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Abstract

Separating indolent from aggressive prostate cancer is an important clinical challenge for identifying patients eligible for
active surveillance, thereby reducing the risk of overtreatment. The purpose of this study was to assess prostate cancer
aggressiveness by metabolic profiling of prostatectomy tissue and to identify specific metabolites as biomarkers for
aggressiveness. Prostate tissue samples (n = 158, 48 patients) with a high cancer content (mean: 61.8%) were obtained using
a new harvesting method, and metabolic profiles of samples representing different Gleason scores (GS) were acquired by
high resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS). Multivariate analysis (PLS, PLS-DA) and
absolute quantification (LCModel) were used to examine the ability to predict cancer aggressiveness by comparing low
grade (GS = 6, n = 30) and high grade (GS$7, n = 81) cancer with normal adjacent tissue (n = 47). High grade cancer tissue
was distinguished from low grade cancer tissue by decreased concentrations of spermine (p = 0.0044) and citrate
(p = 7.73?1024), and an increase in the clinically applied (total choline+creatine+polyamines)/citrate (CCP/C) ratio
(p = 2.17?1024). The metabolic profiles were significantly correlated to the GS obtained from each tissue sample
(r = 0.71), and cancer tissue could be distinguished from normal tissue with sensitivity 86.9% and specificity 85.2%. Overall,
our findings show that metabolic profiling can separate aggressive from indolent prostate cancer. This holds promise for the
benefit of applying in vivo magnetic resonance spectroscopy (MRS) within clinical MR imaging investigations, and HR-MAS
analysis of transrectal ultrasound-guided biopsies has a potential as an additional diagnostic tool.
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Introduction

Currently there are no objective clinical tools that can

accurately discriminate aggressive from indolent prostate cancer.

The Gleason scoring system [1] is the most important prognostic

tool in treatment planning, but it is dependent on subjective factors

in the evaluation of aggressiveness and is limited by underestima-

tion due to under-sampling of biopsies. New diagnostic and

prognostic tools for evaluating prostate cancer aggressiveness are

therefore urgently needed. Metabolic alteration is an emerging

hallmark of cancer [2], and metabolic profiling of prostate tissue

using magnetic resonance spectroscopy (MRS) can provide

additional information about tumor behaviour [3], especially with

the possibility to translate findings from ex vivo tissue samples to

in vivo measurements in patients using MRS imaging (MRSI).

Metabolic differences between prostate cancer and normal

tissue are documented both in vivo by MRSI [4,5,6,7] and ex vivo

using high resolution magic angle spinning MRS (HR-MAS)

[8,9,10]. In some hospitals, MRSI has already been implemented

into clinical practice, making use of the (total choline+creatine+-
polyamines)/citrate (CCP/C) ratio or the (total choline+creatine)/

citrate (CC/C) ratio which is increased in malignant prostate tissue

[5,8,11,12]. The total choline signal measured in vivo can be

separated by HR-MAS into the choline-containing metabolites

[free choline (Cho), phosphocholine (PCho) and glyceropho-

sphocholine (GPC)] [8,9,13]. Lactate and alanine are also reported

to be increased in cancer compared to normal tissues [10], while

the prostate-specific metabolites citrate and the polyamines

(spermine, spermidine, and putrescine) are found in lower

concentrations in cancer tissue [9,14].

HR-MAS is a well-established technique for analyzing bi-

ological tissue, leaving the samples unprocessed for subsequent

histopathological evaluation or other molecular methods such as

gene expression profiling [15,16]. We have previously confirmed

that there is a significant correlation between results from ex vivo

HR-MAS analyses and in vivo MRSI from spatially matched
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regions, proving that the translation from ex vivo to in vivo is valid

[17]. The overall aim of this study was to investigate the possibility

of assessing prostate cancer aggressiveness by HR-MAS analysis of

human prostate tissue, and to identify specific metabolites as

biomarkers for cancer aggressiveness. The study was performed

using fresh frozen tissue samples extracted from radical prostatec-

tomy specimens using a novel method allowing samples with a high

cancer content to be included [18]. Both metabolic profiles and

individual metabolite concentrations were used to discriminate

between the histologically determined Gleason score (GS) which

was evaluated from a cryosection of each tissue sample. The value

of HR-MAS as an additional tool to complement histopathological

scoring, and the improvement the results add to in vivo MRSI

examinations, will be discussed.

Materials and Methods

Patient and Tumor Characteristics
Since 2007, all prostate cancer patients at St. Olavs Hospital,

Trondheim University Hospital, Norway, scheduled for radical

prostatectomy have been invited to sign an informed consent

form to donate tissue for research. From each patient a 2 mm

transversal prostate tissue slice has been collected for storage in

the Regional Research Biobank of Central Norway. The study

has been approved by the Regional Committees for Medical

and Health Research Ethics (REC) Central, Norway, and the

Data Inspectorate of Norway. The current study includes 48

patients with no previous prostate cancer treatment and with

a tumor volume .5% of the gland, estimated by histopathol-

ogy. Patient characteristics are described in Table 1.

Harvesting Method and Sselection of HR-MAS Samples
On average 15 minutes after surgical removal of the prostate

gland, a tissue slice (2 mm) was obtained by transection through its

middle, perpendicularly to the urethra [18]. The slice was snap

frozen by clamping between two metal plates precooled in liquid

nitrogen and stored at 280uC. The two remaining halves were

stitched to a cork board, in order to avoid disturbances in the

histopathological evaluation of the surgical margin. After fixation

in formalin, both halves were further sliced (4 mm thick slices) and

paraffin embedded. Microscopic sections were made and stained

with hematoxylin, erythrosine and saffron (HES) for diagnostic

purposes. The HR-MAS samples were excised from the frozen

prostate slice using a novel harvesting method described by

Bertilsson et al. [18]. By using this method, summarized in

Figure 1, tissue samples of predetermined histopathological GS are

obtained from the slice. During sample extraction, the frozen

tissue slice was placed on an aluminium plate in direct contact with

liquid nitrogen, preventing the tissue from thawing and thus

reducing molecular degradation. Several samples from each slice

(range: 1–7 samples per slice (median: 3) depending on tumor size)

were selected from malignant areas of different GS and from

normal adjacent areas, using the HES stained slides from

neighboring tissue blocks as a guide. Thus, a total of 162 HR-

MAS samples was obtained. Normal adjacent samples are defined

as samples not showing signs of cancer, thus containing only

benign glandular and/or stromal tissue, and these samples were

excised as far away from the cancer as possible. To assess the GS

of each HR-MAS sample (2 mm thick), and to determine the

amount of cancer tissue, stroma, and glandular tissue, a 4 mm

cryosection was cut from one side of the extracted sample and

HES stained, and the tissue composition was evaluated by an

experienced pathologist specialized in uropathology before the

HR-MAS procedure. The samples were not thawed before the

Table 1. Characteristics of patients and prostate tissue samples.

Age (mean, range) Years 62.0(48–69)

Tumor volume (mean, range) Percentage of prostate gland 21.4 (5–90)

sPSA (mean, range) Before surgery (ng/mL) 10.5 (3.7–45.8)

After surgery (ng/mL)* 0.0 (0.0–1.0)

pT stage (patients) pT2a 2

pT2b 1

pT2c 29

pT3a 7

pT3b 7

unknown 2

Gleason score of HR MAS tissue samples
(samples/patients)a

0 47/41

3+3 30/21

3+4 22/19

4+3 20/15

4+4 16/12

3+5 2/1

5+3 1/1

4+5 12/9

5+4 8/5

*3 months after prostatectomya Several samples from each slice (range: 1–7 samples per slice depending on tumor size) were selected from locations corresponding to
cancer and normal areas, resulting in a total of 158 HR-MAS samples representing the different Gleason grades.
doi:10.1371/journal.pone.0062375.t001
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moment they go into the magnet, reducing additional freeze-thaw

effects. There are no studies stating that long-term storage at

280uC (up to 5 years) affect metabolism.

HR-MAS MRS Experiments
A PBS solution (3 ml) containing trimethylsilyl 3-propionic acid

sodium salt (TSP, 5 mM) and formate (25 mM) was added to

disposable Kel-F HR-MAS inserts (30 ml, Bruker Biospin,

Germany). Each prostate tissue sample (mean weight: 12.7 mg,

range: 3.0–21.9 mg) was transferred to a HR-MAS insert using

a sterile biopsy punch (2 mm, Miltex Gmbh, Germany), and the

insert was placed into the zirconium rotor (4 mm). HR-MAS was

performed on a Bruker Avance DRX600 (14.1 T) spectrometer

(Bruker BioSpin, Germany) equipped with a 1H/13C MAS probe.

Proton spectra were acquired at 4uC with a spin rate of 5 kHz.

Pulse-acquired spectra were obtained with a presaturation delay of

3.0s and acquisition time of 3.27s. A Carr-Purcell-Meiboom-Gill

(CPMG) spin echo sequence [90u-(t-180u-t)n –acquisition] was

used to suppress signals from lipids and macromolecules with an

effective echo time of 60 ms. One hundred and twenty-eight scans

over a spectral region of 10 kHz were collected into 64k points for

both sequences. The spectra were Fourier transformed with a line

broadening of 0.30 Hz. Chemical shifts were referenced to the

lactate peak (left peak of the doublet) at 1.336 ppm and a linear

baseline correction was applied (Topspin 3.1, Bruker Biospin,

Germany). Peak assignments were set according to the human

metabolomics database and previous published papers using HR

MAS on prostate tissue [9,10,19].

Multivariate Analysis
The spectral data between 1.46 and 4.66 ppm from the CPMG

spectra were used for multivariate analysis. The spectra were

normalized to an equal total area and peak aligned using icoshift

[20]. Signals from ethanol contamination (3.65–3.69 ppm) were

removed from the spectra together with those of lipid residuals at

1.60, 2.05, and 2.27 ppm. Preprocessing of the spectra was

performed in MATLAB 7.8.0 (The Mathworks, Inc., USA). In

addition to principal component analysis (PCA), partial least

squares (PLS) regression and PLS discriminant analysis (PLS-DA)

[21] were used to model the relationship between the MR spectra

and tumor/patient characteristics (tissue composition, GS, serum

PSA (sPSA), tumor volume, age and pT-stage). In order to avoid

Figure 1. The prostate sample harvesting method after radical prostatectomy. (A) The two HES-stained sections adjacent to the tissue slice.
(B) To localize the cancer and normal areas, micrographs of the two HES stained histological sections adjacent to the removed tissue slice were fused
with a photograph of the frozen tissue slice. The regions of interest were marked and transferred to a transparency sheet to be used as a map for
guiding sample extraction. (C) Cylindrical samples (3 mm diameter) for HR-MAS were excised from regions with normal tissue and cancer tissue with
different Gleason grades. The Gleason grade and the percentages of benign glandular tissue, stroma and cancer tissue were verified by analyzing
a 4 mm cryosection from each extracted sample. The figure is adapted from reference [36].
doi:10.1371/journal.pone.0062375.g001
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overfitting, double cross-validation was performed [22]. A PLS

model was built on training samples (80% of the data set) and used

to predict the status of independent test samples (the remaining

20%). The optimal number of LVs (latent variables) to use in the

model was determined by cross-validation of the training data and

applied independently to the test data. Both the inner and outer

loops of the double cross-validation procedure were repeated 20

times with different randomly chosen training and test sets, and

the average results are presented. As several samples from each

patient were analyzed, spectra from one patient were put in either

the training or the test set. The variable importance was evaluated

by variable importance in projection (VIP) scores [23]. Variables

with a VIP score greater than one are generally considered to be

important The classification results were validated by permutation

testing (n = 1000, significance for p,0.05) [22]. Multivariate

analyses were performed in MATLAB using PLS_toolbox 6.2.1

(Eigenvector Research, Inc., USA).

Absolute Quantification of Metabolites by LCModel
The pulse-acquired spectra were quantified using LCModel

[24,25] based on a novel basis set of 23 metabolites. The basis set

of simulated metabolite spectra was generated using NMRSIM

(Bruker BioSpin, Germany), and the metabolites were quantified

between 4.72 ppm and 20.8 ppm. The baseline was modeled

with a cubic spline function with a maximum of two knots, and

macromolecules were included in the fitting, simulated with single

peaks including prior knowledge of line width, chemical shift, and

relative amplitude. Small molecule metabolite and lipid chemical

shifts were set as mean values based on an initial assignment of

spectra from 10 samples of varying tissue type. For metabolites

where some peaks were not clearly resolved in these spectra (GPC,

GPE, glucose, and the amino acids), literature values were used

[26,27,28]. Ethanol, a contaminant in some samples, was included

in the basis set for a successful subsequent fitting with the

metabolite spectra. The metabolites were quantified according to

formate and the concentrations are reported as mmol/kg wet

weight. Full relaxation of formate was assured by using results

from T1 relaxation measurements performed on six additional

tissue samples.

Statistical Analysis of Metabolite Concentrations
Differences in metabolite concentrations between cancer and

normal adjacent tissue, and metabolic differences related to

aggressiveness (low grade (GS = 6) vs. high grade (GS$7)) were

analyzed by linear mixed models, accounting for the effect of

samples originating from the same patient. Individual comparison

of samples of GS 6, 7, and 8–9, in addition to differences between

samples of GS 3+4 and 4+3 were also tested. Analyses were

performed in R (version 2.14.1, R Foundation for Statistical

Computing) with the lme4 package [29]. The data were log

transformed prior to analysis in order to obtain normally

distributed residuals. The Benjamini and Hochberg false discovery

rate was used to correct for multiple testing. Adjusted p-

values,0.05 were considered significant.

Results

Samples
The PCA score plot of the CPMG spectra (n = 162) revealed

four outlying samples. These samples were removed from the data

set due to very high lipid concentrations and microscopic evidence

of severe inflammation. Of the 158 samples included in this study,

47 were shown to contain only normal prostate tissue components,

while 111 samples contained cancer tissue. The average cancer

content was 61.8% (range: 10–100%) and 30 cancer samples were

defined as low grade (GS 6) while 81 samples were defined as high

grade (GS 7–9). Sample and patient characteristics are summa-

rized in Table 1. Representative HR-MAS spectra and the

corresponding histopathological image of normal prostate tissue

and cancer tissue with different Gleason grades are shown in

Figure 2.

Metabolic Profiles Related to Clinical Parameters
The metabolic profiles were correlated to tissue composition

(percentage of benign glandular tissue: r = 0.67, stroma: r = 0.70,

and cancer: r = 0.77) (p,0.001). The metabolic profiles were not

significantly correlated to the patient’s sPSA level, tumor volume,

age or pT-stage (p.0.05).

Distinguishing Cancer and Normal Adjacent Tissue
Multivariate analysis. Based on the metabolic profiles,

cancer and normal samples were separated with 86% correct

classification using PLS-DA on independent test samples (sensi-

tivity 86.9%, specificity 85.2%, p,0.001). A PLS model correlat-

ing the metabolic profiles to GS (Figure 3, A-B) separates the

normal adjacent tissue samples from the cancer tissue samples.

The loadings showed decreased levels of citrate, taurine and

creatine, and an increase in GPC, PCho, Cho, and glycine in

cancer compared to normal tissue.

Absolute quantification by LCModel. The quantified

metabolite concentrations in cancer and normal tissue samples

(n = 153) are shown in Table 2. Five spectra were not quantified

due to insufficient fitting caused by high lipid signals.

Distinguishing Low Grade (GS = 6) and High Grade
Cancer Tissue (GS$7); Correlation with the Gleason
System

Multivariate analysis. Metabolic profiles were correlated to

GS with a correlation coefficient of r = 0.71 using PLS regression

analysis (p,0.001) (Figure 3, A-B). When analyzing only the

cancer samples, the metabolic profiles were correlated to GS with

a correlation coefficient of r = 0.45 (p,0.001) (Figure 3, C-D).

When dividing the samples into normal, high grade (GS$7) and

low grade (GS = 6), correct classification by PLS-DA was 85.8%

(sensitivity 89.3%, specificity 82.3%), 77.4% (sensitivity 84.4%,

specificity 70.5%), and 65.8% (sensitivity 64.1%, specificity

67.6%), respectively.

Absolute quantification by LCModel. The concentrations

of spermine and citrate were shown to be significantly different

between low grade and high grade cancers, while no significant

differences were detected for the other metabolites. The concen-

trations and statistical results for the significant metabolites are

summarized in Table 3. For further examination of the metabolite

concentrations related to aggressiveness, metabolic differences

between samples of GS 6, 7, and 8–9 were analyzed individually

(Table 3). No significant differences between GS 7 and GS 8–9

were detected for any of the metabolites. In addition, no significant

differences in metabolite concentrations were found between

samples of GS 3+4 and 4+3 (p.0.05). The correlations between

GS and the concentrations of spermine and citrate were r =20.36

and r =20.43, respectively.

The clinically relevant CCP/C ratio was significantly increased

in high grade compared to low grade cancer samples (Table 3). In

addition, a trend of different GPC/PCho ratios between low and

high grade cancer samples was detected (p = 0.08). When

examining metabolite concentrations related to aggressiveness,

the percentages of benign glandular, stroma, and cancer tissue

Biomarkers for Prostate Cancer Aggressiveness
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Figure 2. Representative HR-MAS spectra and corresponding HES stained prostate tissue samples with different Gleason grades.
Visual inspection of the spectra show decreased levels of polyamines (predominately spermine) and citrate, and increased levels of GPC, PCho, and
Cho with increasing tumor grade.
doi:10.1371/journal.pone.0062375.g002
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were included in the linear mixed models in order to correct for

differences in tissue composition. However, none of the tissue types

had a significant contribution to the statistical models (p.0.05),

and the results are presented without correction for tissue

composition.

Discussion

In this study performed using prostate tissue with high cancer

content, we have shown the possibility to separate low grade from

high grade prostate cancer using metabolic profiling. Decreased

concentrations of citrate and spermine were shown to be valid MR

tissue biomarkers for prostate cancer aggressiveness, and the

metabolic profiles were significantly correlated to the GS showing

that aggressive cancers have an altered metabolism compared to

indolent cancer. Surprisingly, the choline containing components

were not increasing with GS, indicating that spermine and citrate

are the main contributors to the clinically applied CCP/C ratio

which increases with GS. In addition, this study confirms the

separation between cancer and normal tissue, and the HR-MAS

metabolic profiles were successfully separated with 86.0% correct

classification.

Many prostate cancer patients diagnosed with indolent disease

(GS 6) are eligible for inclusion in active surveillance programs. It

is therefore desirable to separate this group from patients with

higher grade cancers. Citrate concentrations could separate

samples with GS 6 from both GS 7 and 8–9, while the difference

in spermine concentrations was only significant between GS 6 and

GS 8–9. Interestingly, none of the metabolites was significantly

different between samples with GS 7 and GS 8–9, indicating that

samples with GS 7 (intermediate risk patients) have a metabolic

pattern similar to higher grade cancers. This finding supports the

consensus that only patients with GS#6 should be included in

active surveillance programs. Patients with GS 4+3 have worse

prognosis than those with GS 3+4, however this study could not

separate these clinically relevant subgroups.

Normal prostate epithelial cells produce and accumulate a large

amount of citrate which is secreted as a major component of the

Figure 3. Prostate cancer metabolic profiles are correlated to aggressiveness. (A) PLS scores and (B) loadings of LV1 and LV2 from PLS
regression correlating the metabolic profiles to GS with a correlation coefficient r = 0.71. The cancer samples are separated from the normal samples
in the score plot, with the loadings showing metabolic alterations related to malignancy. Samples with GS 9 are almost completely separated from
normal adjacent samples in the score plot, while some samples with a lower score overlap with the normal ones. The PLSDA model explains 48.2% of
the x-variance and 53.7% of the y-variance (C) PLS scores and (D) the corresponding loading profile of LV1 from PLS regression of the cancer samples
only, correlating the metabolic profiles to GS with a correlation coefficient r = 0.45. The resulting model explains 20.0% of the x-variance and 27.4% of
the y-variance of the data. The loadings in (B) and (D) are colored according to their VIP score. S-ino; scyllo-inositol.
doi:10.1371/journal.pone.0062375.g003

Biomarkers for Prostate Cancer Aggressiveness
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prostatic fluid. Compared to normal tissue, decreased levels of

citrate are previously observed in prostate cancer tissue by ex vivo

MRS [9]. Our study confirms and extends these findings by

demonstrating a significant negative correlation with GS, and

significant differences between low grade and high grade cancer

tissue, between samples of GS 6 and GS 7, and between GS 6 and

GS 8–9. This supports the highly clinically relevant hypothesis that

the citrate concentration can distinguish between aggressive and

indolent prostate cancer.

Our results confirm previous in vivo and ex vivo MRS studies

showing that a decrease in polyamines is associated with prostate

cancer [8,14,30,31]. Additionally, the very low putrescine

concentration in our study confirms that the polyamine peak

predominantly consists of spermine. Due to the significantly lower

concentration of spermine in high grade compared to low grade

tissue, we propose spermine as a discriminative MR biomarker for

prostate cancer aggressiveness, and a focus to this should be

considered using the CCP/C ratio in MRSI examinations. Today,

spermine cannot be fully separated from the choline peak using

MRSI, but due to rapid technological developments already in

progress and higher field strengths (7T) making separation possible

[32], polyamines and especially spermine are potential biomarkers

in clinical practice.

Surprisingly, there were no significant differences between high

grade and low grade prostate cancer in any of the quantified

choline- or ethanolamine-containing metabolites (Eth, PE and

GPE). Previous ex vivo studies have demonstrated significant

correlations between GS and choline and total choline [33], and

significantly higher concentrations of GPC in high grade

(GS$4+3) compared to low grade (GS#3+4) cancers [13], which

is not in accordance with our findings. We found a trend towards

significance for the GPC/PCho ratio (p = 0.0832), which indicates

a change in the choline-containing metabolites associated with

increased aggressiveness, however not detected when examining

the metabolites individually. Due to contradictory findings of

choline metabolism also in other types of cancers [34], the choline

metabolism related to cancer aggressiveness evidently needs

further evaluation.

Previous in vivo MRSI studies have concluded a trend towards

a correlation between the CCP/C ratio and prostate cancer

aggressiveness [12,35], and our study showed a highly significant

difference in the CCP/C ratio between low and high grade

cancers. Our findings on the individual metabolites, however,

indicate that the decreased CCP/C ratio observed in vivo is mainly

resulting from decreased citrate levels.

Although there was a correlation between the metabolic profiles

and tissue composition, correction for tissue composition in the

analysis of individual metabolite concentrations was not signifi-

cant. This indicates that the metabolic differences between high

Table 2. Metabolite concentrations (mmol/kg) in cancer and
normal prostate tissue samples.

Metabolite

Normal adjacent
samples Cancer samples p-valueb

(n = 47) (n = 106)

Median (IQR) Median (IQR)

Sperminea 1.92 (0.86–3.13) 1.22 (0.66–2.00) 0.022*

Putrescine 0.38 (0.00–0.97) 0.02 (0.00–0.25) 2.07?1024*

Choa 0.46 (0.32–0.64) 1.02 (0.65–1.59) 6.89?1029*

PChoa 0.34 (0.19–0.51) 0.70 (0.39–1.12) 5.68?1026*

GPCa 0.42 (0.25–0.51) 0.78 (0.48–1.17) 2.04?1026*

GPE 0.22 (0.00–0.42) 0 (0.00–0.51) 0.387

PEa 1.66 (1.10–2.39) 2.67 (1.90–3.69) 1.38?1025*

Eth 0.00 (0.00–0.06) 0.00 (0.00–0.21) 0.926

Lactatea 12.34 (9.79–16.71) 18.20 (13.90–24.45) 7.52?1025*

Alaninea 1.71 (1.22–2.09) 2.15 (1.65–2.79) 0.0014*

Glucose 0.90 (0.53–1.36) 0.00 (0.00–0.42) 5.70?10212*

Citratea 9.87 (5.14–14.32) 6.41 (3.34–9.46) 0.049*

Succinatea 0.38 (0.30–0.49) 0.59 (0.46–0.81) 1.20?1024*

Creatinea 2.43 (1.76–3.11) 2.09 (1.64–2.58) 0.820

Glutamatea 2.69 (2.28–3.56) 4.82 (3.61–6.88) 2.60?1029*

Glutaminea 1.98 (1.56–2.37) 2.74 (2.25–3.52) 1.78?1025*

Glycinea 1.53 (1.18–1.98) 2.50 (1.74–3.18) 2.04?1026*

Isoleucine 0.09 (0.02–0.12) 0.17 (0.08–0.27) 0.0017*

Leucine 0.24 (0.17–0.34) 0.46 (0.30–0.64) 2.04?1026*

Valine 0.21 (0.18–0.29) 0.38 (0.25–0.49) 7.66?1024*

Taurinea 5.70 (3.88–6.32) 4.34 (3.65–6.53) 0.918

Myo-inositola 8.82 (7.91–10.77) 9.22 (7.04–11.30) 0.435

Scyllo-inositola 0.36 (0.25–0.58) 0.43 (0.33–0.59) 0.459

Concentrations are reported as mmol/kg wet weight. * p,0.05.
aCramér Rao lower bound (CRLB, LCmodel uncertainty measure) lower than
20% of the concentration for more than 90% of the samples, which is
acceptable for quantification [37,38]. Higher CRLB values are the result of near
or actual absence of signals in some samples.
bP-values from Linear mixed models corrected for multiple testing by
Benjamini-Hochberg correction.
doi:10.1371/journal.pone.0062375.t002

Table 3. Metabolite concentrations (mmol/kg) and ratios in low grade (GS = 6) and high grade (GS$7) prostate cancer samples
and comparison between different GSs.

Metabolite/ratio Low grade (n = 29) High grade (n = 77) p-valuea GS GS GS

6 vs 7 6 vs 8–9 7 vs 8–9

Median (IQR) Median (IQR) (p-valuea) (p-valuea) (p-valuea)

Spermine 1.96 (1.23–3.72) 1.05 (0.54–1.57) 0.0044* 0.110 0.022* 0.769

Citrate 8.45 (7.20–14.82) 4.76 (2.95–7.78) 7.73?1024* 0.014* 0.005* 0.769

CCP/C 0.78 (0.62–0.95) 1.20 (0.80–2.16) 2.17?1024* 0.0016* 9.47?1024* 0.162

GPC/PCho 1.53 (1.01–2.15) 1.02 (0.64–1.78) 0.0832 0.082 0.089 0.734

Concentrations are reported as mmol/kg wet weight. a P-values from Linear mixed models corrected for multiple testing by Benjamini-Hochberg correction; * p,0.05.
doi:10.1371/journal.pone.0062375.t003
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and low grade prostate cancer samples are present independently

of tissue composition. It is however likely that samples with lower

cancer content would require statistical methods correcting for

tissue composition.

A strength of this study is the inclusion of patients from the

whole range of clinical stages, including patients with highly

aggressive cancers. A limitation is however that the low grade

tissue material (GS 6) was mainly acquired from patients having

more aggressive tumors in the vicinity, and this may have induced

metabolic perturbation in our low grade material. A sample cohort

including more samples from patients with pure low grade cancer

may provide even clearer metabolic differences between low and

high grade cancers.

Conclusion
Based on metabolic profiling of human prostate cancer samples

this study shows that low and high grade prostate cancer tissue can

be distinguished by the concentrations of spermine, citrate and the

CCP/C ratio. In the future, by analyzing larger patient cohorts,

concentration cut-off values can be determined for spermine and

citrate, and models based on the metabolic profiles can become

tools for assessing prostate cancer aggressiveness. HR-MAS is

feasible as a diagnostic supplementary tool for evaluating

transrectal ultrasound guided biopsies, providing metabolic

profiles that can predict tumor aggressiveness. Ultimately, the

translation from ex vivo measurements in tissue samples to a true

non-invasive in vivo examination, rendered possible by improve-

ments in MR technology, will be the main future goal. Thus, our

results demonstrate the value of MRS in clinical treatment

planning and as a tool for follow-up of patients included in active

surveillance programs.
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