigue [3]. Deviations from a ‘‘normal’’ blink frequency and blink

duration distribution can be calculated in a baseline state, and

measured against future data for deviations from the baseline

distribution using methods of outlier/change-point detection but

applied to a time series derived from DETECT output such as the

inter-blink interval. DETECT could also be used for data mining

purposes, where a large collection of datasets needs to be analyzed

for particular events.

We have written DETECT with minimal software dependen-

cies, only requiring the basic version of MATLABTM without any

additional MATLAB Toolboxes, and as such is functionally

independent of any operating system. Bundled together with

DETECT are the necessary software packages to perform AR

modeling of time-series using the Time Series Analysis (TSA)

Toolbox [30], as well as SVM fitting software using LibSVM [13].

DETECT, as well as its dependencies, are all free and open-source

software packages released under the GNU General Public

License (GPL). The DETECT plotting functions are built on

EEGLAB [14], another freely available MATLAB toolbox.
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30. Schögl A (n.d.) Time Series Analysis (TSA): A toolbox for use with MATLAB.

Available: http://biosig-consulting.com/matlab/tsa.

DETECT Toolbox for Event Detection in Time Series

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e62944


