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Abstract

Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of
biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular
functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive
from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources.
Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic
interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to
represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs
generated from the different data types and show these overlaps can represent related functions as represented by the
Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This
revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies,
dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated
GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO.
Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types.
Collectively our results demonstrate that successful capture of functional relationships by network data depends on both
the specific biological function being characterised and the type of network data being used. We identify functions that
require integrated information to be accurately represented, demonstrating the limitations of individual data types.
Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and
emergent nature of biological function.
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Introduction

Computational analysis of large-scale data sets is undoubtedly

revealing an increasingly complete functional map of the cell [1].

In terms of molecular function, the field of Systems Biology is

largely defined by a focus on interacting components. A level of

importance set out by Hartwell and colleagues in their seminal

article [2], which emphasised the modular nature of molecular

function. In recent years networks have become the primary

paradigm of representation of molecular interactions, reviewed in

[3]. Usually functional modules and subnetworks are assumed to

be one and the same, for example, a range of graph-property

based approaches have been developed that identify subnetworks

in protein-protein interaction [4], metabolomic [5], gene expres-

sion [6] and genetic interaction data sets [7]. However, these

analyses potentially lead to an incomplete picture of function, since

function usually arises from the coordinated and highly-specific

operation of molecules of different types.

When studies do attempt to integrate distinct data sets, e.g.,[8–

11], the emphasis has for the most part been placed on reconciling

data-types, predicting gene function [12,13] or identifying new

interactions [14], as opposed to comprehensively delimiting the

modules that comprise a specific unit of molecular function. For

example, it has been reported that there is very limited overlap

between genetic interaction and protein interaction data [7],

despite both being clearly linked to molecular phenotype.

Although it is clear that genetic interactions are best explained

by considering epistasis within and between modules [5,15], an

integrated understanding of molecular and cellular function

remains elusive.

Biological annotation, such as provided by Gene Ontology (GO)

terms [16], are widely used to analyse functional characteristics of

different data-types. This is, in part, because GO encapsulates and

describes the modular nature of biology. Annotation enrichment

methods for characterising protein or gene sets are widespread

[17] and have also been used for determining the functions of

subnetworks [18]. However, biological annotations are, necessar-
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ily, only a proxy for true function, derived from observable traits.

Given the widespread use of biological annotation to characterise

function, it is imperative to ascertain both the extent and reliability

of networks constructed from different data to recapitulate

biological function meaningfully. Importantly, such analysis should

highlight the areas of biological function best described by each

data type. Furthermore, by combining different data types in a

single combined network we can determine whether a deeper

biological insight can be gained from the integration of multiple

data types.

Here we use a graph partitioning approach combined with

annotation enrichment to identify how different interaction data-

types capture functional modules at the molecular level using the

well characterised yeast, Saccharomyces cerevisiae, as a model. Three

interaction networks were constructed using: (i) protein, (ii) genetic

and (iii) gene co-regulation interaction data. In addition, a

combined network was created by integrating interactions from

these networks. Each network was exhaustively partitioned to

identify highly connected subnetworks, that form a set of

subgraphs. Based on reciprocal best hits we identify subgraphs

with significant overlap between the different data types and show

these overlaps can represent related functions as represented by

the GO. We next investigated the relationship between the

subgraphs from the different data types (and a combined network)

and GO. Our results show striking differences in both the ability of

networks derived from different data types to capture specific

functional modules and also in the total functional space that is

covered by each network. By integrating subgraphs from different

networks to form new composite subnetworks, we identify more

comprehensively the components of functional modules, i.e.,

cohesive groupings of molecules not fully defined by a single data

type.

Results

Interaction Networks and Subgraph Identification
Four interaction networks were assembled from large-scale S.

cerevisiae data: a protein-protein interaction (PPI) network consist-

ing of 12,182 interactions between 3,339 genes, a genetic

interaction network consisting of 42,546 interactions between

3,529 genes, a co-regulation network consisting of 3,006,725

weighted interactions between 4,358 genes, and a combined

network consisting of 3,052,053 unique weighted edges between

5,489 genes (Files S1–S4). Individual subgraphs isolated from

connected subnetworks identified by graph partitioning, were

produced for all these interaction networks (Figure S1). A total of

9,590, 9,227, 12,889 and 11,383 unique subgraphs were obtained

from the PPI, genetic, co-regulation and combined interaction

networks, respectively. These subgraphs include between 3 and

*3,000 genes. The set of subgraphs forms a sample of the possible

subnetworks at every level of granularity, hence providing an

efficient basis for studying the functional organisation of the

interactome from the most general to the most specific. As this

method allows genes to appear in more than one subgraph from a

network, we checked how often genes recur in subgraphs. We find

that genes only appear in at most ,1% of subgraphs, due to our

subgraph validation and removal of identical subgraphs.

In order to validate the subgraphs we investigated their edge

density, which is a measure of the number of links relative to the

number of nodes present in a subgraph (Figure S2). The rationale

is that biologically meaningful subgraphs will be more cohesive,

i.e., there will be more interactions between nodes within the

subgraph relative to interactions between nodes from different

subgraphs. Therefore we selected only those subgraphs with

significantly more interactions between nodes within a subgraph

than interactions between subgraphs. We see that in the PPI and

genetic networks as the subgraphs get smaller, as the network is

split into more partitions, the edge density of the subgraphs

increases. In the case of the co-regulation and combined networks,

we define a weighted density measure that decreases with

increasing subgraph size and is clearly apparent for subgraphs

with .,40 genes (Figure S2). Collectively, this confirms that

subgraphs of a range of sizes capture cohesive subgroups of

interacting genes. We therefore surmise that this set of subgraphs,

or integrated subgraphs from different networks, will correspond

to biological modules.

Congruent Network Subgraphs
In order to ascertain whether novel functional modules can be

identified by the integration of data, we determined the extent to

which subgraphs from the different data types are congruent. To

do this we investigated whether the partitioning of different

networks had resulted in the production of pairs of subgraphs from

different networks that have significantly intersecting gene sets. We

term such pairs ‘‘congruent subgraphs’’. By comparing subgraphs

from the PPI, genetic and co-regulation networks, we identified

statistically significant gene intersections and subsequent ‘‘best

hits’’ and ‘‘best reciprocal hits’’ between the subgraphs of two

networks (see Methods for more details). A best hit represents a

significant gene intersection between two subgraphs where one

subgraph best matches the other, where best match is determined

using the maximal Matthews correlation coefficient (MCC). A best

reciprocal hit, again, represents a significant gene intersection,

where both subgraphs are the best match to one another. Thus,

best reciprocal hits indicate the strongest congruence between

subgraphs from different networks. A summary of best hits and

best reciprocal hits are given in Figure 1A and B, respectively.

To obtain a high-level insight into the congruence relationships

between subgraphs from different networks, we visualised best hits

(and best reciprocal hits) using a network, where nodes represent

subgraphs and edges represent the hits (Figure 2). From a total of

4669 subgraphs that are involved in a best hit with one or more

subgraphs, 3689 subgraphs are involved in a best hit with just one

other subgraph, while a minority of subgraphs have many more

best hits; the node degree fitting a power-law distribution. A

repeated topological pattern of this best hits network (Figure 2) is

for the subgraph of one network to be connected to a large

number of subgraphs from one other network. Interestingly, there

are 115 subgraphs that have a degree w7 (top *2%). These

subgraphs, that we refer to as high-degree subgraphs, are a set of genes

that are repeatedly identified by partitioning networks into

different sized partitions. Therefore, high-degree subgraphs and

their hits appear to be robust sets of highly connected genes that

transcend multiple networks. We hypothesised that high-degree

subgraphs might have particular functional significance. Indeed,

high-degree subgraphs and the subgraphs that are their best hits

(together termed high-degree neighbourhoods) are: (i) significantly more

likely to be enriched for one or more GO terms and (ii) capture

GO functions with significantly better accuracy than subgraphs

that are not congruent, in all networks (Pv2:2|10{16, two-tailed

Mann Whitney U test, in all cases), collectively indicating that the

congruent subgraphs are more likely to be real functional modules.

Furthermore this result highlights the value of integrating

information between networks in order to validate network

subgraphs.

To further investigate the usefulness of combining network data,

we devised a method for testing whether new, biologically relevant

functional links can be made by merging strongly congruent

Capturing Function by Combining Interaction Data
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subgraphs. Subgraphs from all networks are frequently enriched

for multiple biological functions (Table 1), we term this co-

enrichment. Interestingly, many pairs of GO terms are co-

enriched in each network, including pairs from the same and

different ontologies and also from both related (descendent or

ascendent) and unrelated GO terms from the same ontology

(Table 2). New co-enriched GO term pairs are produced by

merging best reciprocal hits from each network combination

(Table 1). These new pairs represent biological functions that

include a common subnetwork but are only co-enriched in

networks that comprise interaction data from more than one

source.

To illustrate, Figure 3 shows a PPI and a genetic subgraph that

are best reciprocal hits, merged into a subnetwork. Several of the

nodes identified by both subgraphs are clearly highly central to this

subnetwork and have high node betweenness coefficients, e.g,

YCL061C (MRC1), YMR048W (CSM3), YLR288C (MEC3) and

YPL194W (DDC1). Furthermore several genetic interactions

between these central genes also have high edge betweenness

coefficients. Individually, both subgraphs are significantly enriched

for genes involved in DNA replication and cell cycle control

(GO:0006260 and GO:0007049). However, by combining these

two subgraphs 81 new functional links are made between GO

terms that are not co-enriched in subgraphs from any single

network but are co-enriched when subgraphs from different

networks are combined. Specifically, presence of Sir2 family genes

(YOR025W and YDR191W) that are NAD(+)-dependent histone

deacetylases involved in cell cycle progression [19] cause the new

links, such as linking NAD binding (GO:0070403) to S phase of

mitotic cell cycle (GO:0000084) and DNA replication factor C

complex (GO:0005663). The Sir2 family members genetically

interact with several proteins that are central to the subnetwork,

including YCL061C (S-phase checkpoint protein) and YMR048W

(replication fork associated factor). Hence, by combining network

data-types novel and biologically meaningful functional links can

be identified.

Gene Ontology Coverage by Subgraphs Derived from
Different Data Sources

To further investigate the range of biological functions that are

captured by network subgraphs we looked for enriched GO terms

in the subgraphs from all networks, including a combined network.

Many network subgraphs consist of gene sets that are enriched for

specific biological functions. Table 3 summarises functional

enrichment for subgraphs from each network, for each of the

three ontologies: biological process, molecular function and

cellular component. We use the percentage of all annotated terms

that are enriched terms in subgraphs to represent the coverage of a

particular ontology. We see that the PPI network captures

functional annotations with the greatest coverage for the cellular

component ontology (93%), compared to subgraphs from the

genetic and co-regulation networks (Table 3). The biological

process ontology is covered about the same by the different data

sources (82–83%). Interestingly, we find that the greatest coverage

(over 92%) for all three ontologies is captured using a combination

of data sources. MCCs, used to measure the accuracy with which

subgraphs capture specific GO term annotations, were signifi-

cantly different for enriched terms for different networks across all

three ontologies (Kruskal-Wallis rank sum, PPI, Genetic and co-

regulation all P,2.2610216). Combined these results indicate that

the distinct network data sources have significantly different

abilities to capture the biological functions represented by GO.

To ensure that it is the structure of these networks that is

responsible for the identification of enriched terms in subgraphs,

we randomised the GO annotations in each network. Unsurpris-

ingly, we see little enrichment in these randomised subgraphs.

Subgraphs from the PPI network show the most enrichment with

17% of terms from the cellular component ontology enriched.

Although this may seem high it is a large reduction in the coverage

of the cellular component ontology compared to the original

analysis (Table 3). In all other networks and ontologies the

coverage of GO is reduced to #10%. This demonstrates that it is

the structure of these networks that holds the functional

information and partitioning these networks results in subgraphs

that represent real functions.

Our high-confidence PPI network may be prone to ascertain-

ment bias because we only select interactions that have been

reported more than once. This may favour interactions between

genes that have been extensively studied. To control for this

ascertainment bias we repeated the enrichment analysis using only

data from high throughput experiments. We see that the coverage

of the biological process ontology has been lowered from 84% to

77%, whereas the cellular component ontology is only slightly

affected and the coverage of the molecular function ontology

Figure 1. Results from best hits analysis. (A) Number of subgraphs from one network (named outside of the intersection) that are a best hit to a
subgraph from another network (named within the intersection). (B) Number of best reciprocal hits between subgraphs from two networks.
doi:10.1371/journal.pone.0062670.g001
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remains the same (Table 3). Overall, we conclude that using a

high-throughput PPI network does not affect the trends of our

results.

In order to investigate the non-independence of GO relative to

the network data types, we investigated the coverage of GO but

this time using the different annotation types: inferred electronic

annotations (IEAs) and non IEAs. We find that in both cases the

overall coverage of GO is reduced for all data types (Table 4).

Interestingly, when we use a subset of GO, the combined network

no longer shows any greater coverage than the individual data

types. Additionally, we also looked at terms enriched only in

subgraphs from the combined network and identified the

annotation types associated with these terms. We see that the

most frequent annotation types are experimental (mutant pheno-

type, direct assay and genetic interaction), computational (se-

quence or structural similarity) and IEAs. These results suggest

that no single network is overly annotated from (or used to

annotate) a single annotation type and it is only when we use the

entirety of GO that we see the improved performance of the

combined network.

Interestingly, not all identified subgraphs are enriched for GO

terms. Indeed, there are 28, 1,797, 5,166 and 3,848 subgraphs

with no enrichment in the PPI, genetic, co-regulation and

combined networks respectively. Interestingly, there are very few

Figure 2. Network of best hits between subgraphs of PPI, genetic and coregulation networks. Nodes represent individual subgraphs with
blue, red or yellow nodes corresponding to subgraphs from the PPI, genetic or co-regulation networks, respectively. Edges represent links between
subgraphs with a statistically significant intersection of w2 genes with an MCC w0:2. Only the best intersection between each network comparison,
defined by MCC score, is shown. Letters A to D indicate high-degree neighbourhoods that consist of a node with degree w7 and all neighbours of
that node.
doi:10.1371/journal.pone.0062670.g002
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unknown subgraphs in the PPI network, whereas there are many

in the co-regulation network. These unknown subgraphs may be

erroneous localities within the networks, they may be subgraphs

that represent real functions but the members are poorly

annotated or they may represent functions not well described by

the GO. Dutkowski et al. [20] have recently identified groups of

genes in yeast that represent novel ontology terms not included in

the GO. This result suggests that the unknown subgraphs

identified in this study may represent real functional modules

not accurately described by GO.

To ensure that the improved characterisation of biological

function of the combined network was not an artefact of the

network having the most nodes, we repeated the enrichment

analysis with the common gene networks. Here, the only

difference between the networks are the edges as each network

contains the same nodes. We see that the coverage of GO is

reduced in all networks, likely because the networks all have fewer

nodes (Table 3). However, this trend does not affect all the

networks equally as the co-regulation network has a severe

reduction of GO coverage. This is likely to be caused by the

different reduction of edges in these networks. Both the PPI and

genetic networks retain 11 and 16% of edges in the common

network respectively, whereas the co-regulation network only

retains around 4%. Interestingly, we find that the combined

network assembled from common nodes still has the greatest

coverage of GO for all three ontologies, despite only containing

4% of edges from the original network. Furthermore, there are

156 enriched terms from the combined network subgraphs that

are not enriched in the subgraph from any other network.

Therefore, we conclude that the results presented for the original

combined network are not affected by the number of nodes in the

network and the combination of information from a variety of

sources allows for the identification of areas of biological function

not found by inspecting these networks individually.

Accuracy of Gene Ontology Term Enrichment by
Network Subgraphs

GO terms can refer to very common functions (i.e, be assigned

to a considerable fraction of all genes), or refer to specialist

functions (i.e., be assigned to very few genes), or lie somewhere

between these two extremes. In order to ascertain whether the

functional categories enriched in subgraphs from different

networks were biased towards capturing general (versus more

specialist) functions, we looked at the number of subgraphs

enriched for generalist and specialist terms and the accuracy of this

enrichment (Figure S3). We find that PPI subgraphs and

subgraphs from the combined network capture functions with

relatively less bias for specialist or general terms than either the

genetic or co-regulation subgraphs; the genetic network subgraphs

displaying a bias for capturing less specific functions at the expense

of highly specialist functions, whereas an approximately opposite

trait can be observed for co-regulation network subgraphs. It is

clear that very general functions with a membership of over ,100

genes are difficult to capture from any of the networks, relative to

more specialist functions with fewer members. Furthermore, the

accuracy with which the function is captured diminishes when the

function is defined by many genes.

To further investigate the capture of distinct functional

categories by network subgraphs, we visualised gene ontology

terms using a Voronoi tree-mapping approach (Figure 4). In the

tree maps, each cell represents a GO term, where terms of similar

functions are grouped together. The maps from different networks

are directly comparable with the equivalently positioned cells in

each tile representing the same GO terms. The intensity of cell

Table 1. GO term enrichment among congruent subgraphs.

Source network Subgraphs Number
Mean no. of
enriched GO terms

Mean max MCC
per subgraph

PPI high-degree neighbourhoods 2801 135.2 0.509

all 9591 101.4 0.468

Genetic high-degree neighbourhoods 1567 81.4 0.256

all 9228 24.9 0.157

Co-regulation high-degree neighbourhoods 601 15.4 0.138

all 12889 7.1 0.095

doi:10.1371/journal.pone.0062670.t001

Table 2. GO terms that are co-enriched in network subgraphs.

Co-enriched GO term pairs

Source Network All
Same ontology,
related

Same ontology,
unrelated

Different
ontology

Whole network PPI 3910331 1.1% 41.8% 57.0%

Genetic 1035343 3.0% 41.2% 55.8%

Co-regulation 224188 6.6% 39.2% 54.3%

Best reciprocal hits PPI vs. Genetic 56154 0.3% 38.5% 61.3%

PPI vs. Co-reg 17201 0.2% 34.4% 65.5%

Genetic vs. Co-reg 3817 0.03% 41.2% 58.8%

doi:10.1371/journal.pone.0062670.t002
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shading indicates the accuracy with which the GO term is

captured by a network, using MCC score as the accuracy measure.

Importantly, the Voronoi maps (Figure 4) highlight the disparity

between the ability of network subgraphs to capture certain types

of functional data. Cellular component annotation appears to be

the easiest type of biological function to capture, using any type of

network data. Conversely molecular function is more difficult to

capture. This tree-mapping approach also highlights that certain

functional areas within each ontology can be either successfully

captured, or are difficult to capture, using the network data. In

contrast, some areas are clearly shaded in all maps from the same

ontology. The ability therefore of different networks to capture

functional relationships, is related both to the type of data used to

create the network, and also the specific function in question.

Creation of a composite tree-map (Figure 5A), where the cell

colours represent the network from which the terms are most

accurately captured, allows direct comparison. From the trees on

which the maps are based, we can identify distinct areas within an

ontology, that are best characterised by subgraphs from a single

network. Examples of such areas are outlined in Figure 5A. We

can identify specific subgraphs from a single network that

accurately characterise a single GO term. In the PPI network a

single subgraph represents the mitochondrial small ribosomal

subunit cellular component term, where 28/30 members anno-

tated with the term and a MCC of 0.94 (Figure 5B). From the

genetic network we have identified a subgraph that accurately

represents the Inosine monophosphate (IMP) biosynthetic path-

way and enzymes representative of the purine biosynthesis

pathway (Figure 5C). These findings demonstrate that different

Figure 3. A subnetwork that represents merged subgraphs that are best reciprocal hits. This functional module characterises control of
DNA replication. Nodes represent coding genes. Blue nodes genes from a PPI network subgraph, red nodes represent nodes from a genetic network
subgraph. Nodes shown in purple represent genes that are present in both the PPI and genetic subgraphs. Node diameter is proportional to the
node betweenness. Blue edges represent PPIs between encoded proteins and red edges represent genetic interactions between genes.
doi:10.1371/journal.pone.0062670.g003
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areas of biological function are best represented by different types

of biological data.

Interestingly, all three ontologies have areas that are best

represented by subgraphs from the combined network. There-

fore, the combining data-types from multiple biological networks

can improve characterisation of certain biological functions,

when compared to analysis of any network in isolation. Indeed,

terms from the molecular function ontology are enriched with

the greatest coverage by the subgraphs from the combined

network (Table 3). To give a specific example, the synapto-

somal-associated protein (SNAP) receptor activity molecular

function term is best represented by a combined network

subgraph which incorporates edges from all other networks

(Figure 5D). We have included lists of the 20 most accurately

represented GO terms from each network and ontology in File

S5. Ultimately, it seems that although these networks capture

overlapping areas of biology, there are functional modules that

are most accurately characterised by a single network.

Therefore, we find that the choice of data used to generate a

network can have a significant effect on the ability of that

network to answer specific biological questions.

Discussion

We have shown that the integration of subgraphs from

individual networks can reveal new functional groupings. Many

of the subgraphs identified from the individual data-type networks

have significant overlaps (Figure 1). Indeed, we find that some

subgraphs are the best hits of many other subgraphs and these

appear to capture GO functions very accurately (Figure 2). By

merging subgraphs from the PPI and genetic networks that are

best reciprocal hits to create a new subnetwork, we find we can

identify new cohesive modules that describe a particular biological

function better than any subgraph from individual networks

(Figure 3). Collectively, these results show that not only can the

integration of data reveal more functional information, but also

the integration of individual modules from these data can reveal

novel functional links.

Not surprisingly, we find different interaction data types capture

different types of biological event, which can have varying degrees

of contribution to a specific function. Moreover, we find

differences in the characterisation of general and specialist GO

terms between the networks (Figure S3). Therefore, it appears as

though subgraphs from particular networks are better suited to

capturing GO terms annotated by many genes whereas subgraphs

from other networks better characterise GO terms annotated by

Table 3. GO coverage for each network.

Whole
Networks PPI (HT)a Genetic Co-regulation Combined

BP Enriched terms 2271 (2547) 2265 2169 2639

Total terms 2710 (3268) 2736 2655 2694

Coverage (%) 84 (77) 83 82 98

Average MCC 0.43 (0.10) 0.25 0.19 0.31

MF Enriched terms 893 (1118) 1006 1012 1237

Total terms 1541 (1913) 1457 1346 1333

Coverage (%) 58 (58) 69 75 93

Average MCC 0.42 (0.10) 0.25 0.22 0.29

CC Enriched terms 682 (691) 558 556 651

Total terms 660 (756) 632 629 713

Coverage (%) 93 (91) 80 80 97

Average MCC 0.60 (0.12) 0.26 0.19 0.45

Common gene
Networks

PPI Genetic Co-regulation Combined

BP Enriched terms 1094 1334 191 1461

Total terms 1778 2056 2056 2056

Coverage (%) 61 64 9 71

Average MCC 0.21 0.20 0.25 0.20

MF Enriched terms 302 356 53 446

Total terms 666 818 818 818

Coverage (%) 45 43 6 54

Average MCC 0.24 0.23 0.20 0.22

CC Enriched terms 282 340 39 368

Total terms 413 508 508 508

Coverage (%) 68 66 7 72

Average MCC 0.25 0.19 0.25 0.21

aHT refers to enriched terms found in subgraphs from the high-throughput PPI
network.
doi:10.1371/journal.pone.0062670.t003

Table 4. GO coverage for networks without inferred
electronic annotations and using only inferred electronic
annotation.

No IEA PPI Genetic Co-regulation Combined

BP Enriched terms 2035 2027 1942 2396

Total terms 2744 2714 3030 3172

Coverage (%) 74 74 64 75

Average MCC 0.14 0.13 0.12 0.11

MF Enriched terms 690 749 778 960

Total terms 1226 1401 1665 1777

Coverage (%) 56 53 46 54

Average MCC 0.16 0.14 0.13 0.12

CC Enriched terms 629 495 504 662

Total terms 682 591 700 720

Coverage (%) 92 83 72 91

Average MCC 0.18 0.13 0.11 0.14

Only IEA PPI Genetic Co-regulation Combined

BP Enriched terms 695 713 751 861

Total terms 996 991 1147 1186

Coverage (%) 69 71 65 72

Average MCC 0.15 0.14 0.12 0.12

MF Enriched terms 475 505 562 664

Total terms 887 981 1184 1261

Coverage (%) 53 51 47 52

Average MCC 0.16 0.14 0.14 0.13

CC Enriched terms 215 176 163 220

Total terms 298 251 299 320

Coverage (%) 72 70 54 68

Average MCC 0.15 0.13 0.10 0.12

doi:10.1371/journal.pone.0062670.t004
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Figure 4. GLASS visualisation of enriched GO terms. Each cell represents a GO term and is coloured blue, red, yellow or green if one or more
subgraphs are enriched for that GO term in the PPI, genetic, co-regulation or combined networks, respectively. The intensity of each coloured cell
shows the best MCC of the subgraphs with enrichment for that term. Grey coloured cells are those GO terms which have only one or no associated
genes in that network.
doi:10.1371/journal.pone.0062670.g004
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few genes. From the three networks containing a uniform type of

data, biological functions are most accurately and completely

captured by the PPI network (Table 3 and Figure 5). In contrast,

the molecular function ontology, which denotes enzymatic and

biochemical properties of gene products, is only partially captured

by PPI interactions, indicating that subgraphs that represent

physical components and protein complexes contain both

biochemically similar or unrelated subunits. More remarkable,

however, is the almost complete extent to which PPI subgraphs

captured functional annotations from both the cellular component

(93%) and biological process (84%) ontologies (Table 3). The co-

regulation network performed least effectively overall at capturing

biological functions. This is potentially an unavoidable feature of

gene expression data. As a measure of transcript abundance, gene

expression data can only provide an estimate for the relative

change at the level of the protein. Despite these drawbacks, the co-

regulation network captures the majority of functions embodied by

biological process and cellular component GO ontologies.

Interestingly, the co-regulation network captures more molecular

function GO terms than either the PPI or genetic networks

(Table 3).

Genetic interactions imply a functional relationship between

genes. Undeniably, these relationships have functional relevance

from a organismal perspective, as they are expressed phenotyp-

ically. In a systematic study to characterise such within- and

between-pathway genetic interactions in S.cerevisiae, Kelley and

Ideker [9] identified that between-pathway relationships have a

tendency to be better explanations for genetic interactions than

within-pathway interactions. Here, the so-called ‘‘pathways’’ are

cohesive subnetworks of proteins in the PPI network. Kelley and

Ideker [9] classify genetic interactions as within-pathway or

between-pathway, the former indicating a genetic interaction

between elements of the same subnetwork and the latter indicating

a genetic interaction between elements from a separate subnet-

work. Thus, within-pathway genetic interactions are indicative of a

functional PPI subnetwork, such as a protein complex. Further-

more, they identify that many between-pathway interactions link

interdependent functional relationships. Between-pathway inter-

actions thus indicate distinct functional PPI modules that

collectively are essential units of a single, greater functional

process. If these findings are upheld by GO annotation, genes

involved in genetic interactions should always both be attributed

with a given process or component annotation that captures their

common cellular activity, be that either a relatively specialist or a

very general function. Indeed, we show that 83% of the biological

process terms and 80% of cellular component terms are captured

by genetic interactions. Therefore, the interaction network derived

from genetic interactions is clearly a reasonable choice of data for

capturing physically interacting and process-related functions.

Our combined network differs from those of Kelley and Ideker

[9], in that it is a weighted union of the PPI, genetic and co-

regulation networks permitting direct comparison with the

networks derived from a uniform data-type. Thus, it represents a

union of both within- and between-pathway interactions. We find

that in many cases this integrated view offers the most useful view

of modular function (Figures 3 & 5). Moreover, the most notable

aspect of the combined network is that the coverage of captured

annotations is almost complete for each GO ontology. Molecular

function GO annotations are more successfully depicted by

combined data than by any other network we investigated

(Table 3). These findings are true of networks assembled from a

common set of nodes, controlling for network size (Table 3).

Additionally, subgraphs from the combined network assembled

from common genes were enriched for 156 terms that were not

enriched by subgraphs from any individual network. This suggests

that the combined network is more than the sum of the three

individual networks and can identify areas of biological function

that are not represented in the individual networks. However, the

accuracy with which these functions are captured is generally not

as great as for the PPI network (Table 3). This is perhaps due to a

greater level of noise in the combined network compared to the

PPI network, stemming from the co-regulation and genetic

interaction data. Yet it is conceivable that a more refined data

integration method, involving, for example, machine-learning of

real functional links, could attenuate the error rate. Clearly, by

continually adding more interaction data to biological models, we

will inevitably capture additional functional links. Importantly,

while we have demonstrated that each one of the three frequently

studied types of biological interaction - PPI, genetic and gene co-

regulation - all make a valid yet distinctive contribution to a

network model, combined they reveal more about the modular

nature of biological function.

It is unlikely that the networks used in this study represent the

complete networks in yeast. Indeed, the genetic interaction

network is built from experiments on only a subset of yeast genes

[7] and all networks contain fewer genes than the ,6000

annotated yeast genes. Therefore the improved coverage of GO

and unique functional links identified from the combination of

data suggests that this approach may be useful in organisms with

incomplete interaction networks. Additionally, the identification of

subgraphs with no known annotation is analogous to the novel

terms identified in the network-extracted ontology (NeXO) [20].

As with uncharacterised terms present in NeXO, the unknown

subgraphs in this analysis may represent true functional modules

that are not in the GO. Hence, the characterisation of these

unknown subgraphs may prove to be a useful step in expanding

the GO to encompass as yet unknown functions.

In conclusion, our results show that a network derived from a

single data-type is capable of defining certain areas of biological

function with greater accuracy than networks from other sources.

As a consequence the choice of interaction data directly influences

the ability of networks to depict specific functional relationships.

Certain networks are therefore better suited for studying specific

biological functions. We also find that combined subnetwork data

represents the greatest range of biological functions. Indeed, it

appears as though the combination of interaction data may be able

Figure 5. Composite functional maps. (A) GLASS visualisation in which each cell represents a GO term, coloured according to subgraphs that
have the highest MCC for the enriched term. Blue, red, yellow and green colours indicate the subgraph with the highest MCC is from the PPI, genetic,
co-regulation or combined network, respectively. Grey coloured cells are GO terms which have only one or no associated genes in any network. Areas
ringed in black show examples of areas of the ontology which are best characterised by a single network. Panels B–C show examples of the best
characterised subgraphs between all networks: (B) The mitochondrial small ribosomal subunit GO term is best represented by a subgraph from the
PPI network. (C) A genetic subgraph best represents the IMP biosynthetic process GO term. (D) The GO term, SNAP receptor activity, is best
represented by a subgraph in the combined network, created from all nodes and edges in the PPI, genetic and co-regulation networks. Nodes are
coloured blue, red or green if they are present in the PPI, genetic or combined network, respectively, and are associated with each enriched GO term.
White nodes represent nodes in a subgraph that are not associated with the enriched GO term. Edges are coloured blue, red, yellow or green if they
are present in the PPI, genetic, co-regulation or combined network, respectively.
doi:10.1371/journal.pone.0062670.g005
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to characterise areas of biological function that cannot be

characterised by a single network. In addition, our definition of

both subgraphs derived from the combined network and

congruent subgraphs are novel ways of identifying functional

modules; specifically their strength is the definition of function that

arises from concerted actions of diverse types of molecules and

interactions. What these results collectively demonstrate is that a

more complete perspective of a biological system is revealed by

combining networks derived from multiple data-types. Interest-

ingly, functional modules identified from congruent network

subgraphs represent areas of biology that may only be understood

through the combination of data of diverse types.

Methods

Network Generation
Four interaction networks were assembled where nodes

represent genes and edges represent interactions between genes:

(1) A PPI network was assembled with physical interaction data

from the BioGRID database [21]. Interactions were only

included in the network if there was evidence for that

interaction from multiple sources. The PPI network therefore

represents a high confidence set of physical interactions. As a

control we also generated a low confidence PPI network

created from only high throughput experimental evidence in

order to minimise ascertainment bias.

(2) A genetic network was built using data from [7], which was

downloaded from the Saccharomyces Genome Database (SGD,

www.yeastgenome.org). The network was built using a

stringent P value cutoff for a genetic interaction of P,0.001.

(3) A co-regulation network was built using expression profiling

data from [22] where 300 separate treatments were

performed and gene expression was recorded. Two genes

were defined to be coregulated if they achieved a P value of

v0:01 for expression using gene-specific error model from a

single treatment. Gene nodes were connected by an edge if

they were coregulated. Edges were weighted according to the

frequency with which they are co-regulated across all

treatments, where a greater weight denotes a greater

frequency, defined by:

weight~1000|
2|Dc(a,b)D

Dc(a,!b)DzDc(b,!a)D

Where a and b are coregulated genes and Dc(a,b)D is the number

of times a and b are coregulated over all treatments and Dc(a,!b)D is

the number of times a is coregulated but not with gene b over all

treatments. For the purposes of subgraphing, weight values were

rounded to the nearest whole number.

(1) A combined network was created by pooling all data from the

PPI, genetic and co-regulation networks. Edges from the

different networks were weighted and weights were normal-

ised so that the sum of edge weights contributed by each

network was equal. Edges in the combined network were

assigned a weight equal to the sum of weights for that edge in

all contributing networks.

Additionally, a common gene network was assembled for each

of the PPI, genetic, co-regulation and combined networks. These

networks were made in order to control for the differences in gene

content between the networks described above. In these networks

only the edges differ between a common set of nodes. The

networks were constructed by first selecting only those nodes

present in all networks and secondly, ensuring that these nodes

were connected within the network.

Note, genes were only included in the networks if they

corresponded to an open reading frame in SGD.

Subgraph Generation
Subnetworks were generated from networks using a k-way

graph partitioning algorithm, kmetis [23]; see Figure S1. For a

network G(V ,E), with V nodes and E edges, kmetis aims to

partition nodes in to k sets of approximately equal size and

minimise the number of edges that connect node sets. Resulting

node-sets and the edges that link those nodes comprise a

subnetwork. For a given network we identified the set of average

node-set sizes S for every given partition that could be obtained

using k-way partitioning where k[N and 0vkvDV D. For all i[N

where 2viv DV D
2

we selected s[S nearest in value to i and recorded

the value for k corresponding to s. We performed k-way

partitioning on the network using all distinct recorded values of k.

To identify subgraphs within the subnetworks produced by

partitioning, we selected non-redundant largest-connected-com-

ponents that contained more than two nodes. As Kmetis will

always partition the whole graph in to k parts, it is likely that some

of the subgraphs we produce do not represent bona fide localities

within the network. Therefore, subgraphs were scored based on

comparison between mean internal path length and path lengths

to other subgraphs from the same partition. Specifically, the path

length between all nodes was calculated using the Dijkstra method

[24]. The mean intra-subgraph path length for all nodes was

computed for all subgraphs and mean inter-subgraph path lengths

were computed between every pair of subgraphs from the same

partition. Following this, a one-tailed/one-sample t-test was used

to ascertain whether the mean intra-subgraph path length is

significantly smaller than the mean inter-subgraph path lengths,

for a given subgraph. This check essentially ensures that kmetis has

identified a bona fide location in the network and that the

subnetwork is not simply a bi-product of the number of partitions

made by the program. Any subgraph that did not achieve a P

value of v0:05 was discarded.

The edge density, d, for a subgraph, with e edges and n nodes,

from an unweighted network was defined as the proportion of all

possible gene-gene interactions that are present, calculated by:

d~
2e

n(n{1)

Similarly, weighted density, h, for a subgraph, with sum edge

weight w edges and n nodes, from a weighted network that has

mean edge weight �ww, was defined as:

h~
2w

�wwn(n{1)

Identification of Congruent Network Subgraphs
Subgraphs from different networks (excluding the combined

network) were cross-referenced against one another and the

statistical significance of the intersection in genes between two
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subgraphs was calculated by Fisher’s exact test. Here, the union of

the two subgraphs formed our population, and our population

successes were simply the genes in a single subgraph. We then

treated the other subgraph as a sample from the population and

our sample successes were the intersecting genes between the two

subgraphs. To limit the number of comparisons, two subgraphs

were only compared when the size of the two gene sets was not

greater than ten-fold different. Matthews’s correlation coefficient

(MCC) [25] values were calculated to quantify the precision and

accuracy of the subgraph intersection using the formula:

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p

Where the true positives (TP) were the intersection between the

two subgraphs. True negatives (TN) were the union of the

subgraphs minus the intersection. Finally, our false positives (FP)

and false negatives (FN) were the size of each subgraph respectively

minus the size of the intersection. To reduce the number of

statistical tests performed, P values were only calculated if the

intersect between subgraphs (true positives) was w2 genes and the

MCC was w0:2. Resulting P values were corrected for having

performed multiple tests [26]. For each subgraph from a network

that had at least one statistically significant intersection (corrected

Pv0:05) with subgraphs from another network a ‘‘best hit’’ was

assigned to the subgraph intersection with greatest MCC score.

Reciprocal best hits were defined as two best hits between

subgraphs from different networks.

Note, the PPI data is a from a compendium of experimentally

validated PPIs, whereas the other data sources are extrapolated

from high-throughput experiments. Therefore, the quality of the

derived networks, in terms of type I and type II error rates, are

unlikely to be equivalent. Hence, direct comparison of the

performance of each network at capturing aspects of biological

function will undoubtedly not only reflect the information

available from the type of interaction but also the error rate.

Functional Enrichment in Network Subgraphs
We assigned function to identified subgraphs using the Gene

Ontology (GO) [16]. GO annotation was retrieved from the GO

download site. We used Fisher’s exact test to identify overrepre-

sented GO terms for each subgraph. Here, our population set was

all the genes present in the network and the number of genes in the

network annotated with a particular GO term represented the

population successes. We then treated each subgraph as a sample

from the network and the subgraph genes annotated with the term

as the sample successes. All P values were false discovery rate

corrected using the method described in [26] with a significance

cutoff of P,0.05. Additionally, we used the MCC as a measure of

accuracy of our subgraphs for each overrepresented term. MCC

was calculated by the formula described above. The true positives

are the number of genes in a subnetwork annotated with the

overrepresented GO term. The true negatives are the number of

genes not in the subnetwork and not annotated with the GO term.

False positives are the number of genes present in the subnetwork

and not annotated with the term. Finally, the false negatives are

the number of genes not in the subnetwork but are annotated with

the overrepresented GO term.

We have also aimed to control for the potential confounding

factors such as the non-independence of these networks and the

GO. For example if PPIs are used to annotate the interacting

genes with GO terms, the data may be biased such that the most

highly connected genes are the most well annotated. We have

attempted to control for confounding factors by repeating our

above analysis after removing GO terms that have been inferred

by electronic annotation, as these annotations are likely the result

of high throughput experiments potentially containing errors. We

also repeated the enrichment analysis using randomising GO term

annotations within the network. Here, GO annotations were

randomly assigned to genes, ensuring that the number of GO

annotations and connectedness of genes remained the same.

Relative enrichment of GO terms, with respect to the number of

genes represented by a term, was calculated for subgraphs from

each network. First terms were binned according to the number of

genes they represent in the network data set and the proportion

represented by each bin was calculated. Next the same process was

carried out for enriched terms represented by subgraphs with

MCCw0:2. Enrichment was defined as the proportion for

enriched terms minus the proportion for all terms, for each bin.

Hence, enrichment values across all bins sum to exactly one.

In order to visually compare network coverage, semantic

similarity (Lord et al., 2003) was used to determine the functional

distance between genes and a tree-structure generated using

neighbor-joining and represented in two dimensions using

Voronoi Treemaps (Balzer and Deussen 2005; Balzer et al.

2005), implemented with GLASS (available at http://www.

bioinformatics.ic.ac.uk/glass/). In this visualisation each cell

represents a GO term, whose location within the panel is

determined by the semantic distance to all other terms. A cell is

coloured if one or more subgraphs from a particular network

display enrichment for that term. The intensity of the colour is

determined by the MCC of that subgraph for the enriched term.

Network Visualisation and Analysis
All network visualisations were produced using Cytoscape [27].

Edge and node betweenness coefficients were calculated using the

NetworkAnalyzer Cytoscape plugin [28].

Supporting Information

Figure S1 Network partitioning methodology. Interaction

networks were partitioned by using k-way partitioning. k represents

the number of partitions for the algorithm to produce. Given the

number of nodes in the network and the number of partitions we

can estimate the average size, s, of the subgraphs produced by

partitioning. Many different values for k were used in order to

produce an extensive set of partitions with a wide range of sizes.

We partitioned each network until until the average size of the

partitions was estimated to ,3 nodes.

(EPS)

Figure S2 Summary of network subgraphs showing
plots of (i) subgraph size against subgraph frequency
(panels A, C, E and G), and (ii) subgraph size against the
top 95th percentile of clusters ordered by edge density
(panels B, D, F and H) for PPI, genetic, co-regulation and
combined interaction networks, respectively.

(EPS)

Figure S3 GO enrichment among network subgraphs.
Two types of graph are shown: (i) bar plots A, B, C and D show

the relative level of enrichment of GO terms pertaining to more

specialist, or general functions, measured by the number of genes

represented, from each network. Here, a positive value represents

relative enrichment of GO terms of the given size, while a negative

value represents relative lack of GO terms of the given size. (ii)

Density plots E, F, G and H show overall relationship between the
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number of genes represented by the GO term (x-axis) and the

maximum accuracy with which the term is captured by subgraphs

from each network, measured using MCC (y-axis). Regions with

denser shading indicate a greater number of GO terms.

(EPS)

File S1 The PPI interaction network listed as pairwise
interactions between nodes. The first line of the file reports

the number of edges in the network. This file also contains a

lookup between node identifiers and the yeast systematic name

reported in the SGD.

(ZIP)

File S2 The genetic interaction network listed as
pairwise interactions between nodes. The first line of the

file reports the number of edges in the network.

(ZIP)

File S3 The coregulation interaction network listed as
pairwise interactions between nodes. The first line of the

file reports the number of edges in the network.

(ZIP)

File S4 The combined interaction network listed as
pairwise interactions between nodes. The first line of the

file reports the number of edges in the network.

(ZIP)

File S5 The 20 most accurately represented GO terms
from each network and ontology.
(XLS)
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