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Abstract

In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in
combinatorial complexes with Estrogen Receptor Beta (ERb) and Hypoxia Inducible Factors (HIFs) that determine localized
chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes
associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of
aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary
tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely
distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response
Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution
was similar with/without E2 with < 55% of them in extragenic DNA regions and an intriguing involvement of the 59 domain
of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that
eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including
miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic
regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a
downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER
signaling, and suggesting that eNOS may play an important role in aggressive PCa.
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Introduction

Nitric oxide (NO) and its synthases attained celebrity among

oncologists because of the evidence of frequent deregulation of

NO production in several tumors, including prostate cancer (PCa,

[1,2,3], and of the discovery of a key role played by the endothelial

NOS (eNOS) in tumor maintenance and progression [1,3,4]. Our

prior experimental results have provided demonstration of the

physiopathological role of eNOS in three cellular contexts: normal

human endothelial cells (HUVEC) before and after treatment with

17b-estradiol (E2); epithelial cell cultures from PCa explants grown

in basal condition or with E2; and prostate tissue specimens from

PCa patients. Confocal microscopy and immunohistochemistry

have documented, in particular, eNOS nuclear translocation in all

three experimental models [1,5] and provided the following

evidence: (i) eNOS-NO ‘nuclear’ signaling is a key pathway in

endothelial cell response to angiogenic stimuli and in the

acquisition of a more aggressive phenotype in PCa; and (ii) the

existence and functional role of crucial combinatorial complexes

on chromatin, eNOS/ERa specifically involved in the mainte-

nance of vascular homeostasis [6,7] and eNOS/ERb, eNOS/HIF-

1a or eNOS/HIF-2a specifically associated to adverse clinical

outcome of PCa [1]. In the tumor model, these complexes

determine localized remodeling of the chromatin in response to

estrogen and hypoxia stimuli, resulting in transcriptional regula-

tion of prognostic target genes [1]. Whether eNOS and its partners

are present as a constellation of coordinate complexes or in the

form of a macro-multifactorial complex remains to be evaluated.

In recent years, a relevant role in human cancer initiation,

progression and metastasis has been assigned also to dysregulation

of microRNAs (miRs) [8,9]. How the expression of prognostic

target genes is regulated in the context of PCa is currently under

investigation although several reports [10,11,12,13,14] have

identified clusters highly relevant for prostate cancer. Here we

have expanded on this aspect by documenting a significant

downregulation of a cluster of miRs, exclusively in PCa cells
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associated with adverse clinical outcome (G1 cells). This cluster

comprises miR-34a, the first miR identified as a regulator of the

SIRT1 deacetylase [15] a critical epigenetic controller of aging

and tumorigenicity [16].

Of note eNOS and NO have also been involved in the aging

process, a relevant observation since aging is considered an

independent risk factor in several pathological conditions. During

aging, eNOS is often deregulated and the usual NO biosynthesis

transformed to production of free radicals. This effect contributes

to DNA damage and genomic instability providing a favorable

ground for cancer development. Indeed eNOS has been recently

associated to maintenance of pancreatic cancer [4] and to

progression of PCa [1], one of the most common cancer in the

elderly. Interestingly, the role of eNOS during the aging process is

strictly linked to the function of SIRT1. In physiological

conditions, SIRT1 activates eNOS by deacetylation. Aging, by

impairing SIRT1 function determines a reduced glucose metabolic

efficiency as well as a reduced production of appropriate NO

levels, thus deteriorating the intracellular environment.

These premises together with our original finding that the NO

pathway represents a ‘‘primum movens’’ of a transcriptional program

promoting the acquisition of an aggressive phenotype in PCa cells,

and that the nuclear translocation of eNOS significantly affects

chromatin remodeling of a specific subset of PCa prognostic genes

[17], has prompted us to investigate the full potential of this key

signaling molecule as master gene in the progression of prostate

cancer. Our aim and challenge were to unmask the function of

eNOS on a genome-wide scale by a ChIP-Sequencing approach,

with the hope of unveiling a general mechanism associated with

the presence of nuclear eNOS in prostate tumors. Here we present

experimental evidence that defines a molecular circuitry that

contributes to aggressive and metastatic PCa and can be

modulated by eNOS or SIRT1 inhibitors with potential impact

on current therapies for PCa.

Methods

Hormones and Inhibitors
17b-Estradiol (E2 Sigma), NG-nitro-L-arginine methyl ester (L-

NAME; Alexis), TSA (Sigma-Aldrich), MS275, MC1568, sirtinol,

resveratrol were a kind gift of Antonello Mai (Rome, Italy).

Antibodies
anti–ERa (HC-20 [Santa Cruz Biotechnology]; anti–ERb (L-20

[Santa Cruz Biotechnology], anti-eNOS (eNOS/NOS Type III

[BD Biosciences]; abcam, Cambridge, UK and Cell Signaling,

MA,USA), anti-HDAC1 (abcam, Cambridge, UK and Sigma-

Aldrich, MO, USA), anti-HDAC2 (Santa Cruz Biotechnology,

CA, USA), anti-HDAC3 (Santa Cruz Biotechnology, CA, USA),

anti-HDAC4 (abcam, Cambridge, UK and Santa Cruz, CA,

USA); anti-HDAC5 (abcam, Cambridge, UK) anti-SIRT1

(abcam, Cambridge, UK); anti-IgG (Santa Cruz Biotechnology,

CA, USA), anti-5-methylcytidine (Eurogentec, Seraing, Belgium),

anti-a-actin (Sigma-Aldrich), and anti-HSP70 (StressGen Biotech-

nologies, San Diego, CA).

Cell Culture
HUVEC and LNCaP cells were cultured as described [1,5].

Primary prostate cancer cultures were obtained from freshly

explanted prostate cancer specimens upon approval of the

Institutional Ethical Committee as described [17]. Immortalized

PCa-cells were obtained by transduction of hTERT and SV40

large T antigen as described [1]. Clinical data of patients included

in the present study have already been reported elsewhere [17].

The outcome of patients (survival, metastasis, local and/or

biochemical recurrence) was followed up to December 2012

(observation period, July 2002 to December 2012). Bad prognosis

group (G1) of patients with PCa was defined by the presence of

biochemical/local recurrence, metastasis, or disease-specific mor-

tality, and Good prognosis group (G2) was defined by complete

remission with surgery alone. Cell lines derived from patients have

been assigned correspondingly to the G1 (C1IM, C11IM, C13IM,

C19IM, C27IM, C43IM, C45IM) or G2 (C14IM, C24IM,

C25IM, C35IM, C38IM, C39IM, C40IM, C41IM) phenotypes.

Transfections, Cell Extracts and Western Blot
Transient transfections were performed by the Jet Pei TM

technique (Poly Plus Transfection). eNOS vector encoding

S1177A was a gift from C.M. Counter (Duke University Medical

Center, Durham, USA) [4]. Total extracts for Co-IP immuno-

precipitation were obtained with USA Buffer (Tris-Hcl 50 mM

pH = 7.5; EDTA 5 mM; NaCl 250 mM; Triton 0.1%; NaF

50 mM ), nuclear and cytoplasmic fractions were obtained as

previously described [18].

Treatments
Cells were treated with 1027 M E2, 5 mM L-NAME, 500 nM

TSA, 500 nM MS275, 10 mM MC1568, 10 mM sirtinol, 25 mM

resveratrol, alone or in combination for the times indicated in

figure legends. At least 72 hours prior to experimental use, the cells

were switched to medium supplemented with hormone-deprived

serum [19].

ChIPs and Re-ChIPs
ChIP and re-ChIP assays from cultured cells were performed as

described [1] using specific antibodies to ERb, eNOS, SIRT1,

HDAC1, HDAC 3, HDAC 4. Negative controls were absence of

antibody (NoAb) or normal IgG. Analysis of methylation using

antibody anti-5-methylcytidine was performed as described in [5].

DNA fragments were recovered and analyzed by quantitative

Real-time PCR as described [1]. Primers are presented in the

supplemental section.

For ChIP-sequencing, ChIPs were performed as described [1,6]

with modifications. Briefly, chromatin solutions were prepared by

sonication using Bioruptor UCD-200 (Diagenode) to obtain DNA

fragments between 150–500 bps in length. Pre-clearing of

chromatin solution was performed with protein G-agarose (Pierce)

and recovery of immune complexes with protein G saturated with

BSA at a final concentration of 1 mg/ml. Immunoprecipitated and

input DNA samples were dissolved in double distilled H2O.

Validation of DNA prior to sequencing was performed by qPCR

using primers specific for the hTERT and pS2 promoters (see

Supplemental section).

Library Preparation, ChIP-Sequencing and Bioinformatic
Analysis

NGS library preparation and SOLiD sequencing were per-

formed at Genomnia. DNA samples in 50 ml of Tris-HCl 10 mM,

EDTA 1 mM, pH 8 were sheared using the CovarisTM S2

System, with the following settings: duty cycle 10%, intensity 5%,

cycles/burst 200, cycle time 60 s, number of cycles 3. DNA size

after shearing, checked on Bioanalyzer, was 25–400 nt with a peak

around 140 nt. Sheared DNA (50 ng) was end–repaired and

ligated using Quick ligation kit (New England Biolabs) to 27

pmoles of multiplex P1 adaptor and 27 pmoles of one (different for

each ligation) of the bar-coded multiplex P2 double-stranded

adaptors (SOLiDTM Fragment Library Oligos Kit, Applied

Role of Nuclear eNOS by ChIP-Seq in Aggressive PCa
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Figure 1. Global overview of eNOS-recruitment by ChIP sequencing and genome-wide changes mediated by estradiol. A) Venn
diagram of regions displaying eNOS-recruitment in the absence (NT) or presence of estradiol (E2). Number of discrete genomic eNOS-recruitment
peaks identified by ChIP-Seq in C27IM_NT and C27IM_E2 (left), LNCaP_NT and LNCaP_E2 (right) using MACS analysis (FDR,0,1 and P value p,1e-5).
Overlap between peaks in NT and E2condition was determined using threshold of 1 nt. B) Length distribution of eNOS peaks in C27 IM_NT, C27 IM_
E2 (left) and LNCaP NT, LNCaP E2 (right). Data are presented as superimposed box plots of peak lenghts for E2 treated (black) or untreated (gray).
Black line is the E2 peaks mean length, gray line is the NT peaks mean length. p,2.2e-16 NT vs E2. C) Pie chart of eNOS-peaks distribution in intra/
extragenic regions (left) or of distance from TSS (right). Numbers in percentage represent min-max values in each category. D) Venn diagram of
MACS-peaks in C27IM_E2 and LNCaP_E2. Overlap between eNOS peaks was determined using threshold of 1 nt. E) Validation by quantitative PCR of
ChIP-Seq eNOS-peaks. eNOS binding was monitored in 9 genomic regions, specificity was assessed in an ‘‘empty’’ region (region without eNOS peaks)
of chromosome 5. Data represent mean+/2SEM of 3 independent experiments. *p,0,05 eNOS_E2 vs eNOS_NT.
doi:10.1371/journal.pone.0062522.g001
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Figure 2. Prognostic miRNA signature. A) Supervised cluster analysis of microRNAs profiling (Exiqon Array) for the two groups of patients
defined by recurrence status (Good or Bad prognosis). B) Validation by quantitative real time PCR of differential miRNAs levels in the G1 (Bad
prognosis n = 7) and G2 (Good prognosis n = 8) groups, *p,0,05 G1 vs G2. C) Differential level of primary transcripts (pri-miR) in G1 (n = 7) and G2
(n = 8), *p,0,05 G1 vs G2. Data are represented as box plot on a logarithm scale.
doi:10.1371/journal.pone.0062522.g002
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Biosystems pn 4401151). Samples were incubated at room

temperature for 10 minutes, purified using the AgencourtH
AMPureH Kit, and nick-translation was performed on non-ligated

39-ends. Finally library molecules were amplified by PCR for 15–

17 cycles and purified using the AgencourtH AMPureH Kit as

described before. Samples were quantified using Qubit dsDNA

HS or BR kits and checked on the Bioanalyzer (Agilent

Technology) using a DNA 1000 chip. To obtain the binding

and the clonal amplification of library fragments on the surface of

sequencing beads, the 8 pooled DNA libraries were added to the

emulsion PCR reaction performed according to the manufactur-

er’s instructions (Applied Biosystems). After amplification, the

emulsion was broken with butanol, beads were enriched for

template positive beads, 39-end extended and covalently attached

onto one sequencing slide, and sequenced using standard settings

on the SOLiD system version 3.5 to produce 50 nucleotide long

reads.

Mapping of Sequencing Data
Mapping of the Color Space sequencing reads to the reference

genome (UCSC Homo sapiens hg19 from UCSC) was performed

with the Lifetech Lifescope 2.5.1 bioinformatics software suite,

after ‘‘a priori’’ error correction with the SAET procedure. The

resulting alignment files (pairwise Input and Experiment) in

standard.bam format were analyzed for peak calling directly with

the MACS software version 1.4.1 [20]. In addition, the.bam

alignments were converted to the.bed format with the bamToBed

bedtools utility and used for peak calling with the SICER analysis

software [21] in order to take into account the heterogeneous

nature of these DNA - protein interactions which may include

quite long areas of interaction. All intersections between MACS

and SICER bed files and genome-wide features was performed

with the bedTools v2.17.0 software suite (http://code.google.

com/p/bedtools/).

Peak Identification
Exploratory data analysis of the sequencing and mapping

results, of the MACS peak quality, of the relative annotation and

further peak calling were performed with the commercial

Integromics SeqSolve bioinformatic software suite. Correlation

of MACS and SICER peaks (Experiment versus Input) with known

NCBI RefSeq gene structure and annotation was performed with

in-house Genomnia perl scripts or with the ChIPpeakAnno

Bioconductor library, version 2.10 [22]. Differential peak analysis

was performed with the SICER-df.sh routine of the SICER

software or with the Bioconductor DiffBind library [23],

complemented by in-house Genomnia perl scripts. Removal of

open chromatin (false positives) regions was performed using ‘‘A

comprehensive collection of signal artifact blacklist regions in the

Table 1. Number of eNOS peaks encompassing 50 kb
genomic regions upstream of annotated pre-miRs.

Down-Regulated miRsa C27IM NT C27IM E2 LNCAP NT
LNCAP
E2

hsa-miR-34a 1 3 – 3

hsa-miR-4324 2 2 – 1

hsa-let-7b 2 3 – 1

hsa-let-7c – 1 – –

hsa-miR-143 – 1 – –

hsa-miR-4328 3 – – –

hsa-miR-145 – 2 – –

hsa-miR-298 3 5 – 2

hsa-let-7i – – – 2

hsa-miR-491-3p – – – –

hsa-miR-664* – – – –

hsa-miR-1290 – 10 – –

hsa-miR-1908 – 4 – 3

hsa-miR-665 – 2 – –

hsa-miR-3667-5p – – – –

TOTAL 11 33 0 12

Up-Regulated miRsa C27IM NT C27IM E2 LNCAP NT LNCAP
E2

hsa-miR-10a 2 10 – 7

hsa-miR-15a
has-miR-185

– – – –

hsa-miR-197 – 2 – 3

hsa-miR-186 – 1 – –

hsa-miR-183 – 8 – 5

hsa-miR-720 – – 1 –

hsa-miR-221* – – – –

hsa-miR-424 11 1 – –

hsa-miR-7 1 5 1 2

hsa-miR-92a – – – –

hsa-miR-93 – – – –

hsa-miR-744 – – – –

hsa-miR-374a 7 1 – –

hsa-miR-4284 – 6 – 2

hsa-miR-32 – – – –

hsa-miR-16 1 2 – –

hsa-miR-106a 6 1 – –

hsa-miR-17 – – – –

hsa-miR-19a – – – –

hsa-miR-20a – – – –

hsa-miR-106b 1 2 – 1

hsa-miR-18b – – – –

hsa-miR-4289 – – – –

hsa-miR-107 – – – –

hsa-miR-103 4 – 2 –

hsa-miR-15b – – – 1

hsa-miR-205* – – – –

hsa-miR-185 2 4 – 2

Table 1. Cont.

Down-Regulated miRsa C27IM NT C27IM E2 LNCAP NT
LNCAP
E2

hsa-miR-2115* – – – –

hsa-miR-148b – – – 1

hsa-miR-25 1 – – 1

TOTAL 36 43 4 25

aas shown in G1-PCa cells associated with bad prognosis (see miRs levels in
cluster of Figure 2).
doi:10.1371/journal.pone.0062522.t001

Role of Nuclear eNOS by ChIP-Seq in Aggressive PCa

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e62522



human genome’’, Anshul Kundaje, ftp://encodeftp.cse.ucsc.edu/

users/akundaje/rawdata/blacklists/hg19/). Statistical test associ-

ated with sequence features (evaluation of TSS and peak length

mean differences) were evaluated with the Welch Two Sample t-

test in the R version 2.15.1 statistical language. Sequence-linked

statistical analyses, including kernel tag density calculations, were

performed with the appropriate statistical routines and libraries of

the R version 2.15.1 statistical language (http://www.r-project.

org/). Short-read sequencing data and the associated experiment

information have been deposited at the EBI ArrayExpress

Figure 3. Schematic representation of the miR-34a genomic region and eNOS-peaks identified by ChIP-sequencing. A) Integrated
Genome Viewer (IGV 2.1) screenshots showing pri-miR-34a genomic region (TSS is indicated) and eNOS-binding in C27IM, in the presence or absence
of estradiol (E2), identified by ChIP-Seq using two different algorithms MACS and SICER. B) Molecular dissection of orange dashed area indicated in A.
Locations of EREs identified by MatInspector analysis are shown by green circles, eNOS peaks identified by MACS are shown by boxes (blue
C27IM_NT, red C27IM_E2) and primers for ChIP-qPCR by arrows. C) ChIP validation of eNOS peaks and dynamic recruitment of eNOS and ERb in the
regulatory region of pri-miR34a, in the presence or absence of E2. *p,0,05 ERb E2 vs ERb NT; #p,0,05 eNOS E2 vs eNOS NT.
doi:10.1371/journal.pone.0062522.g003
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Figure 4. Effect of Estradiol on miR-34a level and its target SIRT1. A) Normal HUVEC cells, PCa-cells from the G2 and G1 groups (C38IM and
C27IM, respectively) and LNCaP cells were treated with estradiol (E2) for 3 and 6 hours and levels of pri- (left) and mature (right) miR-34a were
analysed by qRT-PCR. Data represent the mean 6 SEM of 4 experiments. *p,0,05 vs NT. B) HUVEC and C27IM cells were treated with E2 and SIRT1
level was assessed by western blot. Upper: representative experiments. Black lines indicate samples run in noncontiguous lanes of the same gel.
Lower: Densitometric analysis of SIRT1 vs HSP70 level is expressed as fold induction +/2E2. Data represent the mean 6 SEM of 3 experiments.
*p,0,05 vs NT. C) SIRT enzymatic activity (left) and corresponding level of protein (right) was evaluated in C27IM cultured for 72 h hours in hormone-
deprived serum before and treated with E2 for 1 h. *p,0,05 vs NT. D) Co-IP of eNOS and SIRT1 in HUVEC and C27IM cells (upper and lower panel,
respectively). IgG served as negative control and cell extract (Input) as positive control. Black lines indicate samples run in noncontiguous lanes of the
same gel. *Lower exposure. E) C27IM cells were cultured for 72 h hours in hormone-deprived serum before treatment with E2 for 2 h15’. Cells were
stained with antibody to SIRT1 (red) and eNOS (green) and analyzed by confocal microscopy. Nuclear co-localization is evidenced by colocalization
mask.
doi:10.1371/journal.pone.0062522.g004
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Figure 5. Rescue of estrogen-dependent repression of miR34a by HDACs inhibitors. A) C27IM cells were treated with estradiol (E2) for 3
hours in the presence or absence of inhibitors of deacetylases (TSA, MS275, MC1568), or the SIRT1 inhibitor Sirtinol, or the SIRT1 activator Resveratrol,
added 30 minutes before the hormone. Levels of pri-miR-34a (left) and mature-miR34a (right) were analysed by qRT-PCR. Data represent the mean 6

Role of Nuclear eNOS by ChIP-Seq in Aggressive PCa
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database (http://www.ebi.ac.uk/arrayexpress/) with the Acces-

sion Number E-MTAB-1204.

SIRT Activity
Enzymatic activity was evaluated with HDAC assay kit

(Upstate) according to manufacturer’s instruction using 40micro-

grams of total extracts.

Confocal Microscopy
Confocal analysis was performed as previously described [1].

Sample were analysed with a Zeiss LSM510 Meta Confocal

Microscope with 63x magnification. For each samples 10

independent fields were analyzed and representative images are

shown. Colocalization mask was obtained by LSM510 software to

produce images containing exclusively colocalized regions.

SEM of 4 experiments. *p,0,05 B) C27IM were transfected with the eNOS dominant negative mutant (S1177A) or empty vector for 48h in presence or
absence of E2 added 1h prior to harvesting. Levels of pri-miR-34a were analysed by qRT-PCR. Data represent the mean 6 SEM of 3 experiments.
*p,0,05 C) C27IM (left), LNCaP cells (middle) and HUVEC (right) were transfected with the eNOS dominant negative mutant (S1177A) or empty vector
for 48 h in presence or absence of E2 added 1 h prior to harvesting. SIRT1 levels were assessed by western blot. Hsp70 served as loading control.
Ratio +/2E2 of SIRT1 level normalized with Hsp70 are indicated. D, E) Confocal analysis of eNOS and HDAC4 (D) and HDAC5 (E) in the presence or
absence of E2 as described in the legend to Figure 4. F) Dynamic recruitment of class I (HDAC3), class II (HDAC4) deacetylases or SIRT1 analyzed by
ChIP in the regulatory region of pri-miR34a in the presence or absence of E2. Arrows represent primers for qPCR as in Figure 3. *p,0,05 SIRT1 E2 vs
SIRT1 NT; #p,0,05 HDAC3 E2 vs HDAC3 NT; 1HDAC4 E2 vs HDAC 4 NT.
doi:10.1371/journal.pone.0062522.g005

Table 2. Over-represented pathways for overlapping eNOS-peaks in C27IM and LNCaP treated with estradiol.

Name of event Event identifiera
Total number of genes
involved in the event

Number of genes in
your query mapping
to the event P valueb

Hemostasis REACT_604 478 170 7.91E-10

Developmental Biology REACT_111045 407 166 1.78E-15

Transmembrane transport of small molecules REACT_15518 432 129 0.001395704

Neuronal System REACT_13685 290 125 6.60E-14

Axon guidance REACT_18266 281 119 1.22E-12

Metabolism of lipids and lipoproteins REACT_22258 315 90 0.02380377

Signalling by NGF REACT_11061 222 85 5.60E-07

SLC-mediated transmembrane transport REACT_19118 251 81 0.001023465

Transmission across Chemical Synapses REACT_13477 189 80 7.29E-09

Platelet activation, signaling and aggregation REACT_798 205 78 2.20E-06

Neurotransmitter Receptor Binding And Downstream
Transmission In The Postsynaptic Cell

REACT_15370 136 54 2.01E-05

Cell-Cell communication REACT_111155 137 54 2.57E-05

Signaling by PDGF REACT_16888 122 53 9.92E-07

NGF signalling via TRKA from the plasma membrane REACT_12056 136 53 4.40E-05

Integration of energy metabolism REACT_1505 114 49 3.67E-06

Potassium Channels REACT_75908 99 48 5.51E-08

Signaling by Rho GTPases REACT_11044 125 47 0.000315471

Rho GTPase cycle REACT_11051 125 47 0.000315471

Signaling by NOTCH REACT_299 117 44 0.000482562

L1CAM interactions REACT_22205 109 42 0.000354716

Signaling by EGFR in Cancer REACT_115871 110 41 0.000913295

Integrin cell surface interactions REACT_13552 85 40 1.87E-06

Cell surface interactions at the vascular wall REACT_12051 92 40 2.05E-05

Downstream signal transduction REACT_17025 93 40 2.79E-05

Signaling by EGFR REACT_9417 108 40 0.001209373

Signaling by FGFR REACT_9470 112 40 0.002647301

Downstream signaling of activated FGFR REACT_21272 100 39 0.000428773

Signaling by ERBB2 REACT_115755 102 38 0.00139995

Class B/2 (Secretin family receptors) REACT_18372 88 37 9.91E-05

aas in http://www.reactome.org/ReactomeGWT/entrypoint.html.
bUn-adjusted probability of seeing n or more genes in the event by chance.
doi:10.1371/journal.pone.0062522.t002
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Exiqon Microarrays and Data Analysis
Total RNA purification, including miRNAs, was performed

using the miRNeasy kit (QIAGEN) and samples were stored

immediately at 280uC. RNA quantification and integrity was

assessed using Nanodrop and Agilent 2100 Bioanalyzer. Only

samples with a RNA integrity number (RIN) .8,0 were taken for

analysis. A total of 500 ng RNA from sample and reference was

labelled with Hy3TM and Hy5TM fluorescent label, respectively,

using the miRCURYTM LNA Array power labelling kit (Exiqon,

Denmark) following the procedure described by the manufacturer.

The Hy3TM-labeled samples and a Hy5TM-labeled reference RNA

sample were mixed pair-wise and hybridized to the miRCURYTM

LNA Array version 5th Generation (Exiqon, Denmark), which

contains capture probes targeting all miRNAs for human, mouse

or rat registered in the miRBASE version 16.0 at the Sanger

Institute. The hybridization was performed according to the

miRCURYTM LNA array manual using a Tecan HS4800

hybridization station (Tecan, Austria). After hybridization the

microarray slides were scanned and stored in an ozone free

environment (ozone level below 2.0 ppb) in order to prevent

potential bleaching of the fluorescent dyes. The miRCURYTM

LNA array microarray slides were scanned using the Agilent

G2565BA Microarray Scanner System (Agilent Technologies,

Inc., USA) and the image analysis was carried out using the

ImaGene 9.0 software (BioDiscovery, Inc., USA). The quantified

signals were background corrected (Normexp with offset value 10

[24] and normalized using the global Lowess (LOcally WEighted

Scatterplot Smoothing) regression algorithm. Differential expres-

sion of miRNAs between groups was performed using a t-test one-

tail after which a p value ,0.05 was considered statistically

significant. A total of 52 miRs were used to generate a heatmap

where red and green colors indicate high and low expression

respectively. A two-way supervised clustering analysis was

performed using Pearson’s correlations and Ward’s criteria as a

linkage rule. C27IM cell line was hybridized twice with

correlation = 0,92. Microarrays data have been deposited in the

Curie database at http://microarrays.curie.fr/, login username

and password are available upon request.

Mature miRNA and pri-miR Detection
Reverse transcription was performed according to the manu-

facturer’s protocol using TaqMan method (Applied Biosystems,

Foster City, CA, USA). Real-time PCR was performed three times

in duplicate on an ABI Prism 7500 or 7900 HT Sequence

Detection System (Applied Biosystems). Relative amount of each

mature miR or pri-miR was measured as fold change using the

22DDCt method (RNU6B or RNU19 and b2actin or GAPDH

served as endogenous control, respectively).

Statistics
Statistical analysis was performed using Prism 2.01 statistical

software (GraphPad). Differences among subject groups were

assessed by 2-tailed Mann-Whitney U test and 1-tailed Student’s t-

test. A 95% confidence interval (P,0.05) was considered

significant. Data are represented as box plots charts (boxes show

medians and upper and lower quartiles of the data and whiskers

indicate minimum and maximum values), as mean 6 SEM or as

fold of induction (+/2 treatment), as indicated in figure legends.

Results

Genome-wide Profile of eNOS-binding Events in Prostate
Cancer Cells

We previously documented that in prostate cancer cells eNOS

translocates to the nucleus in response to estrogen, a process

inhibited by anti-estrogens [5]. Here we show by confocal

microscopy that this estrogen-dependent re-localization is also

efficiently prevented by L-NAME, an inhibitor of eNOS (Figure

Figure 6. Cartoon of proposed eNOS/SIRT1 interplay in prostate cancer cells in response to estrogen.
doi:10.1371/journal.pone.0062522.g006
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S1). This finding strongly supports a causal relationship between

eNOS activity, NO production and estrogen signaling.

Our open questions were i. how does eNOS play a role in

prostate cancer under basal conditions or in response to estrogens

and, by extension, in the estrogen-dependent transcriptional

program associated with prostate cancer aggressive phenotype?,

and ii. Does the nuclear eNOS function involve molecular

interactions with proteins able to modify the chromatin structure

and alter the transcriptome in estrogen-responsive prostate cancer

cells? To address these questions chromatin immunoprecipitations

coupled to massive parallel sequencing (ChIP-seq) were performed

before and after treatment with 17b-estradiol (E2, 1027M) in two

cell lines: i. C27IM cells derived from a primary prostate cancer

with an aggressive phenotype and well characterized by immuno-

phenotype, cytogenetic markers, growth and colony formation,

gene amplification, mRNA gene and miR profile [1,17], and ii. in

LNCaP cells, a human prostate cell line derived from a lymph

node metastasis [25], thus representative of the ‘‘metastatic’’

phenotype. The retained responsiveness of these cells to sex steroid

hormones, both androgens and estrogens [19,26], renders them an

optimal control for a hormone-responsive primary tumor aggres-

sive but not yet metastatic.

The goal of our study was to identify, in the prostate

microenvironment, the primary transcriptional targets of E2

signaling associated with eNOS. We focused on a short hormonal

treatment (45 min) on the basis of previous studies by us and

others that clearly indicated this timing as optimal for following the

primary and immediate effects of E2-dependent transcription,

prior to the activation of secondary targets [1,6,19,27,28].

eNOS ChIP-seq was conducted and eNOS-associated DNA

regions (peaks) were identified using two algorithms, MACS 1.4.1

(Linux version or as incorporated in the commercial software

SeqSolve TM from Integromics) and SICER v1.1, to minimize

peak caller bias and to consider the ‘extended’ nature of the

interaction of eNOS/ER complexes with chromatin [20,21].

Differential analysis of called peaks or extended regions (islands)

was also performed with two methods, comparing and intersecting

the results, for the same reasons (see Methods and [22,23,29,30]).

The number of sequencing reads and eNOS-binding events for

each cell line, untreated or exposed to E2, are shown in Table S1.

Under both conditions, the eNOS-containing DNA peaks were

found widely distributed across the genome with conserved

hyperdensity regions, as shown superimposed to the human

chromosome ideograms for both cell lines (Figure S2). This

pattern, reminiscent of the genomic distribution of ERE sites

described by Carroll et al. [31], supports our previous findings of

the existence of eNOS/ER complexes [1,5,6].

We identified by MACS peak call analysis in C27IM and

LNCaP cells, respectively 12,034 and 2,344 eNOS-associated

peaks before E2 treatment, and 57,802 and 34,560 thereafter

(Table S2). Of note, the removal of open chromatin regions

known to generate false positives in ChIP-seq experiments (the so-

called ‘‘ultra-high signal artifact regions’’) left substantially

unchanged the results in terms of peak number: 11,694 and

2,333 in untreated C27IM and LNCaP cells and 57,616 or 34,451

in C27IM and LNCaP cells upon E2 treatment (Table S2 and
Figure 1A) (see Methods and [32].

Clearly upon estrogen treatment the number of peaks increased

significantly (4.8- and 14-fold in C27IM and LNCaP cells,

respectively) indicating a specific hormone-dependent eNOS re-

localization along the genome. A quantitative sequence compar-

ison of eNOS-associated peaks before and after E2 treatment

revealed the existence of overlapping peaks between the two

conditions, (6,805 common peaks in C27IM and 1,368 in LNCaP

cells (Figure 1A). A corresponding overlap of 5,190 and 1,630

genes in C27IM and LNCaP cells, respectively, was also found for

eNOS-peaks associated with the nearest gene as annotated in the

NCBI RefSeq database incorporated in the UCSC Genome

Browser (http://www.ncbi.nlm.nih.gov/RefSeq/), (data not

shown). The overlapping peaks (and associated genes) thus

represent a sub-set of eNOS-bound regions that are not responsive

to estradiol treatment, suggesting eNOS interactions with proteins

others than ER.

On the other end, the majority of peaks are sensitive to E2,

resulting in induction of de-novo eNOS genome binding (50,811

peaks in C27IM and 33,083 in LNCaP) or detachment (4,889

peaks in C27IM and 965 in LNCaP). Of interest, in both cases,

multiple eNOS MACS peaks induced by estradiol exist per gene.

In E2-treated cells most eNOS target genes were bound once or

twice, about 5% were bound 3 times, and about 9% were bound 4

or more times (Table S3). Moreover, E2 stimulation altered the

distribution of eNOS as indicated by significantly increased peak

length after E2 treatment suggesting a DNA-eNOS/ER complex

stabilization following hormonal treatment (Table S2 and
Figure 1B).

Distribution of eNOS-peaks relative to the nearest TSS

obtained using Kernel tag density analysis revealed that i. their

frequency is centered on the TSS and decreases on both sides with

a clear asymmetry toward the intragenic areas (Figure S3A) and

ii. E2 treatment broadened the global area covered by the peaks in

C27IM and, to a less extent, in LNCaP cells, as shown by using a

10.000 bp window, although the peaks showed a significant

enrichment around TSS following E2 stimulus (Fig. S3B).

Remarkably, the global peak distribution in annotated genomic

regions was similar in both experimental conditions (+/2 E2),

with a slight prevalence (53–58%) of peaks localized in extragenic

regions, and the remainder in intragenic regions, in particular

within introns (Figure 1C). As shown in Figure 1D, there was

considerable overlap between peaks induced by E2 in C27IM and

LNCaP cells.

Correlation between number of sites identified by MACS and

SICER in both C27IM and LNCaP cells revealed a substantial

concordance (see Methods), further validated by the results of

ChIP assay shown in Figure S4. For example hTERT, an

estrogen target gene, with several known EREs [1,19,33,34]

displays MACS peaks and E2-increased SICER islands in

correspondence to sites well characterized by ChIP-qPCR

(Figure S4A); pS2 (TFF1), a classical estrogen target gene,

exhibits E2-increased SICER-derived islands at sites amplified by

ChIP-qPCR (Figure S4B); GSTP1, a gene silenced by the ERb-

eNOS complex in the absence of ligand [5] shows MACS peaks in

correspondence to sites amplified by ChIP-qPCR, exclusively in

the unstimulated condition (Figure S4C).

Moreover, the matrix of pairwise correlation depicting DNA

occupancy on the basis of the MACS peak caller score and

coordinates (Figure S5A) as well as the hierarchical cluster

analysis of binding affinity (heatmap) showing affinities for

differentially bound sites calculated from read count data and

MACS peak coordinates (Figure S5B) revealed that binding sites

clustered first in response to E2, and then according the cell type.

A total of 692 E2 vs NT differentially represented peaks (FDR

,0.05) were identified, of these 287 with a positive fold change

and the remainder with a negative one.

Lastly, we validated the eNOS ChIP-Seq data enrichment

observed upon estradiol treatment. The E2 effect was monitored

in C27IM cells, untreated (NT) or E2-treated, using anti-eNOS

antibody and ChIP-qPCR on eight gene promoters previously

identified or derived from microRNA profile analysis (Figure 1E
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and Figure 2A below) [1]. Our results reveal a significant

correlation between the presence of eNOS-peaks, as emerging

from ChIP-Seq data set upon estrogen treatment (Figure S4 and

data not shown), and the estrogen-induced recruitment of eNOS

onto the same genomic regions as assessed by traditional ChIP-

qPCR. Enrichments were normalized to the absence of antibody

(noAb), or an unrelated antibody (Ab IgG). Specificity of the ChIp-

Seq was ensured using primers amplifying a genomic region within

chromosome 5 lacking eNOS peaks and simultaneously showing

the absence of eNOS recruitment by classical ChIP-qPCR.

Cluster analysis of miRNAs pattern in PCa cells. With

the aim of differentiating lethal and non-lethal prostate cancer and

ultimately improving the clinical outcome of subjects diagnosed

with the disease, and based on the observed eNOS association

with regulatory regions of annotated pri-miR (Table 1), we

combined the ChIP-Seq approach with miR profiling in a subset

of our PCa-derived cell populations [17] using an Exiqon

platform.

The miR profile (Fig. 2A) confirmed the differential miR

expression originally described in prostate cancer histological

samples [12], thus validating again our ex-vivo cellular model

[1,5,17]. In particular, a clear down-regulation of a specific cluster

of miRs (e.g. miR-34a, let-7c, miR-143/miR-145) was observed in

PCa-cells derived from the bad prognosis group, in agreement

with recent reports on the role of these miRs in PCa progression

[11,35,36,37]. These data substantiate the notion that reduced

expression of these specific miRs may be involved in the

acquisition of a more aggressive phenotype.

Since in previous work we had identified a prognostic

transcriptional signature characterized by a wide dysregulation

of several messenger RNAs specifically associated with PCa-cells

with aggressive phenotype [17], miR-array hybridizations were

performed in 8 (out of the 22 originally analyzed) PCa-derived cell

lines, 5 from patients with non-recurrent (Good prognosis, G2)

and 3 with recurrent prostate cancer (Bad prognosis, G1),

including the C27IM cell line subjected to ChIP-Seq analysis.

The comparison between the two groups identified 52 miRs with

significant changes in expression that were used to draw a

clustering analysis that: 1) readily separated the two groups of

patients (Good versus Bad) and 2) clearly showed divergent

expression (down-regulated versus up-regulated) associated with

opposite clinical outcome (Figure 2A). Of interest, a number of

these miRs have previously been reported to show similar down-

or up-regulation in prostate cancer compared to normal prostate

tissue, and some of them (e.g., miR-34a, miR-16, miR-145, miR-

205) have been specifically linked to prostate cancer metastasis

[35,38], again supporting the validity and reproducibility over

time of our ex vivo experimental model. Validation of data derived

from the microarray platform has been performed using qRT-

PCR by evaluating expression of 6 different miRs, either up or

down-regulated, at the mature and primary transcript level

(Figure 2BC). We presumed that differential miRs expression

between G1 and G2 cells could be due to a different

transcriptional regulation, an hypothesis confirmed by the analysis

of the primary transcripts.

Identification and validation of eNOS peaks in the

regulatory regions of miRs associated with opposite

outcome. To determine whether there was a correlation of

the miR profile with data deriving from the ChIP-Seq experi-

ments, we systematically searched for eNOS-bound peaks along

the genomic regions upstream of the annotated pre-miRs

(according to UCSC annotated Hs genome hg19), focusing, in

particular, on those downregulated in the bad prognosis group. Of

note, a consistent number of eNOS peaks, among the downreg-

ulated and upregulated miR clusters, were found 50 kb upstream

of pre-miRs, including major putative transcriptional regulatory

regions (Table 1). Calculating a window of 50 Kb around any

given location in the human genome and a totally random

distribution of the peak population (depleted from the hyper

chippable regions), we would expect 0.195 peaks for C27IM NT;

0.95 peaks for C27IM E2; 0.039 peaks for LNCAP NT and 0.575

peaks for LNCAP E2. Thus, the frequency of peaks upstream of

annotated pri-miRs shown in Table 1 denotes a clear enrichment.

Of interest, although the overall number of peaks was higher in

C27IM as compared to LNCaP cells, addition of E2 further

increased peak numbers suggesting that recruitment onto these

miR regulatory regions is essentially driven by the ligand-activated

estrogen receptor. However we cannot exclude, as alternative

mechanism, the involvement of non-genomic estrogen action

[39,40].

Moreover, this is suggestive of a repressive role mediated by the

ligand-activated eNOS/ER complex at least among the ‘‘tumor

suppressor’’ miRs. The higher frequency of this event in cells

derived from primary tumors is compatible with this being an

early molecular step in the progression of prostate cancer.

Among the various miRs differentially expressed in our cell

populations we focused on miR-34a because it has been recently

demonstrated to be a key negative regulator of prostate cancer

stem cells and metastasis [35].

Figure 3A depicts a cartoon of the pri-miR-34a genomic

region and overlapping eNOS-binding identified by ChIP-Seq

using two different algorithms, MACS and SICER, in C27IM

cells, in the presence or absence of E2. To understand how eNOS

collaborates with ER, we first molecularly dissected a specific

genomic area (delimited in Figure 3A by the dashed area). In

addition, a classical peak profile of the indicated eNOS peaks,

compared to control input, is provided in Figure S6, to certify

their validity. Upon screening for ER consensus sequences by

using MatInspector, ERE motifs were highly ranked as expected,

and 53 EREs (canonical, non-canonical and half site) were found

(Figure 3B). Based on the location of the peaks, specific primers

for ChIP-qPCR were designed to follow the dynamic recruitment

of eNOS and ERb onto the regulatory region of pri-miR-34a,

before and after E2. A consistent occupancy by both proteins of

the regulatory region of pri-miR-34a was observed in basal

condition and was found potentiated upon hormonal treatment,

with the highest enrichment of 3.4- and 8.4-fold for eNOS and

ERb over the untreated (Figure 3C), thus validating the ChIP-

Seq data.

Effects of Estradiol on the Expression of miR-34a and of
its Target SIRT1

Our findings of repression of a miR subset associated with a

PCa aggressive phenotype even in basal condition, and the

increase of eNOS peaks upon estrogen treatment, prompted us to

evaluate whether E2 itself further affected expression of the

constitutively downregulated miR cluster (Figure 2). PCa-cells

belonging to the good and bad prognosis groups (C38IM and

C27IM, respectively), LNCaP and HUVEC cells were treated

with E2 for 3 and 6 hours and level of pri-miR-34a (left) and

mature miR-34a (right) were analysed by qRT-PCR. A significant

repression of both forms of miR-34a was observed in all cell lines

(Figure 4A), more pronounced for the pri-miR than the mature

miR, suggesting estrogen regulation at the level of transcription.

Of interest, in the unstimulated condition, expression of miR34-a

(at both pri-miR and mature level) progressively decreased from

normal endothelial to metastatic cancer cells, in agreement with

recent reports linking miR34-a silencing with the appearance of
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prostate cancer stem cells and metastasis [35]. Similar results were

obtained with other miRNAs belonging to the same cluster such as

let-7b, miR-143, miR-145 (data not shown).

Since expression of miR-34a is inversely correlated to that of his

target SIRT1, we asked whether E2 treatment could positively

affect SIRT1 expression and activity. HUVEC and C27IM cells

were treated with E2 versus time. A reproducible induction of

SIRT1 protein and activity by E2 in HUVEC andC27IM cells,

although with a different kinetics was observed (Figure 4B and
C).

On the basis of previous reports [41] and of the ability of SIRT1

to deacetylate (hence activate) eNOS, Co-IPs between eNOS and

SIRT1 and confocal microscopy analysis were performed. A clear

protein-protein interaction was observed in the basal condition in

HUVEC and C27IM cells (Figure 4D). Moreover nuclear

colocalization of both proteins, greatly enhanced upon estrogen

stimulation, was observed by confocal analysis in C27IM cells

(Figure 4E).

Rescue of miR-34a Estrogen-dependent Repression by
SIRT1 and HDACs Inhibitors

With the aim of deepening our insights into the molecular

mechanisms underlying the E2-dependent negative regulation of

miR-34a, we treated C27IM cells with several inhibitors: Sirtinol,

specific for SIRT1, Trichostatin A (TSA) specific for class I and IIa

mammalian histone deacetylases (HDACs), but not class III

HDACs (i.e., Sirtuins) [42], or MS275 and MC1568 specific for

HDACs I and IIa, respectively. The SIRT1 activator, Resveratrol,

was also included as control. Figure 5A shows that Sirtinol was

effective in preventing the E2-mediated silencing of miR-34a, both

at mature and pri-miR levels. MC1568 also rescued miR-34a

expression although to a lower extent, whereas MS275 and TSA

appeared to be the least efficient As one would expect, Resveratrol

was totally ineffective in rescuing the estrogen-dependent miR-34a

silencing.

To assess the specificity of our findings and to prove the primary

role played by eNOS together with ERb in mediating this

transcriptional regulation, we evaluated miR-34a levels upon

overexpression of a dominant negative eNOS mutant, S1177A [4],

in C27IM, before and after E2. As expected from the results

shown in Fig. 5A, transfection of empty vector did not affect the

E2-dependent inhibition of pri-miR34a. On the other hand, the

eNOS mutant rescued the E2-dependent pri-miR34a repression

(Figure 5B) with the consequent relief of the estrogen-dependent

SIRT1 induction in C27IM as well as in LNCaP and HUVEC

cells (Figure 5C). Of note, in the presence of dn-eNOS we

observed a stabilization of SIRT1 possibly due to partial reduction

of pri-miR34a in the absence of estrogen (Figure 5B). In all cases,

however, estradiol treatment, which usually increases the intra-

cellular levels of NO, failed to induce SIRT1 expression in this

condition. These results reveal the existence of a feedback loop

whereby, upon estrogen, SIRT/eNOS regulates transcription of

miR-34a which in turn modulates SIRT1 expression.

Overall these findings are highly suggestive of a direct

involvement of NAD+-dependent deacetylases such as SIRT1,

and to a less extent, of histone class IIa deacetylases such as

HDAC4 or HDAC5. To investigate the mechanism by which

these molecules participate in the miR-34a estrogen-dependent

transcriptional silencing, we performed confocal analysis and ChIP

assays in the presence or absence of E2 and analyzed their

recruitment onto a long genomic regulatory region upstream of

the miR-34a promoter. Confocal microscopy revealed that E2

treatment increased the co-localization of HDAC4/eNOS and

HDAC5/eNOS (Figure 5D, E). Moreover, since HDAC4 and 5

do not bind directly DNA but acquire this property through their

interaction with HDAC3 [43,44], ChIP assays were performed

with antibodies to HDAC 3 and 4 as well as SIRT1 (Figure 5F).

Occupancy of the miR-34a promoter was observed essentially only

after hormonal stimulation, HDAC4 and SIRT1 exhibiting the

highest enrichment (with a maximum of 8.4- and 10.6-fold over

control, respectively). These data substantiate the presence of

hetero-complexes suggesting that the interplay among members of

class I, IIa and III contributes to the estrogen-dependent

repression of miR-34a in aggressive prostate cancer cells.

Discussion

In this study we have generated a genome wide profile of

eNOS-DNA associations that has revealed an unexpected very

wide distribution of the protein. Since eNOS is not per se a DNA-

binding protein nor a classical transcription factor, this observation

suggested to us its association with a variety of chromatin-binding

partners. Indeed, we show that eNOS can interact with the

genome in a dual-fashion, either by forming complexes with

transcription factors that bind specific DNA motifs, or by

associating with proteins, such as histone deacetylases, present

over large genomic regions. Evidence that eNOS contributes to

transcriptional regulation by forming complexes with ERb and

HIFs, detectable on chromatin or in solution, has been provided

by our previous work [1].

The existence, under basal conditions or in response to

estrogen, of a variety of putative eNOS-targeted genes distributed

genome-wide, suggests a key role for eNOS in PCa (Figure 1A
and D). In agreement with that, gene ontology analysis of over-

represented pathways shared by C27IM and LNCaP cells

exclusively upon estrogen stimulation (Table 2) shows a series

of gene pathways involving eNOS in PCa progression, thus

revealing an unprecedented scenario for eNOS involvement at the

chromatin level in tumorigenesis. Recent data [45] have in fact

provided evidence supporting eNOS-targeted therapy in clinical

oncology.

These findings are extremely novel with respect to the more

established cytoplasmic localization and role attributed to eNOS

[46,47], and reinforce the specific eNOS nuclear function in

aggressive prostate cancer proposed by our previous in vivo studies

on TissueMicroArrays from PCa patients. In fact we have

demonstrated that higher expression of eNOS, cytoplasmic and

nuclear, was, together with ERb and HIFs, the most relevant

indicator of adverse clinical outcome within a prognostic

expression signature [1,17].

In investigating the effects of estrogen on the transcriptional

regulation involving eNOS in PCa we have focused on two genes:

miR-34a, whose expression is decreased in PCa, and one of its

targets, the class III deacetylase SIRT1 [48,49]. One mechanism

by which miR-34a expression decreases in cancer is through

aberrant CpG methylation of its promoter [50]. However, by

immunoprecipitation of methylated DNA [5], we observed a low/

intermediate level of methylation in 4 PCa-derived cell lines

(including C27IM) compared with LNCaP cells (data not shown).

Thus methylation does not appear to be the only mechanism

responsible for miR-34a silencing, at least in PCa cells. We indeed

have previously provided evidence of an alternative silencing

mechanism attributable to the eNOS/ERb complex activated by

E2 [5].

With regard to SIRT1 it is known that its expression is increased

in a variety of human cancers including PCa [48,51], suggesting a

critical role of this protein in tumorigenesis [49]. The crosstalk

between SIRT1 and eNOS is determined by the deacetylation of
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lysines 496 and 506 which reside within the calmodulin binding

domain of eNOS that is, in turn, activated by SIRT1 [41]. This

effect is generally considered part of the protective and beneficial

function of the SIRT1/eNOS axis. As a consequence of its

important biological properties SIRT1 has emerged as a drug

development target for treating age-dependent diseases. It appears,

however, that biologically its main function resides in the optimal

balancing between aging and cancer [16].

Based on our results we propose the following model: in

aggressive PCa an abnormal estrogen stimulation, resulting from

the decrease of androgen in favor of estrogen during aging [52],

results in almost complete silencing of miR-34a. As a consequence,

there is a rapid increase in SIRT1 expression that determines, in

turn, activation of eNOS. The resulting positive feedback on both

proteins (see cartoon in Figure 6) further represses transcription

of miR34-a. Silencing of this miR has already been linked to

promotion of prostate cancer stem cells and metastasis [35]. Our

contribution reveals the molecular mechanisms responsible for this

phenomenon, i.e. its dependence on the transcriptional repressive

function of eNOS-containing complexes. Genetic inhibition of

eNOS by overexpression of a dominant negative eNOS mutant,

interrupts the eNOS/miR-34a/SIRT1 pathway, thus validating

our hypothesis (Figure 5B,C).

Moreover, the estrogen-dependent repression of miR-34a is

prevented by treatment with HDAC inhibitors (Figure 5A), the

SIRT1 specific inhibitor Sirtinol being the most efficient, revealing

a tight link between SIRT1 and eNOS through the SIRT1

regulator, miR-34a [15]. The effects obtained with the HDAC

inhibitors favors the view of eNOS as a critical factor participating

in chromatin remodeling complexes in association with different

classes of histone deacetylases (Figure 5F).

Of interest, the small polyphenolic compound, Resveratrol, a

classical SIRT1 activator, did not rescue miR-34a expression

(Figure 5A). This may be explained by an additive effect of

Resveratrol on the eNOS/NO pathway given its known role on

SIRT1 activation and NO production. On the other end,

Resveratrol has structural similarity to the synthetic estrogen

diethylstilbestrol and acts as an estrogen receptor partial agonist

[53,54]. These features may provide an alternative interpretation

of our data showing that in the presence of this ER ligand, the

repression of miR-34a transcription induced by eNOS/ERb
complex cannot be reversed.

In conclusion, we have documented the genome-wide

existence of a considerable number of eNOS-DNA associations

that define transcriptional active regions, as well as a significant

downregulation of a cluster of miRs, among which miR-34a, in

PCa cells associated with adverse outcome (G1 cells). These

results have revealed a molecular link between eNOS, SIRT1

and miR-34a in the prostate microenvironment. We have also

identified, in the same context, novel eNOS-targeted genes (e.g.

miRs and their targets) in both untreated and E2-treated cells, a

finding that suggests that eNOS may participate in the

regulation of large gene sets, thus fulfilling a novel molecular

role at chromatin level.

Supporting Information

Figure S1 Nuclear colocalization of ERb and eNOS.
C27IM cells were cultured for 72 hours in hormone-deprived

serum before treatment with E2 or the eNOS inhibitor L-NAME

alone or in combination. Cells were stained with antibody to

eNOS or ERb and examined by confocal microscopy. Nuclei were

stained with TOPRO3. Images were digitally transformed to

quantify the mean fluorescence intensity on selected areas for

single eNOS- or ERb- positive cells. The resulting histograms

indicate the presence or the accumulation of eNOS or ERb
proteins in the nuclei of prostate cells, expressed as fold induction

relative to control (Nuclear localization index). Data represent the

mean 6 SEM of two indipendent experiments, each performed in

duplicate. p,0,05 * vs control, # vs E2.

(TIF)

Figure S2 Human chromosome ideograms of eNOS
peaks in presence or absence of estradiol. UCSC Genome

Graphs illustrating the localization and density of eNOS-peaks in

PCa cells: C27IM (A) and LNCaP (B); untreated (NT, blue dots) or

treated with Estradiol (E2, red dots).

(TIF)

Figure S3 Kernel Tag density analysis of eNOS-peaks
distribution relative to the nearest TSS. A) Window of

150.000 bp from TSS in C27IM_NT, C27IM_E2, LNCaP _NT,

and LNCaP_E2 cells. B) Window of 10.000 bp from TSS:

C27IM_NT versus C27IM_E2 (left) and LNCaP NT versus

LNCaP E2 (right). Green dashed line: untreated samples (NT), red

line: estradiol samples (E2). Welch Two Sample t-test of TSS

distance C27IM E2 vs C27IM: p = 0.001166; LNCAP E2 vs

LNCAP NT: p = 0.02002.

(TIF)

Figure S4 Validation of ChIP-Seq eNOS peaks by MACS
and SICER algorithms in C27IM and LNCaP cells, in the
presence or absence of E2. Peaks visualization was obtained

using Integrated Genome Viewer (IGV 2.1). Screenshots of ChIP-

Seq eNOS peaks surrounding hTERT (A), pS2 (TTF1, B) and

GSTP1 (C) regulatory genomic regions are shown. Primers used

for ChIP-qPCR validation are indicated with dashed orange lines.

(TIF)

Figure S5 A) Correlation heatmap using peak caller score

between C27IM and LNCaP cells in the presence or absence of

E2. B) Hierarchical cluster analysis of binding sites (affinity

analysis) in C27IM and LNCaP cells with or without E2.

(TIF)

Figure S6 Screenshot showing the pri-miR-34a genomic
region and ChIP-Sequencing data. Graphic representation of

the alignement of reads derived from eNOS-immunoprecipitated

and control input. MACS peaks in immunoprecipitated and

control samples in C27IM untreated (NT) or treated with estradiol

(E2) are shown in upper Panel, corresponding reads in lower

Panel. eNOS-positive peaks corresponding to Figure 3B are

indicated by red (C27IM_E2) and blue boxes (C27IM_NT).

Transcription tracks from the ENCODE project: 1) overlayed

H3K27Ac track shows where modification of histone proteins is

suggestive of enhancer and, to a lesser extent, other regulatory

elements; 2) DNase Clusters track shows regions where the

chromatin is hypersensitive to DNase I, e.g regulatory regions and

promoters); 3) Txn Factor ChIP track shows DNA regions where

transcription factors bind as assessed by chromatin immunopre-

cipitation with antibodies specific to the transcription factor

followed by sequencing of the precipitated DNA (ChIP-seq).

(TIF)

Table S1 ChIP-Seq mapping for each sample.

(DOC)

Table S2 Genome-wide determination of regions displaying

eNOS-recruitment in the absence or presence of estradiol (MACS

analysis).

(DOC)
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Table S3 eNOS peak count per gene.

(DOC)

Methods S1 Supplemental Methods for ChIP assays.
(DOC)
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