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Abstract

In the past few decades, embryonic stem cells (ESCs) were of great interest as a model system for studying early
developmental processes and because of their potential therapeutic applications in regenerative medicine. However, the
underlying mechanisms of ESC differentiation remain unclear, which limits our exploration of the therapeutic potential of
stem cells. Fortunately, the increasing quantity and diversity of biological datasets can provide us with opportunities to
explore the biological secrets. However, taking advantage of diverse biological information to facilitate the advancement of
ESC research still remains a challenge. Here, we propose a scalable, efficient and flexible function prediction framework that
integrates diverse biological information using a simple weighted strategy, for uncovering the genetic determinants of
mouse ESC differentiation. The advantage of this approach is that it can make predictions based on dynamic information
fusion, owing to the simple weighted strategy. With this approach, we identified 30 genes that had been reported to be
associated with differentiation of stem cells, which we regard to be associated with differentiation or pluripotency in
embryonic stem cells. We also predicted 70 genes as candidates for contributing to differentiation, which requires further
confirmation. As a whole, our results showed that this strategy could be applied as a useful tool for ESC research.
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Introduction

Embryonic stem cells (ESCs) are unspecialized cells that have

the ability of self-renewal, producing daughter cells with equivalent

developmental potential, or to differentiate into more specialized

cells. Experiments performed several decades ago showed that

dormant gene expression programs can be awakened in differen-

tiated cells by the fusion of different pairs of cell types [1].

Different cell fates can be induced by the defined transcription

factors [2]. However, the global transcription activities in ESCs

are not well understood, and the set of differentiation associated

genes, i.e. the genes which are active in the pluripotent state and

become inactive upon differentiation (and vice versa), is still

unknown.

Rapid increase of high throughput biological data supplies us

both opportunities and challenges to explore mechanisms in ESCs

differentiation. In fact, initial approaches derive predictions based

on specific information such as gene expression profile [3] and

protein-protein interactions [2]. Also, it has been shown that the

use of global optimization may not actually yield significant

improvement over simpler local prediction methods [4,5,6].Here,

we propose an intuitive method, which uses a unified framework

for combining multiple sources, including mRNA expression

profile dataset, sequence dataset and protein-protein interaction

dataset. Our method involves three steps. Firstly, each evidence

source is assessed with a reliability score based on their functional

correlation. According to the data characteristics, a weighted value

is defined. Secondly, undirected graphs are constructed based on

each data source respectively, with genes as vertices and functional

relationships between gene pairs as edges. Finally, these undirected

graphs are integrated into a weighted functional linked network.

The genes are predicted to be differentiation associated genes

based on their degrees in the final network, which are regarded to

be associated with differentiation or pluripotency in embryonic

stem cells.

Our results showed that despite the simplicity of its formulation,

our method performed relatively well on the prediction ability of

identifying the differentiation associated genes. It was also shown

that our method could involve a large amount of datasets,

including cross genome information, in order to make much better

predictions.

Materials and Methods

Datasets Preprocessing and Normalization
Four different types of datasets were analyzed. The Affymetrix

mouse stem cell microarray data (GSE7506) consisted of 36

samples, which were used for prediction and testing of novel
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networks regulating ESCs self-renewal and commitment [7]. It

was pre-processed by Robust Multi-array Analysis (RMA) followed

by median normalization between arrays [8]. The protein

sequences were downloaded from RefSeq database containing a

total of 38129 distinct sequences (June 11, 2010). Functional

annotations were taken from Gene Ontology (GO) (June 20,

2010). The annotations were arranged in a hierarchical manner

and compiled using up-to-date information from GO’s three

ontology divisions, including Molecular Function (MF), Biological

Process (BP) and Cellular Component (CC). The mouse protein-

protein interaction (PPI) datasets (October 10, 2010) were

downloaded from APID [9], BIND [10], iRefIndex [11], MINT

[12] and STRING [13], which contained 12026, 8164, 19727,

4333 and 207211 PPIs respectively. To increase the coverage of

the PPI network, the five datasets were pooled together as

previously done in Lage et al. [14].

Selection of Differentially Expressed Genes
We used the popular SAM (Significance Analysis of Micro-

arrays, samr R package) method [15] to select differentially

expressed genes (DEGs). Multiple statistical tests were controlled

by false discovery rate (FDR) defined as the expected percentage of

false positives among the claimed DEGs [16]. Because the FDR

estimation of SAM might be overly conservative [17,18], we also

applied the FDR estimation method suggested by Zhang [18]

using the idea of Xie [17], and refer to it as the modified SAM

method.

Scoring Functions
The weighted graph strategy utilized different weighted scores

as inputs. According to the character of different dataset, we

applied a simple weighted strategy similar to the weighted averages

method [19].

(1) Gene expression profiles. Relationship between gene i and j

was scored based on Pearson Correlation Coefficient (PCC)

by the expression profiles, denoted as pij . An average of di and

dj which are SAM statistics [18] is assigned as the weight of

pij . The weighted score was defined as formula 1. To scale the

score between 0 and 1, the score of each gene pair was divided

by Max(X exp) which was the highest value of all gene pairs.

(1)

X
Exp
ij ~

Ddi DzDdj D
2

:Dpij D ð1Þ

S
Exp
ij ~

X
Exp
ij

Max(X Exp)
ð2Þ

(2) Sequence analysis. Each mouse sequence was aligned with all

other sequences using software ClustalX [20]. The identity

matrix was applied to calculate scores SBlast
ij which represent-

ed the sequence similarities of each two amino acids. And the

score was automatically adjusted to positive values, scaled

between 0 and 1.

(3) GO functional analysis. The pair-wise functional similarities

of the DEGs were computed and analyzed. Each gene was

represented by a feature vector containing the gene’s

similarities to predefined prototype genes. The scores between

gene i and j were calculated in molecular function, biological

process and cellular component respectively. For scaling the

score between 0 and 1, SGO
ij , representing the semantic

similarity between gene i and j [21,22,23], was calculated as

formula 3.
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(4) X MF
ij , X BP

ij and X CC
ij measured the functional similarities of

three basic ontology divisions between gene i and j (Formula

4). GOi and GOj were two sets of GO terms that annotated

with gene i and j respectively (Formula 5).

(5) Protein-protein interactions. The FSWeight [24] has been

shown to provide a good estimate of functional similarity

between the interacting protein pairs (direct interactions), as

well as between the protein pairs that do not interact, but

share common interaction partners (indirect interactions). To

keep our comparison simple, we only used direct interaction

pairs. Each interacting protein pair was scored using a

simplified variant of the FSWeight measurement (Formula 6),

where Np referred to the set that contains p and its interaction

neighbors.

SPPI

ij
~

2 Ni\Nj

�� ��

Ni{Nj
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|
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Combination of Different Datasets
The initial four score matrixes of four datasets just included

DEGs respectively. Lee et al. [25] used a unified log-likelihood

scoring function to combine several sources of binary gene

relationship data into a graph, which could be clustered into

groups that show strong similarity in function. It has been

illustrated that different data sources have different degrees of

correlation with function similarity. Here, we adapted a simple

model in our approach to integrate the four datasets. Each dataset

can be modeled as an undirected graph, where each vertex

represents a protein and each edge represents the functional

relationship between proteins. The edges in different graphs have

different scoring schemes as previously described. Different graphs

(4)

Strategy Identify Differentiation Associated Genes
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derived from four score matrixes were combined to form a larger

and presumably more complete graph. The confidence relation-

ship of each edge in the last complete graph can be estimated by

an integrated score, which represents a particular function shared

between two genes. The score of the two proteins in the final

integrated graph can be calculated as formula 7.

Sij~(S
Exp
ij zSBlast

ij zSGO
ij zSPPI

ij )=4 ð7Þ

Generation of Differentiation Associated Genes
The final network was built with the gene pairs if their scores

were larger than the 75% quantile of the whole score values

(Formula 7), since when the threshold was higher than 75%, some

differentiation associated genes would not be selected and when it

was lower than 75%, too many redundant genes would be

selected. In a network, nodes with high connectivity were more

important than low connectivity. They were named as ‘‘hubs’’. A

line graph showed the relationship between degree and gene

number. According to the chart, genes with most of higher degrees

were selected, which were considered as differentiation associated

genes.

Validation Method
For comparison, we ran three separate methods, SAM (using

the mRNA expression data set) [18], decision tree (DT) [26] and

normal graph strategy (NGS). In normal graph strategy, scores

were calculated just based on Pearson Correlation Coefficients,

blast scores, GO scores (same as SGO
ij ) and the PPI scores (1

representing that the protein i interacts with protein j, 0

representing non-interacting proteins). The selected differentiation

associated genes were predicted as positive gene set using three

repetitions of 5-fold cross-validation. The area under Receiver

Operating Characteristics [27] graph was computed for each class

(associated or not associated with differentiation) and the average

was obtained based on the predictions 15 times in total.

Results

Differentially Expressed Genes Selection
Current FDR control procedures, including the one adopted in

SAM [15], may be unstable in small samples especially in the

presence of correlated expression changes. Hence, we evaluated

the actual FDR of a DEG list detected in simulated small samples,

according to the predefined DEGs. Based on the simulated results,

using SAM with 0.05% FDR control, we tentatively defined the

DEGs obtained from the full samples as a nominal gold standard

set [28]. The procedure outputs totaled 3277 DEGs. Although,

there were false positives in the selected DEGs, this was just a

preliminary procedure which was prepared for the subsequent

functional analysis of various data source integration.

Generation of ESC Differentiation Associated Genes
Different kinds of datasets can supply us different information,

which can improve the prediction performance. In our method,

each of the four score matrixes had been scaled between 0 and 1,

and their combination was a merging process based on the

previous DEGs selection result. That is, each dataset contained

3277 dimensions. The score between two genes which had no

relation was denoted by 0. Next, we selected the final network

based on the combination result. The final network was built with

the genes whose scores were larger than the 75% quantile of the

total score values (Formula 7). A line chart showed the relationship

between the degree and the gene numbers (Figure 1). An increase

in gene number resulted in a significant decrease in degree. A

significant drop in degree in the graph threshold was selected for

analysis. The 100th gene, Bmi1 had a degree of 1369, while the

101th gene, Tmcc3had a degree of 1100. Tmcc3 is not associated

with differentiation; hence we selected the top 100 genes with the

highest degrees as differentiation associated candidate genes

Figure 1. The relationship between degree and gene number. A line chart can show the relationship between the degree and gene number.
Abscissa represents the gene number, and ordinate represents the degree. Bmi1 has the lowest degree, which is at the corner of the line chart. With
the increase in gene number, there is a decrease in degree.
doi:10.1371/journal.pone.0062716.g001
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(Table S1). The cutoff for selecting differentiation genes in the

integrated network is set as 75%. 75% was the highest cutoff that

included all Nanog, Poutf1 and Sox2 in the selected group. If the

cutoff value was raised from this, however, Pou5f1 and Sox2 were

excluded from the selected group.

Among the 100 candidate genes, 30 genes had been reported to

be associated with stem cell differentiation processes (Table 1).

Briefly, 17 genes tended to be significantly active in the pluripotent

state and became inactive or repressed during differentiation. 13

genes tended to be significantly inactive in pluripotent state and

became active or expressed during differentiation. The other 70

genes were listed in Table S2.

Comparisons with Three Other Different Methods
The SAM (only using the mRNA expression data set), normal

graph strategy (NGS), decision tree (DT) and weighted graph

strategy (WGS) were compared using the 30 differentiation

associated genes as a positive gene set. Figure 2 showed the

averaged Receiver Operating Characteristics (ROC) for the 30

differentiation associated genes predicted using SAM, NGS, DT

and WGS. WGS took less time to make a better performance than

the other three methods, and was especially easy to be understood

and accepted.

Table 1. 30 differentiation associated genes selected by weighted graph strategy.

Gene Degree Roles Expression Tissues/cells PMID/References

Aire 1889 *+ Q endoderm 20226168 [29]

App 1776 + Q neuron 18535156 [30];17908039 [31]

Bmi1 1369 + Q mammary stem cells 18635350 [32]

Brca1 1689 + Q;q ESCs; mammary stem cells 19340312 [33];18230721 [34]

Carm1 1786 *+ Q ESCs 19544422 [35]

Cd24a 1606 + q hepatic progenitor cells; ESCs-.brain,liver 17641245 [36];19998061 [37]

Cdh1 2233 + q ESCs; neural stem cells-.neuron 20473026 [38];19918205 [39]

Cdx2 1782 *+ q trophectoderm 16325584 [40]

Cyr61 1698 + q neuronal differentiation; endoderm/mesoderm
differentiation

9832196 [41]; 19544440 [42]

Eed 2310 *+ Q ESCs 11803473 [43];21540835 [44]

Ids 2382 + q epithelial cells 9737997 [45]

Ilk 2468 *+ q ESCs-.cardiomyogenic differentiation 21344393 [46];22666394 [47]

Irs1 2407 *+ Q ESCs 17620314 [48]

Irx3 1898 + q ESCs-.neuronal cells 21710438 [49];15611653 [50]

Klf4 2312 + Q monocyte differentiation 17762869 [51]

Lrp4 2275 + q cardiovascular formation 15699019 [52]

Nanog 2443 *+ Q ESCs-.embryonic ectoderm 19544440 [42];22482508 [53]

Nr0b1 1642 *+ Q individual germ layer fates 16466956 [54]

Npdc1 2241 + q neural and glial precursors 9181131 [55]

Pin4 2110 + q plant embryogenesis 19000164 [56]

Pou5f1 2353 *+ q;Q ESCs-.mesoderm, ectoderm; neuronal
differentiation

10742100 [57];15615706 [58]

Prc1 2122 + Q three germ layers 20123906 [59]

Prnp 2389 + Q Neuronal differentiation 10617928 [60]

Psen1 2375 +; *+ Q ESCs-.endothelial cell lineage; neuronal lineage 16376112 [61];20484632 [62]

Ptk7 1898 + Q expressed in un-differentiated ESC 17671748 [63]

Rap1gds1 2237 *+ q colony formation 20039365 [64]

Satb1 1792 *+ q early erythroid differentiation 15618465 [65];19933152 [66]

Sfrp2 2343 *+ Q mesenchymal stem cells; ESCs-. dopamine
neuron;ESCs-.mesoderm

20826809 [67];22290867 [68];17462603 [69]

Sox2 2421 *+ qQ neuronal differentiation;ESCs-.mesoderm 21663792 [70]

Stat3 2375 + Q mesoderm and endoderm differentiation 19544440 [42]

Gene: gene symbols; Degree: the degree of aim gene in the final network;Roles: the role of aim gene in the stem cell,
*represents the aim gene plays a role in maintaining stem cell pluripotency,
+represents the aim gene plays a role in stem cell differentiation process; Expression: the trend of expression level of aim gene,
Qrepresents a decreasing expression in differentiation,
qrepresents an increasing expression in differentiation; Tissues/cells: the tissue or cells where the differentiation occurs; PMID/References: the pubmed ID of
supporting published works (www.pubmed.org) and the references means the citation number in this work.
doi:10.1371/journal.pone.0062716.t001
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The Evaluation of Our Weighted Graph Strategy (WGS)
Differentiation associated genes were selected based on their

high connectivities. The selection rule in WGS was based on the

degree rather than the integrated score. This could avoid the score

bias of specific datasets. There were less than 30 differentiation

associated genes if the selection was based on integrated score.

Discussion

WGS supplied a simple but reliable method to search for

differentiation associated genes. Although some genes had

different expression styles in different cells, the 30 genes we listed

were associated with differentiation occurring not only in ESCs

but also other stem cells, such as hepatic progenitor cells, plant

stem cells, and neural stem cells.

We found the GO function similarity scores were higher than

the sequence similarity scores, but lower than the expression

scores. That was because different types of data source reflect

different nature of functional relevance. As a whole, the scores of

mRNA expression were always higher than others. However, the

expression data might not have a higher reliability than other data

sources. In order to get four balanced score matrixes, a simple

weighted strategy was applied here. Firstly, the scores must be

scaled between 0 and 1. Secondly, a coefficient was added into the

formula. Because the scores of the other three datasets were

generally lower than the expression similarity scores, a different

coefficient was added in different scores, which was based on the

character of dataset. For example, an average of di and dj was

assigned as the weight of pij . The weighted coefficient for sequence

similarities was assigned as 1. Our results showed that this

treatment could balance the scores, and reduced the data bias.

Weighted graph strategy based on our analysis is more efficient

than SAM, DT and NGS. Firstly, weighted strategy could avoid

the experimental technical biases of the derivation of different

datasets according to the data character (Figure 2). Secondly, the

integrated scores were used for constructing the integrated

network, and the differentiation associated genes were selected

based on the rank of degree in the final network.

Our weighted graph strategy was a simple but reliable method

to search for differentiation associated genes. Moreover, it

provided a novel way to discover candidate features associated

with cell fates. Our strategy was intuitive and could be easily scaled

up to for both diverse and large quantities of rapidly growing

information. It could also utilize the cross genome information to

further improve prediction performance. In addition, the candi-

date features identified in our work will be helpful in understand-

ing the physiological processes of stem cell differentiation.

Supporting Information

Table S1 List of the top 100 genes selected by weighted
graph strategy.

(DOCX)

Table S2 Functions of 70 ‘‘differentiation candidate
genes’’ in stem cells.

(DOCX)
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