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Abstract

Background: Natural products have been an important source of lead compounds for drug discovery. How to find and
evaluate bioactive natural products is critical to the achievement of drug/lead discovery from natural products.

Methodology: We collected 19,7201 natural products structures, reported biological activities and virtual screening results.
Principal component analysis was employed to explore the chemical space, and we found that there was a large portion of
overlap between natural products and FDA-approved drugs in the chemical space, which indicated that natural products
had large quantity of potential lead compounds. We also explored the network properties of natural product-target
networks and found that polypharmacology was greatly enriched to those compounds with large degree and high
betweenness centrality. In order to make up for a lack of experimental data, high throughput virtual screening was
employed. All natural products were docked to 332 target proteins of FDA-approved drugs. The most potential natural
products for drug discovery and their indications were predicted based on a docking score-weighted prediction model.

Conclusions: Analysis of molecular descriptors, distribution in chemical space and biological activities of natural products
was conducted in this article. Natural products have vast chemical diversity, good drug-like properties and can interact with
multiple cellular target proteins.
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Introduction

Natural products (NPs) play an important role in drug discovery

[1–3]. About more than 50 percent of FDA-approved drugs were

NPs or natural products derivatives [4,5]. Moreover, NPs have

special selectivity to cellular targets [6]. Biologically active natural

products would provide selective ligands for disease-related targets

[7], and influence the disease-related pathways and eventually shift

the biological network from disease status to the healthy status.

With the development of large-scale network analysis, research-

ers have recently begun to explore the action mechanism of

bioactive compounds in the context of biological networks, e.g.

drug-target network (DTN) [8–10], protein-protein interaction

network [11], metabolic network [12,13] and disease pathway

[14]. However, most studies focused on few molecules. NPs

possesses vast chemical diversity and so have enormous potential

to find various different kinds of bioactive molecules [15].

Researchers have done statistics and analysis for natural products

in several aspects, such as chemical diversity [15–18], property

distribution [19], molecular scaffold [20–22], chemical space

[23,24] and comparison between NPs and other compound

collections [22,25,26]. However, researchers seldom did compre-

hensive statistics on natural products and comparison between

NPs and other types of compounds because it was difficult to

obtain large quantity of data collection (both structures and

annotations).

During the past decades, our laboratory has been focusing on

pharmaceutically relevant natural products. In 2002, we estab-

lished a 3D structure database of components from Chinese

traditional medicinal herbs (CHDD) [27]. Right now, we

constructed the Universal Natural Products Database (UNPD) to

facilitate the high throughput virtual screening from natural

products and the database comprised 197201 natural products

now. To the best of our knowledge, UNPD is the largest non-

commercial and freely available database for natural products

(http://pkuxxj.pku.edu.cn/UNPD). UNPD comprised 197201

natural products from plants, animals and microorganisms. Based

on the calculated molecular properties, we compared NPs and

FDA-approved drugs in many aspects. We also explored the

potential of use NPs as chemical library for drug discovery and

network pharmacology by using both experimental and compu-

tational results.

Methods

1. Collection of Natural Products and Approved Drugs
The natural products were collected from Reaxys, Chinese

Natural Product Database (CNPD) [28], Traditional Chinese
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Medicines Database (TCMD) [29] and our CHDD [27]. The

number of compounds and number of duplicate structures in each

databases were listed Table 1. The 3D structures were generated

by Discovery Studio. We use the absolute configuration of each

natural product. For those ambiguous structures (e.g. R/S or Z/E

is not clear), we create two absolute configuration and assign

different number to each configuration. When one structure had

two part (e.g. salts or adducts), the larger part was retained and the

smaller part was deleted. The duplicates were removed according

to InChIKey generated by Open Babel [30]. Therefore, each

molecule in UNPD has unambiguous stereoconfiguration. All

chemical structure were minimized in MMFF94 force field. The

structure of approved drugs were downloaded from DrugBank.

2. Calculation and Statistics of Molecular Descriptors of
NPs and Drugs

Molecular descriptors of NPs and drugs in Figure 1 and

Table 2 were calculated in Discovery Studio by using default

parameters. PaDEL-Descriptor [31], a free software developed by

National University of Singapore, was employed to calculate

substructure-related molecular descriptor and 307 substructure

descriptors.

3. Chemical Space Analysis
Principal component analysis (PCA) was conducted in library

analysis module of Discovery Studio and the input parameters

were listed in Table 2. PCA was an orthogonal linear

transformation technique which can transform the data into a

new coordinate system, which is in three-dimensional system in

our analysis. The variance of the data which was maximized on

the first coordinate was called first principal component. The rest

of variance maximized on the second coordinate, and so on. The

PCA model was built with 8 descriptors: AlogP, Molecular_-

Weight, Num_H_Donors, Num_H_Acceptors, Num_Rotatable-

Bonds, Num_Rings, Num_AromaticRings and Molecular_Frac-

tionalPolarSurfaceArea. these descriptors were not pre-scaled. The

variances of PC1, PC2 and PC3 for UNPD and drugs in Figure 2
were 0.506,0.202,0.136 and 0.427,0.315,0.099, respectively.

4. Constructing of DTNe
We downloaded the experimental binding data of natural

products from BindingDB [32] on Oct. 21, 2011. Molecular

structures were compared according to InChIKey to identify

natural products in BindingDB. Those binding data which target

had definite UniProt entry were retained. NPs and experimental

targets were connected in Cytoscape [33] to construct the drug-

target network based on experimental data (DTNe). The network

properties and node centralities were calculated by network plugin

and CentiBin [34].

5. Constructing of DTNd
The target proteins of approved Drugs in DrugBank were

marked out with ‘‘Targets’’. There were 4152 target proteins and

we used the crystal or NMR structures in RCSB Protein Data

Bank (http://www.rcsb.org/pdb/home/home.do) to screen po-

tential lead compounds. The protein-ligand complex structures of

target proteins of approved drugs in DrugBank were download

and hetero atoms were removed and then hydrogen atoms were

added by using Discovery Studio. The original ligands in the

complex structures were used as reference compounds to judge the

affinity of NPs to corresponding targets. For each target protein,

the binding site was defined as a 40640640 Å cube centered on

the occupied space of the original ligand with a spacing of 0.375 Å

between the grid points. Docking was performed by autodock4.01

in DOVIS 2.0 [35] and parameters were listed in File S1. The

procedure of constructing of drug-target network based on

docking data (DTNd) was the same with that of constructing of

DTNe.

Results and Discussion

1. Statistics of Molecular Properties of Natural Products
and Comparison between Natural Products and FDA-
approved Drugs

Some important molecular descriptors of natural products in

UNPD and FDA-approved drugs in DrugBank [36] were listed in

Table 2. Typically, statistical means and standard deviations of

natural products were larger than those of FDA-approved drugs.

Consequently, these complex and diverse chemical structures of

natural products would provide more polypharmacology by

interacting with multiple target proteins [6].

Lipinski’s ‘‘rule of five’’ [37] which was derived from the

statistics of oral drugs was often used in first screening. Although

wemi-empirical rules are not necessarily valid [38], Lipinski’s ‘‘rule

of five’’ can be used to help find drug-like molecules from large

componds library. The drug-like properties basically contain four

aspects which have their own limits: molecular weight should be

less than 500 Da, hydrogen bond acceptors (HBA) should be less

than 10, hydrogen bond donors (HBD) should be less than 5,

partition coefficient AlogP should be less than five. Recently,

Leeson emphasized a point that Lipinski’s rule of five would

mislead drug discovery because some effective drugs did not meet

all four cut-off criteria [39]. We checked the satisfied conditions for

‘‘rule of five’’ of all natural products in UNPD and found that only

102605 (52.0%) out of 197201 natural products met ‘‘rule of five’’

(Table 3). However, 141628 (71.8%) natural products met at least

three cut-off criteria. Meanwhile, 1065 drugs, 77.17% of the total

(1380), obey the ‘‘rule of five’’. Table 3 shows the count of the

molecules obeying all the four limitations or three of them which

shows a small fluctuation between different cut-off criteria. This is

reasonable for that if molecular weight is bigger, the hydrogen

bond acceptors or donors may become more at the same time.

And AlogP has definitely the same relationship with these

properties.

UNPD contained a fair number of molecules only published in

Chinese publications or even some of them have not be published

till now. We compared UNPD molecules with FDA-approved

drugs in several properties which have been mentioned before in

‘‘rule of five’’. The histograms (Figure 1) of each descriptor of

molecules in UNPD (197201 molecules) and Drugs (1380

molecules) showed that a vast majority of properties in two groups

had a very similar distribution (both are non-normal distributions),

which indicated that natural products can be a drug-like molecule

resource for drug development. Considering our huge size of

Table 1. The number of compounds and number of
duplicate structures in each databases.

Databases CHDD CNPD TCMD Reaxys

Total
compounds

30564 57346 23303 171504

Used in UNPD 29759 41729 7528 118185

Duplicates 785 15617 15775 53319

doi:10.1371/journal.pone.0062839.t001

Natural Products for Drug Discovery

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e62839



UNPD, this result will be more persuasive. From the histogram of

molecule weight, drugs tended to be smaller than natural products.

Most drugs were in the [250,300] interval while natural products

were in the [300,350] interval. And natural products had less

chiral centers. In the interval of less than 5 in histogram of ALogP,

the distributions of NPs and drugs were quite similar. However, we

still found that NPs had large ALogP which indicated that they

would not dissolve in water easily. Provided that the solubility has

large impact to therapeutic effectiveness, the distribution of ALogP

may provide useful information.

2. Drug-like Space and Lead Compounds Discovery from
Natural Products

The widely used concept of drug-like chemical space was

important for drug discovery [23,39–44]. Rosen and colleagues

analyzed the chemical space occupancy of natural products and

found that natural products exhibited similar activity to drugs with

their neighborhood [24]. By using FDA-approved drugs as a

reference in chemical space, we can screen potential lead

compounds from large chemical libraries [41]. Drugs tended to

have more aromatic or heterocyclic and less chiral centers, which

was in agreement with the data in a recent study [45]. The median

Figure 1. Distribution of five molecular descriptors of natural products and approved drugs.
doi:10.1371/journal.pone.0062839.g001

Natural Products for Drug Discovery
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Table 2. Statistics of molecular descriptors of natural products in UNPD and FDA-approved drugs in DrugBank.

Descriptors Natural products in UNPD Approved drugs

Mean Median Min Max Mean Median Min Max

AlogP 2.78863.352 2.710 236.007 53.473 1.89962.814 2.164 212.834 14.242

Molecular_Weight 472.66265.7 406.5 16.0 3973.5 360.86199.1 322.1445 6.9 1639.9

Num_Rotatable_Bonds 6.666.8 5 0 140 5.564.9 4 0 44

Num_Rings 3.762.4 3 0 32 2.761.6 3 0 10

Num_Aromatic_Rings 0.961.3 0 0 20 1.361.1 1 0 8

Num_H_Acceptors 7.566.7 6 0 104 5.264.2 4 0 51

Num_H_Donors 3.464.1 2 0 64 2.362.6 2 0 23

Molecular_Volume 323.86172.5 278.5 19.2 2576.2 238.06128.1 217.8 6.8 1053.3

Molecular_Surface_Area 462.46249.4 400.2 33 4020.9 347.76186.4 312.45 16.6 1586.9

Molecular_Polar_Surface_Area 122.26110.6 87.0 0 1917.9 93.9684.1 75.0 0 878.8

Molecular_Fractional_PolarSurfaceArea 0.24860.128 0.233 0 1 0.27760.171 0.242 0 1

Molecular_SASA 683.06295.7 612.5 0 5106.7 563.76232.6 523.3 137.9 2167.1

Molecular_PolarSASA 194.96169.3 142.1 0 3101.9 152.16131.0 126.0 0 1321.8

Molecular_FractionalPolarSASA 0.26860.144 0.242 0 0.967 0.27260.171 0.239 0 0.933

Molecular_SAVol 591.76253.7 531.5 0 4468.8 495.96202.2 462.8 124.3 1900.9

Note: the descriptors of 197201 natural products in UNPD and 1380 FDA-approved small molecule drugs in DrugBank were calculated by Discovery Studio.
doi:10.1371/journal.pone.0062839.t002

Figure 2. The distribution in chemical space according to principal component analysis of natural products in UNPD and FDA-
approved drugs. The green triangles and black dots represent natural products and FDA-approved drugs, respectively.
doi:10.1371/journal.pone.0062839.g002
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and mean of F-Chirality (number of chiral carbon atoms divided

by total carbon count) in DrugBank and Natural products are

0.44, 0.38 and 0.45, 0.41, respectively. It shows that drugs had

larger proportion of chiral centers than that of natural products.

However, natural products had more carbons and so the total

counts of chiral carbon are larger than that of drugs. Other

properties were smaller than those of natural products, respec-

tively. To get a better understanding of two groups of molecules,

principal component analysis was employed to give visual

illustration in chemical space. The 3D plot in Figure 2 offered

us an opportunity to compare the distribution between the NPs

and drugs easily. The wide distribution in chemical space

indicated that there would be vast property diversity in NPs.

The large overlap in chemical space showed that natural products

could be a large source for drug discovery.

3. Biological Activity of Natural Products
Natural products have many biological activities and they can

interact with multiple cellular targets since they are created by

nature [6]. Presently, more than 17,000 records of such

interactions have been reported according to BindingDB [32]

and ChEMBL [46]. We extracted these interaction information

(Tables S1) and constructed a drug-target network (DTNe) by

connecting the natural products and their experimental targets

(Figure 3).

Degree and betweenness centrality were two primary param-

eters to evaluate the importance of nodes in a network. Degree was

defined as the number of neighbors of a node in a undirected

graph. Betweenness reflected the important role nodes would play

in information transmission in the network. Nodes with the highest

local connectivity and the highest global centrality measured by

degree and betweenness centrality were defined as hubs and

Table 3. Statistics of satisfied conditions for ‘‘rule of five’’ of
natural products in UNPD and approved small drugs in
DrugBank.

Rule of five UNPD (total 197201) DrugBank (total 1380)

all satisfied 102605 1065

except mw 113008 1074

except acceptors 103701 1074

except donors 106105 1081

except AlogP 126629 1150

doi:10.1371/journal.pone.0062839.t003

Figure 3. Drug-target network of natural products and their experimental targets (DTNe). The size of each node is proportional to its
degree. The nodes are colored according to their shortest-path betweenness in the network. Circles and triangles correspond to small compounds
(natural products or drugs) and target proteins, respectively.
doi:10.1371/journal.pone.0062839.g003
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bottlenecks, respectively [47]. Such nodes would be highly

influential in the whole network.

DTNe was a typical scale-free network (degree distribution

P(x) = 180.77*6‘(21.125), r = 0.84), like most biological networks.

This would be very important for network robustness and

information transmission. Most natural products had only one or

two experimental targets, and the average was 2.66. However,

there were several natural compounds who had many targets, such

as UNPD68000 (298 targets) and UNPD49205 (82 targets).

UNPD68000 (staurosporine, STS) was a natural product isolated

from the bacterium Streptomyces [48]. The main biological

activity of STS was the inhibition of protein kinases by occupying

the ATP-binding site of the target, with a high affinity and low

selectivity. Staurosporine was was also the precursor of mid-

ostaurin which was a novel potent kinase inhibitor [49]. Right

now, several staurosporine cognates are in advanced clinical trials

for anticancer [50].

UNPD49205 (quercetin) was a flavonoid widely distributed in

plants. As an antioxidant, it was similar to many other phenolic

heterocyclic compounds. Quercetin has been effective against a

wide variety of diseases, such as viral disease [51,52], inflamma-

tions [53], and even cancer [54]. Moreover, several cellular

models as well as animal models showed that the quercetin can

also exert a direct effect in blocking the growth of tumor cells in

different phases [55].

STS and quercetin had not only large degree but also high

betweenness centrality. However, some natural products had low

degree but high betweenness centrality in DTNe. UNPD152676

(genistein) was a well-known isoflavone in several plants. There

were many biological functions of genistein reported to date, such

as antioxidation and inhibition of epidermal growth factor

receptor [55]. It was also reported that it can be potentially used

to inhibit the growth of tumor cells [56].

Natural products have extensive biological activities and so can

be used as a chemical library for drug discovery. However, there

was lack of adequate information of the interactions between

natural products and cellular targets. Fortunately, with the

increasing development of computer technology, high throughput

virtual screening gives us such ability to generate sufficient data. As

a result, molecular docking by AutoDock4 [57] was adopted to

simulate the interactions between natural products and cellular

targets.

4. Network Pharmacology
Network pharmacology was proposed by Hopkins [58,59] in

2007 and it could take advantage of network analysis methods to

explore the pharmaceutical action of molecules in the context of

biological networks. By analyzing the network properties or

exploring the influence of compounds to the biological networks, it

help us to understand the action mechanism and to evaluate the

drug efficacy [14,60]. Now network pharmacology is regarded as

the next paradigm in drug discovery [59].

Because there were only 1.8% natural products which biological

activities have been reported, we have an urgent need to obtain a

large quantity of binding data between natural products and target

proteins. By using Autodock4, all natural products were docked to

332 target proteins (all have protein-ligand complex structures in

RCSB protein data bank) of FDA-approved drugs and screened

according to docking score.

UNPD contained more than 65 millions of docked conforma-

tions of natural products and FDA-approved drugs. Although the

potential binding of natural products in cavities that may be

different from the binding site of drugs, most proteins had limited

binding sites. In most cases, the binding sites of natural products

and drugs were essentially the same.Generally, the hit rate of

virtual screening is about 35% [61]. In this work, the number of

Figure 4. Distribution of docking score of natural products.
doi:10.1371/journal.pone.0062839.g004
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natural products which docking score was higher than 7 and

higher than the score of original ligand of complex structure of the

target protein was 62918, accounting for 32% of total compound

(Figure 4). Consequently, it would be an criterion to predict

whether a natural product has certain kind of biological activity. In

order to promote the accuracy of predicted results and lower the

complexity of data handling, we set the threshold as that the

docking score was higher than 9 and higher than the score of

original ligand of complex structure of the target protein. Then we

constructed drug-target network (DTNd, Figure 5). Typically, a

natural product was linked to a target protein if the docking score

exceeded the threshold (Table S2).

Natural products targeted at an average of 2.14 target proteins

in DTNd and each target protein contained an average of 25 hits

Figure 5. Drug-target network of natural products and their computational targets. Representations of the symbols are the same to
Figure 3.
doi:10.1371/journal.pone.0062839.g005
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(natural products). Meanwhile, the two values of DTNe were 2.66

and 5.35 (Table 4), respectively. It would mean that most natural

products have not conducted experimental test of biological

activity. DTNd was comprised of 15 subgraphs. The giant

component (the largest connected subnetwork) contained 2810

natural products and 228 target proteins, that is, accounting for

98.6% of all nodes. However, DTNe was comprised of 110

subgraphs and the giant component accounted for 90.1% of total

nodes. Therefore, present studies on biological activities of natural

products were far from systematic and molecular docking in a

large-scale would be an effective supplement.

Most nodes in DTNd had high degree centrality. Especially,

UNPD43323, UNPD194973, UNPD107682 and UNPD141622

(Table 5) had more than forty targets. These natural products

would be noteworthy because polypharmacology is greatly

enriched for high-degree compounds. UNPD43323,

UNPD194973, UNPD129237, UNPD162694 and UNPD10433

had highest betweenness centrality, and the first two were also

those compounds with largest degree.

5. Predicted Diseases for Natural Products
Natural products have been used to treat diseases for thousands

of years. However, the molecular mechanism was rarely elucidated

clearly. Here, we predicted the potential indications for natural

products based on DTNd. Typically, natural products, especially

high-degree compounds, would interact with several target

proteins and target protein would concern a lot of diseases. After

extracting the target-related diseases from Therapeutic Targets

Database [62], we constructed a docking score-weighted predic-

tion model (Figure 6) to predict the possibility of a natural

product to treat some diseases (Table 6 and Table S3).

Typically, UNPD194973 and UNPD43323 would have very large

latent capacity as drugs for bacterial infections and several cancers.

Table 4. General characteristics of three drug-target networks.

DTN No. of compounds No. of targets ,node degree. ,shortest path. network density

DTNd 2884 243 3.96 4.30 0.0013

DTNe 2840 1413 3.56 5.95 0.0008

DTN* 1279 1328 3.68 7.16 0.0014

*Drug-target network of FDA-approved drugs and their pharmacological targets in DrugBank.
doi:10.1371/journal.pone.0062839.t004

Table 5. Most potential natural products for lead discovery.

UNPD ID chemical name CAS Degree Betweenness

UNPD43323 Ormojine 14710-67-9 90 0.072

UNPD194973 Ormosinin NOT Available 63 0.035

UNPD107682 vatamidine 129741-48-6 46 0.014

UNPD141622 Vatamine 129741-49-7 40 0.020

UNPD61603 strychnohexamine 442123-70-8 35 0.017

UNPD38223 caledonine 235099-24-8 31 0.009

UNPD21224 Lycopodium Base B 54352-31-7 28 0.012

UNPD5255 Vatine 129741-50-0 28 0.005

UNPD41999 Lycopodium Base A 54352-30-6 26 0.005

UNPD2675 Seldomycin 5 56276-26-7 25 0.004

doi:10.1371/journal.pone.0062839.t005

Figure 6. Prediction model of indications for natural products.
doi:10.1371/journal.pone.0062839.g006

Table 6. Predicted indications for natural products.

Natural
products

Prediction
coefficient Indications

UNPD194973 58.12 Bacterial infections

UNPD43323 55.26 Prostate cancer

UNPD43323 51.60 Asthma

UNPD43323 50.08 Cancer, unspecific

UNPD107682 49.74 Bacterial infections

UNPD194973 47.89 Prostate cancer

UNPD112143 47.62 Prostate cancer

UNPD194973 44.34 Asthma

UNPD43323 43.37 Bacterial infections

UNPD107682 41.47 Prostate cancer

UNPD141622 39.76 Bacterial infections

UNPD141622 39.62 Prostate cancer

UNPD141622 39.00 Lung Cancer

UNPD141622 39.00 Osteoarthritis

UNPD194973 38.99 Cancer, unspecific

UNPD107682 38.24 Asthma

UNPD112143 37.97 Non-small Cell Lung Cancer

UNPD43323 35.82 Diabetes mellitus

UNPD43323 34.29 Non-small Cell Lung Cancer

UNPD43323 33.89 Brain Cancer

doi:10.1371/journal.pone.0062839.t006

Natural Products for Drug Discovery
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Conclusions

Natural products have vast chemical diversity, not only

structural diversity but also various biological activity, so as to

guarantee the opportunities to find different kinds of lead

compounds for different diseases. We find that NPs and FDA-

approved drugs share a lot of space in chemical space. Moreover,

NPs have a large quantity of lead-like molecules, which could be

used as scaffolds to expand the chemical library.

Notwithstanding the recent advances in omics, the data

collection of NPs is largely incomplete. First of all, the inventory

of NPs remains incomplete and new chemical structures are being

discovered [7]. Secondly, researchers explored only a small part of

biological functions of NPs. Thirdly, there were mistakes and

errors in existing data. Many chemical structures of NPs are

questionable. Data of biological activity obtained from different

laboratories for one compounds would vary greatly. While no

adequate data is available, a good and useful complement is virtual

screening results. Last but not least, more research methods both

experimental and computational to afford more overall and more

accurate data are needed urgently. We are extending the

computational targets to all proteins if it has protein-ligand

complex structure.

Presently, most studies on network pharmacology are based on

static networks. However, biological networks is always changing.

Recently, Hoeng and colleagues proposed that using of network

analysis to prediction the efficacy or toxicity for chronic diseases by

estimating the perturbation of biological networks would be

particularly useful [60].
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